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ABSTRACT  

Objective: This research aims to establish an efficient methodology for selecting nanoemulsion components to synthesize eplerenone 
nanoemulsion for gel-based transdermal applications. 

Methods: The chemical compatibility study of eplerenone was investigated by FTIR, DSC, and solubility in oils, surfactants, and co-surfactants as the 
criteria for choice. We used visual appraisal and grading to assess the effectiveness of emulsification. Various excipients were tested depending on 
solubility. The final appearance, dispersibility, and ease of emulsification were used to visually assess the degree of self-emulsification of oil and 
emulsifier in a 1:3 mass ratio. Co-surfactants were assessed by mixing particular emulsifiers in a 2:1 (w/w) ratio with co-surfactants, and the oily 
component was added at a 1:3 (w/w) ratio to evaluate Smix's emulsification potential. A central composite design synthesized, evaluated, and optimized 
eplerenone nanoemulsions. Optimized nanoemulsions were characterized after a thermodynamic stability study for droplet size, ζ potential, viscosity, 
refractive index, pH measurements, and TEM. All the selected formulations were found to be stable, and the droplet size was found to be<110 nm. 

Results: Eplerenone was chemically compatible, and its maximum solubility was 171.3±0.92 and 169.3±2.22 in Kollicream®OA and Paceol, 
respectively. The evidence impressively found that Tween 20 and Kolliphor®EL were discovered as active emulsifiers, and Transcutol®P was 
revealed to be a co-surfactant. Outcomes showed that the emulsification efficacy of Kolliphor®EL (3% w/w) was able to emulsify Kollicream®OA 
(1% w/w), and Paceol failed. As well, Smix [Kolliphor®EL (2% w/w) and Transcutol®P (1% w/w)] were able to emulsify Kollicream®OA (1% w/w).  

Conclusion: The main conclusion from this work is the application of a visual appraisal and grading system to assess the final appearance, 
dispersibility, and ease of emulsification to eradicate the toxicity and irritation that nanoemulsions can cause. Optimised nanoemulsions can further 
formulate eplerenone's nanoemulsion gel for transdermal application. 
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INTRODUCTION 

Droplet sizes of emulsions of 20-500 nm are denoted as 
Nanoemulsions; they are also rarely called tiny emulsions [1]. 
Nanoemulsions are known by various names, such as submicron, 
ultrafine, and mini-emulsions [2–5]. A nanoemulsion system 
operates with two isotropically dispersed, non-mixable liquids and 
can be used with this technique. Nanoemulsion typically consists of 
either oil spread in water or reverse. However, they can also form 
nanometer-sized water-in-oil or oil-in-water droplets. W/O 
emulsions were utilised less often than O/W nanoemulsions [6]. For 
delivering nutrients or lipophilic drugs, they are a fantastic 
alternative [1, 7]. Nanoemulsions are stable and appear transparent 
or slightly transparent when viewed without magnification. They 
also do not settle down or cream. It has been discovered that they 
eliminate absorption variability and enhance biological availability 
and absorption [8]. Nanoemulsions are used widely due to their low 
viscosity, translucency, and comparatively high kinetic stability [9]. 
Typically, surfactants and co-surfactants are required to sustain the 
stability of emulsions and extend their expiry date. These are the 
molecules that come together at the boundary between oil and 
water to keep the mixture stable, using various mechanisms like 
electrostatic repulsive interaction and steric stabilisation [5, 10]. 

Reviewing nanoemulsions used in percutaneous delivery of drugs, 
most studies on selecting the proper surfactants and co-surfactants 
have yet to prove to be very successful. An organised screening 
system was the primary objective of this study, which was to choose 
oils, emulsifiers, and co-emulsifiers suitable for the synthesis and gel 
inclusion of the nanoemulsion formulation. 

Hence, eplerenone, a lipophilic drug with BCS class II (Log P=1.34), 
is selected for the study [11, 12]. Surfactants are part of the 
nanoemulsions, and applying them to the skin's surface typically 
raises membrane permeability, enabling transdermal flux. Studies 
have demonstrated that nanoemulsions can regulate the release and 
increase many medications' biological availability [13, 14]. 
Nanoemulsions can cause toxicity and irritation issues because they 
need high concentrations of surfactants to soften [15]. Since it is a 
skilful drug delivery technique, transdermal drug delivery could 
benefit from an improved formula with the desired aspects. For this 
reason, nanoemulsions exhibit superior transdermal permeation as 
they have high solubilisation capacity for both water-soluble and 
hydrophobic drugs [15, 16]. 

The present study aimed to determine the necessity of selecting 
surfactants carefully and determining the ideal concentration. A 
visual appraisal system was employed for emulsification efficacy. 
One of the primary objectives of the investigation was to decide how 
mass ratios of emulsifiers and co-emulsifiers influence the creation 
of nanoemulsions in precise ternary phase areas. 

