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ABSTRACT 

Cancer significantly impacts human health, affecting one in five people during their lifetime. While chemotherapeutic agents like doxorubicin are crucial 
in treating various cancers, they are also associated with severe side effects, including nephrotoxicity. This review examines the renoprotective potential 
of flavonoids against doxorubicin-induced renal damage in animal models. Doxorubicin works by intercalating Deoxyribo Nucleic Acid (DNA) and 
making Reactive Oxygen Species (ROS), which cause apoptosis and the death of cells. A thorough literature analysis was done to collect relevant papers 
on the impact of flavonoid-rich therapies as renoprotective agents against doxorubicin-induced nephrotoxicity. Databases such as Google Scholar, 
Scopus, PubMed, Springer, Wiley Online Library, and ScienceDirect were searched using keywords including "flavonoids, doxorubicin, renoprotective, 
nephrotoxicity, and animal model," focusing on publications from 2014 to 2024. Flavonoids are diverse polyphenolic compounds in many plants with 
significant pharmacological properties such as antioxidant, anti-inflammatory, and anticancer effects. This review highlights the renoprotective potential 
of flavonoids like quercetin, rutin, kaempferol, morin, luteolin, apigenin, hesperidin, naringenin, diosmin, and anthocyanins. These compounds reduce 
renal toxicity through mechanisms that decrease ROS, lipid peroxidation, mitochondrial permeability, and apoptosis.  
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INTRODUCTION 

Cancer has become one of the worst illnesses for humans, with one 
in every five men and women having cancer at some point in their 
lives. Projections for the year 2022 indicate that there will be 
approximately 20 million instances of cancer, and out of those, 
nearly 10 million individuals are expected to die as a result [1]. 
Chemotherapeutic agents are chemical medications that kill and 
suppress cancer cells and cell proliferation, preventing cancer cells' 
unchecked development and proliferation [2]. Doxorubicin is a 
potent chemotherapeutic agent that successfully targets and cures 
several types of cancer. Doxorubicin is classified as an anthracycline 
treatment derived from the bacterium Streptomyces peucetius and 
has a close relationship with antibiotic drugs [3, 4]. 

Doxorubicin is employed in treating numerous tumor types in 
cancer patients, delivering therapeutic advantages through a 
complex mechanism involving multiple cell death routes, including 
apoptosis, pyroptosis, ferroptosis, and necroptosis [5–7]. In addition, 
doxorubicin exerts its effects on cancer cells in many ways, such as 
intercalating into the DNA double helix and generating free radicals 
that can damage cell membranes, DNA molecules, and proteins by 
interfering with topoisomerase II-mediated DNA repair. The latter 
step occurs when doxorubicin is oxidized to form an unstable 
metabolite called semiquinone, which is then converted back into 
doxorubicin, producing ROS [8, 9]. Doxorubicin exhibits notable 
anticancer activity, but its long-term administration as a 
chemotherapeutic agent can lead to adverse effects and subsequent 
issues, specifically hepatotoxicity, cardiotoxicity, and nephrotoxicity 
[10–12]. Doxorubicin can cause nephrotoxic effects, which can be 
identified through glomerular pathology and the appearance of 
clinical symptoms related to nephrotic syndrome [13]. The kidneys 
play an essential function in the human body by eliminating waste 
chemicals, maintaining homeostasis, and regulating acid-base 
balance. Disruption or toxic exposure to the glomeruli and tubules 
significantly affects the body's metabolic function, especially 
regarding the side effects of chemotherapeutic agents. That can 
result in inadequate renal function in the filtration of chemotherapy 
medications, increasing the likelihood of renal failure [14, 15]. 

Certain groups of people often utilize medicinal plants in their 
traditional medicine practices [16]. Natural plants contain many 