MATERIALS AND METHODS 

Components 

Eplerenone was purchased from Yarrow Chem Products, Mumbai. 
IMCD India Private Ltd., Bandra (East), Mumbai provided gift 
samples of Polyoxyl 40 Hydrogenated Castor Oil (Kolliphor®RH 40), 
Oleyl alcohol (Kollicream®OA), Macrogolglycerol Ricinoleate 
(Kolliphor®EL), and Macrogol (Kollisolv®PEG400). Glyceryl mono-
oleate (Paceol), Oleoyl polyoxyl-6 glycerides (Labrafil®M 1944), 
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Diethylene glycol monoethyl ether (Transcutol®P), Propylene glycol 
monolaurate (Lauroglycol™FCC) were gifted by Gattefossé India, 
Vikhroli (East), Mumbai. Ethanediol, Tween 20, Ethanol, Isopropyl 
alcohol, Iso Propyl Myristate, PEG, PEG 200, PEG 400, and propylene 
glycol were procured from Thermo Fisher Scientific India Pvt. Ltd., 
Mumbai. All remaining chemical compounds and dissolving agents 
were of analytical grade. The chemicals and excipients were all used 
exactly as supplied. All remaining chemical compounds and 
dissolving agents were of analytical grade. The chemicals and 
excipients were all used exactly as supplied. When necessary, 
recently made distilled water and buffers were utilised and passed 
through a 0.45 µm membrane filter. (Deccan Plastics, Pvt. Ltd., Chh. 
Sambhajinagar, India). 

Calibration curve of eplerenone 

Dissolving 10 mg of eplerenone in 100 ml of methyl alcohol and a 
few minor modifications resulted in a concentration of 100 µg/ml 
solution that served as the stock solution. Using a micropipette, 
aliquots of this stock solution were transferred into 10 ml 
volumetric flasks to create a series of samples ranging from 0.2 ml to 
2 ml in increments of 0.2 ml, totaling ten readings. Each volumetric 
flask was then diluted to a final volume of 10 ml using methyl 
alcohol. The resulting dilutions of 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 
µg/ml were analysed using a UV-visible spectrophotometer at a 
predetermined wavelength (λmax) of 241 nm. A calibration curve 
was constructed by plotting the concentration of each sample 
against its corresponding absorbance. This experimental procedure 
was repeated three times to ensure the accuracy and reproducibility 
of the results [17, 18]. 

Preformulation studies 

Drug's chemical compatibility: excipients 

5 ml rubber-stopped glass vials containing 500 mg of each chosen 
excipient and 100 mg of eplerenone were carefully weighed and 
mixed. For 14 days, blends were kept in sealed vials in humidity-
controlled ovens set to 60 °C and 40 °C/75 % RH. The same 

conditions were used to store a standard eplerenone sample that 
had not been combined with excipients. After 14 d, FTIR and DSC 
analyses were performed on duplicate samples of drug-excipient 
combinations [19-21]. 

Studies on solubility 

Eplerenone’s solubility was measured in several oils, emulsifiers, and co-
emulsifiers and was evaluated using the shake flask technique. Excess 
eplerenone was combined with 2 ml of methyl alcohol in rubber stopper 
vials with a capacity of 5 ml. The mixture underwent incubation for 48 h 
at 37 °C in an orbital shaker incubator (Remi Instruments, India). 
Subsequently, the blend was centrifuged at 5000 rpm for 10 min to 
remove any residual particles, and the supernatants were filtered using a 
0.45 µm membrane filter (Deccan Plastics, Pvt. Ltd., Chh. Sambhajinagar, 
India) attached to a syringe. The dissolved eplerenone in the filtrates was 
measured using a UV spectrophotometer set to a wavelength of 241 nm. 
Each experiment was conducted in triplicate to ensure the reliability and 
consistency of the results [22]. 

Testing of surfactants and co-surfactants: evaluation of the 
scattering characteristics 

Initially, the optical inspection was utilised to assess the 
emulsification properties. A homogeneous mixture was prepared by 
precisely measuring and blending a designated quantity of oil and 
emulsifier in a 1:3 mass ratio. The mixture was heated to 40–50 °C 
and vigorously mixed to ensure uniformity. Later, 500 mg of the oil-
surfactant blend was placed in a 10 ml beaker and slowly mixed 
using a magnetic blender (1MLH, Remi Equipment Ltd., Mumbai) 
until dissolved. Gradually, up to 10 ml of water was added, and the 
degree of self-emulsification was visually evaluated based on the 
final appearance, dispersibility, and ease of emulsification, as 
detailed in table 2. Various co-surfactants were assessed by 
combining specific emulsifiers with co-surfactants in a 2:1 (w/w) 
ratio. The oily component was integrated into the mixture at a ratio 
of 1:3 (w/w), vortexed thoroughly, and gently heated to ensure a 
homogeneous blend. This methodological approach was employed 
to assess the emulsification capabilities of the co-surfactants [19]. 

 

Table 1: Physicochemical properties of eplerenone 

Property Value reported Value observeda  References 
Molecular weight 414.4 g/mol (C24H30O6) --------   

[11,12,23] Log P 1.34 1.446±0.0349 
Melting Point  244 °C 246.03±1.145 °C 
Solubility in water 0.00903 mg/ml 0.008103±0.0009 mg/ml  
Solubility in Methanol 23.2 µg/ml  23.31±0.845 µg/ml  

[aData are expressed as mean±SD, n = 3] 

 

Table 2: Evaluation of emulsification efficacy visually 

Dispersibility and presence Self-emulsification period (min) Score Reference 
In water, quickly disperse to create a clear, transparent nanoemulsion. <1 +++(very good)   

[19] In water, droplets of the mixture disperse to form a turbid emulsion. 3–5 +(good) 
The combination produces clusters of oil droplets that do not spread in 
water. 

Not emulsified -(Poor) 

 

Development and assessment of eplerenone nanoemulsion 

Fabrication of pseudo ternary phase diagram 

Chemix school application version 10 was utilised to create ternary 
phase diagrams. This research was done with ternary combinations 
that varied in the proportions of oil, emulsifiers, and co-emulsifiers. 
The ability of Kolliphor®EL to self-emulsify played a role in the 
surfactant's selection. The oil phase comprised Paceol and 
Kollicream®OA, while Transcutol®P served as a co-surfactant. Later on, 
Paceol’s inability to emulsify with different surfactants led to its 
rejection. Pseudo-ternary phase diagrams were created using Smix, a 
combination of surfactants and co-surfactants, and distilled water. The 
water titration method was employed in its creation. Different 
surfactant ratios to co-surfactant mass (1:1, 1:2, 1:3, 3:1, and 3:2) were 
determined based on the growing surfactant concentration connected 

with co-surfactant and vice versa. A specific mixing ratio was followed 
to blend the oil in a separate 10 ml borosilicate glass beaker with a 
weight ratio of 1:9–9:1. Forty-five different proportions of Smix to oil 
(1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1) were used to create 
specially created phase boundaries in each phase diagram. Water was 
measured, and the titration stopped when the different o/w 
nanoemulsions became clear or slightly bluish. The oil and Smix 
combinations were gradually diluted in the water phase while 
translucency was observed. We disposed of the remaining 
nanoemulsions. Since the sum was 100%, the mass percentages of 
water, oil, and Smix were recorded at these endpoints. Phase diagrams 
showing the physical state of nanoemulsions discovered the grouping 
of the Smix, oil, and aqueous phases in a single region. Each diagram 
described the nanoemulsion area, with a larger region indicating more 
efficient emulsification [24, 25]. 
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  D (3:1) 

 

 
E (3:2) 

Fig. 1: Phase diagrams of (A) Kollicream®OA-Kolliphor®EL-Transcutol®P (1:1) (B) Kollicream®OA-Kolliphor®EL-Transcutol®P (1:2) (C) 
Kollicream®OA-Kolliphor®EL-Transcutol®P (1:3) (D) Kollicream®OA-Kolliphor®EL-Transcutol®P (3:1) (E) Kollicream®OA-Kolliphor®EL-

Transcutol®P (3:2) 

 

Synthesis of eplerenone nanoemulsions 

By analyzing pseudo-ternary phase diagrams with the maximum 
nanoemulsion area, the system loads eplerenone. In this case, oil 
Kollicream®OA and Smix (1:1 and 1:3; Kolliphor®EL/Transcutol®P) 
were used. Oil was mixed with a weighed amount of eplerenone in a 
10 ml borosilicate beaker and heated to a temperature of 40 to 45 °C 

in a bath sonicator cleaner (Enertech Pvt. Ltd., Mumbai, India) with 
gentle stirring. After the addition of Smix, the mixture was titrated 
against a predetermined volume of water and mixed with a magnetic 
blender (1 MLH Magnetic Stirrer, Remi Instruments, Mumbai, India) 
at 500 rpm to produce a coarse emulsion. Probe sonication was then 
employed from 20 S to 80 S to reduce globule sizes, resulting in clear 
nanoemulsions (PCI Analytics Pvt. Ltd., Thane, Mumbai) [26–28]. 