secondary metabolite compounds, such as flavonoids, which are 
diverse polyphenolic compounds found abundantly in various plant 
parts such as flowers, leaves, stems, and fruits [17]. In addition, 
flavonoids have various pharmacological benefits, including anti-
inflammatory, anticancer, antitumor, neuroprotective, antioxidant, 
antiviral, antibacterial, and anti-angiogenic [18–20]. Flavonoids are 
classified into several classes, including flavonols, flavones, flavanones, 
flavanols, isoflavonoids, and anthocyanidins [21]. These compounds 
effectively enhance the expression of protective enzymes such as 
Catalase (CAT), Glutathione (GSH), Superoxide Dismutase (SOD), GSH 
Peroxidase (GPx), and Nuclear factor erythroid 2-Related Factor 2 
(NRF2) [22, 23]. Moreover, flavonoids suppress the expression of pro-
apoptotic proteins such as Cytochrome C (Cyt C), B-Cell Lymphoma 
2(BCL-2)-associated X protein (BAX), and caspase-3, caspase-7 and 
caspase-9 while also lowering the levels of pro-inflammatory proteins 
like Tumor Necrosis Factor-α (TNF-α), Nuclear Factor-κB (NF-κB), 
Interleukin-1β (IL-1β), and Interleukin-6 (IL-6) [4, 24]. This study 
aims to review the renoprotective potential of flavonoids against renal 
damage induced by doxorubicin in experimental animal models. This 
literature review was performed to gather pertinent information on 
the impact of flavonoid-rich substances as a renoprotective drug in 
animal models induced by doxorubicin. Studies conducted on the 
keywords "flavonoids, doxorubicin, renoprotective, nephrotoxicity, 
and animal model" were collected from globally renowned databases 
such as Google Scholar, Scopus, PubMed, Springer, Wiley Online 
Library, and ScienceDirect. The primary emphasis is on publications 
published between 2014 and 2024, covering the past 10 years. 
However, a few articles from before 2013 have been included to 
ensure no significant insights on flavonoids are overlooked. In order to 
ensure the completeness of this narrative, we also considered the 
pertinent references provided in these publications. 

Mechanism of doxorubicin action 

Doxorubicin is widely utilized as a chemotherapeutic agent. 
Doxorubicin is classified as an anthracycline treatment derived from 
Streptomyces peucetius bacteria and is closely related to antibiotic 
drugs [3, 25]. However, the precise mechanism by which 
doxorubicin exerts its effects remains uncertain [8]. Some sources 
explain that the mechanism of doxorubicin, as a cancer 
chemotherapy drug, works in a complex manner with several 
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mechanisms of action, including DNA Intracellularly, Topoisomerase 
II Inhibition, and ROS production [26]. 

The interaction of doxorubicin with DNA is referred to as 
intercalation [27]. Doxorubicin, through a passive diffusion process, 
enters the nucleus of cancer cells through the cell membrane by 
forming doxorubicin complexes in the form of 20s proteasome 
subunits and enters between DNA bases, thus inhibiting critical 
macromolecular synthesis processes [28]. Doxorubicin has a 
structure of aglyconic and daunosamine groups that result in 
interactions between doxorubicin and Ribo Nucleic Acid (RNA) and 
DNA, causing stretching and breaking of DNA double chains and 
inhibiting replication and transcription of cancer cell DNA. In 
addition, the intercalation of doxorubicin with DNA results in the 
inhibition of the activity of the enzyme topoisomerase II, which has 
the role of opening and closing DNA strands during the process of 
DNA replication and repair, so that the action of doxorubicin that 
paralyzes topoisomerase II results in inhibition of normal DNA 
replication, preventing the formation of accurate DNA copies and 
stopping the growth of cancer cells [29]. Doxorubicin-induced 
inhibition of the topoisomerase II enzyme, which involves DNA 
replication, may contribute to the production of ROS [8]. 

Doxorubicin can trigger the production of ROS through several 
mechanisms in cancer cells [30]. One of the main mechanisms is the 

conversion of doxorubicin to semiquinone doxorubicin by 
mitochondrial Nicotinamide Adenine Dinucleotide Phosphate 
(NADPH) oxidase within the mitochondria, which then generates 
Superoxide Anion (O2-) as a by-product. In addition, doxorubicin 
interacts with the Nitric Oxide Synthase (NOS) enzyme, which uses 
NADPH as a reductant to produce Nitric Oxide (NO) from L-arginine 
in the presence of molecular Oxygen (O2). When levels of L-arginine 
or the cofactor BH4 are limited, NOS undergoes uncoupling, 
producing superoxide rather than NO. ROS generated by 
doxorubicin causes direct damage to the DNA of cancer cells, 
including damage to DNA bases and sugar-phosphate backbone, 
which can lead to apoptosis if not repaired [31].  

Doxorubicin also induces damage to the mitochondrial membrane 
by interacting with cardiolipin, a lipid in the inner mitochondrial 
membrane, increasing ROS production and damaging mitochondrial 
structure, ultimately causing apoptosis in cancer cells. In addition, 
Doxorubicin increases the expression of pro-apoptotic proteins such 
as BAX so that it can decrease the expression of anti-apoptotic 
proteins such as BCL-2, releases Cyt C from mitochondria to the 
cytosol and activates caspase-3, a key enzyme in the apoptotic 
pathway. Through this mechanism, excessive ROS production in 
cancer cells causes oxidative stress, which damages DNA, proteins, 
and lipids, thereby triggering cellular mechanisms that cause cell 
death and inhibit the growth and spread of cancer cells [32, 33]. 

  

 

Fig. 1: Doxorubicin-induced ROS-induced oxidative stress causes nephrotoxicity [34] 

 

Mechanisms of ROS generation in doxorubicin-induced kidney 
injury 

The administration of doxorubicin has been shown to induce the 
generation of ROS inside the cytosol and mitochondria of the kidney 
[35, 36]. Moreover, the enzyme NADPH Oxidase (NOXs) is in the 
plasma membrane [37]. It could enhance the production of ROS. 
Doxorubicin breaks down to yield doxorubicin-semiquinone, rapidly 
oxidizing to produce O2-radicals by converting molecular O2 [34]. 
Unfortunately, the presence of NO greatly increases the 
responsiveness of molecular O2, resulting in the formation of 
Peroxynitrite (ONOO-) [38]. The removal of ROS is usually facilitated 
by internal antioxidants like SOD or exogenous antioxidants like 
flavonoids, which produce Hydrogen Peroxide (H2O2) [39, 40]. The 
Fenton reaction involves the direct conversion of H2O2 into Hydroxyl 
Radicals (OH) in the presence of Iron (Fe2+) [41]. Conversely, the 
administration of a substantial quantity of doxorubicin results in a 
significant rise in the generation of ROS.  

Doxorubicin induces substantial elevations in ROS production, leading 
to evident oxidative damage. Oxidative stress can trigger the 
breakdown of lipids in cell membranes, decrease Adenosine 

Triphosphate (ATP) levels, produce ONOO-, enhance the vulnerability 
of ryanodine receptors, and ultimately result in mitochondrial 
dysfunction. Consequently, an excessive amount of Calcium (Ca) is 
released into the cytosol, causing harm to both the cytosol and the 
mitochondria [6, 42]. Doxorubicin-induced ROS-induced oxidative 
stress triggers inflammatory responses and apoptosis in the kidneys, 
activating pathways like Mitogen-Activated Protein Kinase (MAPK) 
and NF-κB, which can be detected by biomarkers such as IL-6, IL-1β, 
TNF-α, Kidney Injury Molecule-1 (KIM-1), Neutrophil Gelatinase-
Associated Lipocalin (NGAL), and Cystatin C (Cys C), ultimately leading 
to nephrotoxicity as shown in fig. 1 [34]. 

Injury biomarkers of nephrotoxicity 

Oxidative stress generated by ROS is the primary factor responsible 
for kidney damage from doxorubicin treatment. The initial 
diagnostic test for chronic kidney injury evaluates elevated levels of 
Blood Urea Nitrogen (BUN), Serum Creatinine (Scr), Serum Albumin 
(Salb), and the presence of pathological kidney cell destruction [43, 
45]. BUN and SCR tests are imprecise kidney function indices due to 
their vulnerability to several renal and non-renal factors unrelated 
to kidney function. In addition, nephrotoxicity in the kidney can be 
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identified by using indicators of acute renal injury, such as 
proteinuria Cys C [45, 46].  

Reduced levels of antioxidant gene biomarker tests, such as CAT, 
SOD, GSH, and NRF2, along with elevated levels of Malondialdehyde 
(MDA), can serve as compelling evidence that nephrotoxicity is a 
result of oxidative stress [47–50]. Damage to the proximal tubule 
leads to an elevate transmembrane glycoprotein biomarker KIM-1 
production in renal tubular cells [51–53]. An elevated NGAL is a 
reliable marker for kidney injury from toxins exposure [54]. 
Elevated levels of inflammatory factors, including NF-κβ, caspase-3 
[55], Toll-Like Receptor 4 (TLR4) [56], TNF-α [57], MAPK [58], IL-6, 
and IL-1β, can lead to inflammation in kidney tissue [24, 59, 60].  

Kidney tissue disorders due to doxorubicin 

Administering doxorubicin can have detrimental effects by inducing 
an accumulation of unpaired electrons within proteins in the renal 
tissue. This can result in changes to the structure and function of the 
kidney tubules and glomeruli, as well as the manifestation of clinical 
symptoms related to nephrotic syndrome. Doxorubicin induction 
can lead to the development of nephrotic syndrome by interfering 
with normal mitochondrial function, reducing the activity of 
complex I and complex IV, impeding nephron formation, and 
initiating glomerulosclerosis [61–63]. The primary role of renal 
tubule cells is to serve as the kidney's filtration and absorption 
mechanism due to their major structural components. Kidney 
tubular injury or apoptosis can hasten the death of nephrons, 
exacerbating fibrous inflammation [64].  

The administration of doxorubicin leads to specific changes in the 
structure of kidney tissue. These changes include the formation of 
vacuoles in the endothelial cells of the glomeruli bundles, congestion 
and swelling of blood vessels in the cortical stroma, an increase in 
the growth of fibroblastic cells, and localized inflammation between 
the cortical glomeruli and tubules. In addition, there might be 
localized hemorrhaging and scarring between the tubules [45, 65]. 

Flavonoids 

Several plants produce flavonoids, phenolic compounds, and 
bioactive secondary metabolites, which may be found in various 
parts of plants, such as roots, leaves, seeds, and stems [66–68]. 
Flavonoid molecules have a structural composition comprising 15 
carbon atoms (C6-C3-C6) organized into two benzene rings (A and 
B) linked by a three-carbon bridge. Flavonoid compounds are 
categorized according to the level of carbon ring oxidation, level of 
saturation, and chemical structure of the molecule [69]. Flavonoid 
molecules may be classified into many subclasses, such as flavonols, 
flavones, flavanones, flavanols, chalcones, and anthocyanidins (fig. 
2). These subclasses are further grouped into categories like 
quercetin, kaempferol, myricetin, and fisetin [70, 71]. Flavonoids 
have been widely used as agents with anticancer [72], antibacterial 
[73], antioxidants, anti-inflammatory [20], anti-leishmanial [74], 
antidiabetic [75], renoprotective [76], cardioprotective [77], 
hepatoprotective [78], neuroprotective, and cytotoxic properties 
[79]. Moreover, investigations on the pharmacological effects of 
flavonoids have been conducted using both human and animal 
models [80, 81]. 

 

 

Fig. 2: Structure of flavonoid subclasses [82, 83] 

 

Flavonols  

Flavonol, a subclass of flavonoids, features a distinctive chemical 
structure with specific substitutions on rings A, B, and C. Flavonoids 
are widely present in various food sources, primarily from plants [82, 
83]. The flavonoids mentioned, such as quercetin, rutin, kaempferol, 
morin, and gossypetin, have various therapeutic benefits, including 
antioxidant, anticancer, anti-inflammatory, cardioprotective, anti-
apoptotic, renoprotective, and hepatoprotective properties [10, 84-
87]. Quercetin is frequently employed in many research studies, 
mostly to examine its capacity to decrease MDA levels and enhance the 
activity of SOD and GSH [88]. Scientific research indicates that 
kaempferol has been shown to have a protective effect in reducing 
doxorubicin-induced damage to the heart, kidneys, and liver [89, 90]. 

In addition, it has been proven that the Gossypetin compound, which is 
part of the flavonols, has a protective effect on the kidneys against the 
nephrotoxic effects of doxorubicin by showing restoration of the 
activity of antioxidant enzymes such as GSH Reductase (GR), GSH-S-
Transferase (GST), GPx, SOD, CAT, as well as GSH, as well as decreased 
levels of ROS and MDA in the group treated with combination 
Gossypetin and doxorubicin compared with the group exposed only to 
doxorubicin [91]. 

Flavones  

Luteolin, apigenin, diosmin, and chrysin are members of the flavones 
subclass categorized as flavonoids. They exhibit several benefits, 
including anti-inflammatory, antioxidant, renoprotective, 
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cardioprotective, and hepatoprotective characteristics [65, 67, 78, 92–
96]. According to reports, luteolin has been shown to block carbonyl 
reductase 3, which prevents the conversion of doxorubicin to 
doxorubicinol [97]. Luteolin effectively treats doxorubicin-induced 
nephrotoxicity by reducing Scr, Lactate Dehydrogenase (LDH), 
Gamma-Glutamyl Transferase (GGT), Aspartate Aminotransferase 
(AST), Alanine Aminotransferase (ALT), and Alkaline Phosphatase 
(ALP) levels indicating cell damage and impaired kidney and liver 
function, while enhancing antioxidant enzymes like GPx, GST, GSH, 
SOD, and CAT, increasing IL-10 levels, and decreasing Lipid 
Peroxidation (LPO), Reactive Oxygen/Nitrogen Species (RONS), 
Xanthine Oxidase (XO), Myeloperoxidase (MPO), NO, TNF-α, IL-1β, 
caspase-9, and caspase-3 levels, with its potent anti-inflammatory, 
anti-apoptotic, and antioxidant properties protecting kidney cells [98]. 

Apigenin is generally found in a glycosylated form, where its tricyclic 
core structure is attached to a sugar group via a hydroxyl group (O-
glycoside) or directly to a carbon atom (C-glycoside) [99]. Apigenin 
has been shown to significantly reduce oxidative stress induced by 
toxic agents such as cisplatin, methotrexate, doxorubicin, and 
cyclophosphamide [100–102]. These agents trigger increased ROS 
production and antioxidant depletion, impairing the immune 
response [103]. Apigenin was proven to have a renoprotective effect 
by reducing proteinuria, increasing Salb, decreasing Scr and BUN, 
increasing SOD and GSH activity, and reducing levels of MDA, 
Caspase-1, Caspase-3, TNF-α, IL-6, IL-1β, and NLR family Pyrin 
domain containing 3 (NLRP3) in the kidney healing process [65].  

Diosmin, often called diosmetin 7-O-rutinoside, is a flavonoid 
glycoside naturally found in nature [104]. Diosmin has 
demonstrated diverse biological properties, as evidenced by several 
in vitro and In vivo investigations [105]. Diosmin has anti-
inflammatory effects by inhibiting the NF-κB pathways and reducing 

the expression of T Cell Receptors (TCRs), hence lowering the 
production of pro-inflammatory cytokines [106]. Therefore, it 
assists in controlling inflammation-induced harm to the kidneys and 
liver tissues. Studies on live animals utilizing doses of diosmin at 100 
mg/kg and 200 mg/kg have yielded evidence supporting diosmin's 
renoprotective effects [107].  

Flavanones  

Naringenin and hesperidin are flavanones, a subclass of flavonoids 
characterized by the saturation of their C rings. A comprehensive 
study has investigated naringenin and hesperidin's antioxidant 
properties and ability to eliminate free radicals using various testing 
methods [108]. These two compounds, hesperidin and naringenin, 
exhibit various biological activities, including antioxidant, anti-
cancer, immunomodulatory, anti-inflammatory, hepatoprotective, 
cardioprotective, and renoprotective effects [108–112]. The 
administration of naringenin and hesperidin to mice was 
demonstrated to be beneficial in lowering oxidative stress caused by 
increased ROS generation and antioxidant depletion generated by 
doxorubicin, as detailed in table 1.  

Experimental evidence shows that administering a dose of 100 
mg/kg naringenin can reduce the level of ROS induced by 
doxorubicin by increasing the activity of antioxidants such as GSH, 
GPx, SOD, and CAT and reducing the inflammatory response 
involving TNF-α, IL-1β, IL-6, Transforming Growth Factor-β (TGF-β), 
and Prostaglandin-E2 (PGE-2) while inhibiting NF-κB and NO to 
protect kidney health [113]. In addition, administering a dose of 50 
mg/kg, hesperidin was also shown to reduce levels of urea, Scr, uric 
acid, Sodium (Na+), and Potassium (K+), as well as increasing the 
activity of antioxidants such as GSH, GPx, and GST, indicating its 
important role in protecting vital organs from damage caused by 
oxidative stress induced by doxorubicin at a dose of 10 mg/kg [114]. 

 

Table 1: Renoprotective activity of flavonoids against doxorubicin-induced nephrotoxicity 

Compound Study design Flavonoid dose Doxorubicin dose Duration  Parameters References 

Quercetin 
 

In vivo (Wistar 
rats) 

10 m/kg/d 
(Per Os (P. O) for 
14 d) 

15 mg/kg 
(Intraperitoneal (I. P) 
injection on day 7) 

2 W 
 

↓Kidney Index, ↓BUN, ↓Scr, ↓MDA, ↓NO, ↓GSH, 
↓CAT, ↓TNF-α, ↓IL-1β, ↓inducible NOS, ↓Caspase-3 

[137] 

Quercetin 
 

In vivo (Wistar 
rats) 

2 mg/kg/d 
(P. O for 7 d) 

10 mg/kg  
(Intravenous (I. V) 
injection on day 5) 

1 W 
 

↓BUN, ↓Scr, ↓MDA, ↑GSH, ↓K+, ↓Aspartate Amino 
Transferase (AST), ↓LDH, ↓Thiobarbituric Acid 
Reactive Substances (TBARS) 

[138] 

Quercetin 
 

In vivo 
(Wistar rats) 

10 mg/kg/d 
(P. O for 10 w) 

1.8 mg/kg (I. P injection 
once every three weeks, 
for ten weeks) 

10 w ↓MDA, ↑GSH, ↓GPx, ↑CAT, ↓SOD [139] 

Quercetin 
 

In vivo (Sprague–
dawley rats) 

50 mg/kg/d 
(P. O for 15 d) 

2.5 mg/kg (I. P 
injections three times a 
week, for two weeks) 

4 w ↓BUN, ↓Scr, ↓Total Cholesterol (TC), ↓Triglycerides 
(TG), ↓Low-Density Lipoprotein Cholesterol (LDL-
C), ↑High-Density Lipoprotein Cholesterol (HDL-
C), ↑Total Protein levels, ↓NO, ↓TNF-α, ↓MPO, gene 
expression (↓desmin, ↓vimentin, ↓connexin 43, 
↓nestin) 

[140] 

Quercetin 
 

In vivo 
(Wistar rats) 

10 mg/kg/d 
100 mg/kg/d 
(I. P on 21 d) 

18 mg/kg 
(I. P during the last 3 d 
of treatment) 

3 w ↓BUN, ↓Scr, ↓NO, ↓TNF-α, ↓IL-6, ↑Technetium-99m 
Dimercaptosuccinic Acid ([99mTc]Tc-DMSA) 

[4] 

Quercetin 
 

In vivo (Wistar 
rats) 

50 mg/kg/d (P. O 
for five weeks) 

2 mg/kg (I. P injections 
twice a week for five 
weeks) 

5 w ↓BUN, ↓Scr, ↑GSH, ↓LPO, ↓MDA, ↑GPx, ↑GST, ↑SOD [141] 

Quercetin 
 

In vivo  
(SPF C57BL/6 
mice) 

25 mg/kg 
50 mg/kg 
(I. V. tail vein 
injections twice a 
week for 12 w) 

10.5 mg/kg 
(I. V tail vein for a single 
injection) 

12 w ↓Scr, ↑ Ucr, ↑GFR, ↓urea, ↓Urine albumin (Alb), 
↓BAX, ↑BCL-2, ↓Cyt-C, ↓Angil, ↓TNF-α, ↓iNOS, ↓IL-
1β,↑IL-4, ↓IL-6, ↑IL-10, ↑AKT1, ↑Raf, ↑MEK, ↑p-
ERK/ERK, ↑p-ERK/β-actin 

[142] 

Rutin In vivo 
(Wistar rats) 

50 mg/kg 
(P. O for five 
weeks) 

2 mg/kg (I. P injections 
twice a week for five 
weeks) 

5 w ↓BUN, ↓Scr, ↑GSH, ↓LPO, ↓MDA, ↑GPx, ↑GST, ↑SOD [141] 

Morin In vivo (Wistar 
rats) 

50 mg/kg 
100 mg/kg 
(P. O for 10 d) 

40 mg/kg 
(I. P injection every 
other day for 8 d) 

10 d ↑GSH, ↑MDA, ↑SOD, ↑CAT, ↑GPx, ↓Scr, ↓urea, ↓TNF-
α, ↓IL-1β, ↓NF-kβ, ↓BCL-2, ↓AQP 2 

[143] 

Morin In vivo 
(Wistar rats) 

100 mg/kg 
(P. O for 7 d) 

40 mg/kg 
(I. P. injection of a single 
dose on the 15th d) 

1 w ↓Uric acid, ↓urea, ↓Scr, ↓MDA, ↓NO, ↑SOD, ↑CAT, 
↑GSH, ↑GPx, ↓Kidney weight  

[144] 

Kaempferol In vivo (BALB/c 
mice) 

10 mg/kg 
(P. O for 17 d) 

11.5 mg/kg 
(I. V injection of a single 
dose) 

17 d ↓Weight loss, ↓ratio of kidney weight to body 
weight, ↓BUN, ↓Src, ↓ Alb/Ucr ratio, ↓renal tubular 
injury score, ↓caspase-3, ↑BCL-2/BAX, ↓p53, ↑SOD, 
↑SOD2, ↑GSH, ↑CAT, ↓MDA, ↓MAPK 

[145] 

Kaempferol In vivo (Wistar 
rats) 

200 mg/kg 
(P. O for 20 d) 

15 mg/kg ((I. P. 
injection of a single dose 
on the 10 d) 

20 d ↓Body weights, ↓Cr, ↓CrCl, ↑GSH, ↑SOD, ↑NRF2, 
↓NF-κB p65, ↓MDA, ↓TNF-α, ↓IL-6, ↓ROS 

[146] 
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Compound Study design Flavonoid dose Doxorubicin dose Duration  Parameters References 

Gossypetin In vivo 
(Sprague-dawley 
rats) 

30 mg/kg  
(P. O for 30 d) 

3 mg/kg 
(I. P. injection of a single 
dose) 

30 d ↑GPx, ↑SOD, ↑CAT, ↑GST, ↓ROS, ↓MDA, ↓urea, ↓Scr, 
↑CrCl, ↓KIM-1, ↓NGAL, ↓NF-κB, ↓TNF-α, ↓IL-1β, ↓IL-
6, ↓COX-2, ↓BAX, ↑BCL-2, ↓Caspase-9, ↓Caspase-3. 

[91] 

Chrysin In vivo 
(Rats Wistar) 

40 mg/kg 
80 mg/kg 
(P. O for 16 d) 

40 mg/kg (I. P. injection 
of a single dose) 

16 d ↓Scr, ↓BUN, ↑SOD, ↑CAT, ↑GSH, ↑GPx, ↑GR, ↓MDA [147] 

Luteolin In vivo (Wistar 
rats) 

50 mg/kg 
100 mg/kg 
(P. O for 14 d) 

2 mg/kg (I. P injection 
every other day for 6 d) 

14 d ↓LDH, ↓AST, ↓ALT, ↓ALP, ↓GGT, ↓Scr, ↑GPx, ↑GST, 
↑GSH, ↑SOD, ↑CAT, ↑Total Sulfhydryl Group (TSH), 
↓LPO, ↓RONS, ↓XO, ↓NO, ↓MPO, ↓TNF-α, ↓IL-1β, 
IL10, ↓Caspase-9, ↓Caspase-3 

[98] 

Apigenin In vivo (BALB/c 
mice) 
 

125 mg/kg 
250 mg/kg 
500 mg. kg 
(P. O for 17 d) 

11.5 mg/kg 
(I. V tail vein to for a 
single injection) 

17 d ↓Proteinuria, ↑Salb, ↓Scr, ↓BUN, ↑SOD, ↓MDA, ↑GSH, 
↓Caspase-1, ↓Caspase-3, ↓TNF-α, ↓IL-6, IL-1β, 
↓NLRP3 

[65] 

Rutin and 
Hesperidin 

In vivo (Wistar 
rats) 

50 mg/kg 
(P. O for 3 times 
per week for 3 w) 

25 mg/kg 
(I. P injection for 3 times 
per week 2 w) 

5 w ↓Urea, ↓Scr, ↓Uric acid, ↓Na+, ↓K+, ↑GSH, ↑GPx, 
↑GST 

[114] 

Naringenin In vivo (Wistar 
rats) 

50 mg/kg 
100 mg/kg 
(P. O for 17 d) 

10 mg/kg 
(I. P. injection of a single 
dose) 

21 d ↓BUN, ↓Scr, ↓LDH, ↑GSH, ↓Oxidized GSH (GSSG), 
↑GPx, ↓GR, ↑SOD, ↓H2O2, ↑CAT, ↓ROS, ↓KIM-1, ↓MDA, 
↓NO, ↓NF-κβ, ↓TNF-α, ↓IL-1β, ↓IL-6, ↓TGF-β, ↓PGE-2 

[113] 

Diosmin In vivo (Wistar 
rats) 

100 mg/kg 
200 mg/kg 
(P. O for 18 d) 

20 mg/kg 
(I. P. injection of a single 
dose) 

18 d ↓BUN, ↓Scr, ↑Salb, ↓MDA, ↑GSH, ↑CAT, ↑SOD, ↑IL-
10, ↓IL-6, ↓NF-κB p65, ↓iNOS, ↓Caspase-3, ↓BAX, 
↑BCL-2, ↓TNF-α, ↓NOX-4 

[107] 

Proanthocy
anidins 

In vivo 
(Swiss albino 
rats) 

200 mg/kg 
(P. O for 21 d) 

7.5 mg/kg 
(I. V tail vein for a single 
injection) 

3 w ↑Final body weight, ↓absolute kidney weight, 
↓Urea, ↓Scr, ↑Salb, ↓MDA, ↑SOD, ↑GSH, ↓COX-2, 
↓NO, ↓Caspase-3, ↓TNF-α 

[119] 

Isoliquiritig
enin 

In vivo 
(Wistar rats) 

25 mg/kg 
(P. O for 20 d) 

15 mg/kg (I. P. injection 
of a single dose) 

3 w ↑Final body weights, ↓urea, ↑GFR, ↓Scr, ↑CrCl, ↑Salb, 
↓urea, ↓Alb/Ucr ratio, ↓ROS/RNS, ↓MDA, ↑GSH, ↑SOD. 

[127] 

Anthocyani
dins 

In vivo 
(New Zealand 
rabbits) 

75 mg/kg 
150 mg/kg 
(O. S once 
daily for 4 w) 

1.5 mg/kg 
(I. V for once weekly for 
5 w)  

9 w ↑SOD, ↑CAT, ↓LPO [136] 

 

Flavanols 

Flavanols, or flavan-3-ols, are a subclass of flavonoids, a class of 
plant compounds known for their antioxidant properties and 
potential health benefits. They are commonly found in foods such as 
fruits, vegetables, tea, and cocoa [115]. Flavanols, including 
epicatechin, catechin, epigallocatechin gallate, theaflavins, and 
procyanidins, are acknowledged for their antioxidant, anti-
inflammatory, and potential anticancer properties and have been 
investigated for their renoprotective, cardioprotective, and 
hepatoprotective potential, highlighting their broader health 
benefits [116, 117]. Doxorubicin induces nephrotoxicity through 
oxidative stress, DNA damage, inflammation, and apoptosis in renal 
tissue [118]. Proanthocyanidin compounds are flavanols proven to 
reduce nephrotoxicity induced by doxorubicin in mice by reducing 
oxidative stress biomarkers such as MDA, increasing antioxidant 
enzymes such as SOD and GSH, and reducing markers of 
inflammation and apoptosis, including Cyclooxygenase-2 (COX-2), 
NO, and caspase-3 in kidney tissue [119]. 

Chalcones 

Chalcones, a subclass of flavonoids with a C6-C3-C6 structure, act as 
crucial biogenetic precursors to diverse plant flavonoids and 
isoflavonoids [120]. Some examples of bioactive chalcone 
compounds known for their biological activities include phloretin, 
butein, isoliquiritigenin, licochalcone E, xanthohumol, and 
chalconaringenin [121, 122]. Chalcones are widely utilized for their 
diverse biological functions, including antioxidant, anti-
inflammatory, neuroprotective [123], anticancer [124], 
hepatoprotective[125], and renoprotective [126]. Isoliquiritigenin, 
scientifically proven effective chalcones, improves kidney function 
by reducing urea and Urine Creatinine (Ucr) levels, increasing 
Glomerular Filtration Rate (GFR), improving Creatinine Clearance 
(CrCl), increasing Salb levels, and reducing ROS/RNS and MDA levels 
to protect against oxidative stress, while also increasing GSH and 
SOD activity [127]. 

Anthocyanins 

Anthocyanins are water-soluble plant pigments belonging to the 
flavonoid group of compounds [128]. Delphinidin, petunidin, 
malvidin, cyanidin, peonidin, and pelargonidin are subclasses of 
anthocyanins found in diverse fruits and vegetables [129]. 
Additionally, these compounds contribute vivid red, purple, blue, 

and black tints to various plants [130]. They possess distinctive 
antioxidant properties, such as anti-inflammatory, anticancer, anti-
apoptotic, renoprotective, hepatoprotective, and cardioprotective 
[131-135]. Administration of anthocyanins at doses of 75 mg/kg and 
150 mg/kg has been proven to have a protective effect on the 
kidneys as a renoprotective agent in New Zealand rabbits 
experiencing oxidative stress due to doxorubicin induction, 
increasing SOD and CAT activity, and reducing LPO levels [136]. 

CONCLUSION 

In summary, it can be concluded that doxorubicin induces 
nephrotoxicity through multiple pathways, including reduced 
antioxidant properties, impaired renal mitochondrial activity, and 
increased inflammatory reactions. Moreover, it is widely recognized 
that more research is needed to provide a comprehensive 
understanding of its fundamental mechanisms. Bioactive flavonoid 
compounds, namely quercetin, chrysin, rutin, kaempferol, morin, 
luteolin, apigenin, hesperidin, naringenin, diosmin, and anthocyanin, 
have been proven to have a significant impact in reducing kidney 
toxicity through various mechanisms involving the reduction of ROS, 
lipids peroxidation, mitochondrial permeability, and apoptosis. 
Investigating additional mechanisms of flavonoids in reducing 
doxorubicin-induced nephrotoxicity in the future is recommended.  
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