 

Table 3: Composition of eplerenone nanoemulsions 

Ratio of Smix  Formulation code % w/w components in formulation 
Oil (%) Water (%) Smix (S+CoS %) 

NEn-A 
Smix ratio 1:1 

E1 5 54.3 40.7 
E2 10 45.8 44.2 
E3 15 39 46 
E4 20 35.9 44.1 
E5 25 34.6 40.4 

NEn-C 
Smix ratio 1: 3 

F1 5 52.8 42.2 
F2 10 44.8 45.2 
F3 15 35.5 49.4 
F4 20 27.6 52.4 
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Fig. 2: Eplerenone nanoemulsions 

 

Optimization of eplerenone nanoemulsion by CCD (Design 
Expert®Software Trial Version) 2 factors 

Using Design Expert®Software (Trial version 13, Stat-Ease Inc., 
Minneapolis, USA), we examined three response variables: particle 
size (Y1) in nm, drug content (Y2) in percent, and PDI (Y3), with two 

independent variables: Smix concentration (X1) and Ultrasonication 
Time (X2). This optimisation was applied to nanoemulsion batch E4. 
Thirteen experimental runs were conducted randomly, consisting of 
5 centre points, 4 axial points, and 4 factorial points.  

Tables 4 and 5 provide specific details on the collected data [29]. 

 

Table 4: Variables used in central composite design 

Variables Levels 
-α -1 +1 +α 

Independent variables     
X1: Smix (%) 37.9289 40 50 52.0711 
X2: Ultrasonication time (S) 20 20 80 71.2132 
Dependent variables  
Y1: Particle size (nm) Minimize 
Y2: Drug content (%) Maximize 
Y3: PDI Minimize  

 

Table 5: Optimization of eplerenone nanoemulsion by central composite design 

Run 
  

Dependent variables 
 X1 Smix (%) X2 Sonication time (S) 

1 45 20 
2 50 28.7868 
3 45 50 
4 45 50 
5 40 28.7868 
6 40 71.2132 
7 52.0711 50 
8 45 50 
9 45 50 
10 50 71.2132 
11 45 80 
12 37.9289 50 
13 45 50 

 

 

Fig. 3: Optimized eplerenone nanoemulsions 
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Thermodynamic stability studies 

To evaluate the formulations' physical stability, several 
thermodynamic stability tests were conducted [30]. 

Cycle of heating-cooling  

To evaluate the stability of the formulations, they are kept at 4 °C in 
the refrigerator and at 45 °C, each maintained for at least 48 h. Six 
cycles of alternating temperatures were followed [30]. 

Test for centrifugation 

Phase separation and drug settling were investigated by centrifuging 
nanoemulsions at 3000 rpm for 30 min [30]. 

Freeze-thaw cycle 

Three freeze-thaw cycles, with temperatures ranging from-21 °C to 
25 °C, were used for storage over 48 h [30]. 

Characterization of eplerenone nanoemulsion 

Eplerenone nanoemulsion droplet size measurement 

Malvern particle size distribution apparatus (Zetasizer ver. 6.20, 
Model: MAL1051945) was utilised for the droplet size of the 
nanoemulsions, with each size value reported as the mean±SD of 
three samples. The Polydispersity Index was computed to assess the 
uniformity of particle diameters [30, 31]. 

ζ Potential measurement of eplerenone nanoemulsion droplets 

The ζ potential of eplerenone nanoemulsion was measured using 
electrophoretic light scattering with a Malvern Zetasizer (Malvern 
Instruments, Ltd., UK). A dynamic light scattering particle size analyser 
set to 633 nm was employed, maintaining a consistent electrical field of 1 
volt throughout the experiment. The nanoemulsion was diluted at a 
1:100 ratio using pre-filtered, double-distilled water. Data were reported 
as mean±SD from three independent measurements [30, 31]. 

Determination of viscosity 

At 25 °C, the viscosity of the eplerenone Nanoemulsions was 
measured using a Brookfield RST rheometer (Brookfield 
Engineering Laboratories, Mumbai) that had a C50-1 spindle 
attached to it. Measurements were taken in triplicate [30]. 

Refractive index 

The system's refractive index was ascertained by applying one drop of 
the nanoemulsion in triplicate to the slide at a temperature of 25 °C 
using a refractometer (Cyber-Lab, Cyber AB, Hyderabad) [31]. 

pH measurement 

The apparent pH of the eplerenone nanoemulsions was measured in 
triplicate at 25 °C using a pH meter (Systronics, model 802, India) [30]. 

Transmission electron microscopy (TEM) 

eplerenone Nanoemulsion's morphology and structure were 
investigated. A point-to-point-separable Gatan 626 cryo specimen 
holder electron microscope (TECNAI 12, Fei Company, The 
Netherlands, Software: Tecnai Imaging and Analysis, Source: 
Tungsten Filament) running at 20–120 kV is used to determine the 
dimensions and form of the eplerenone Nanoemulsion, diffraction 
modes and bright-field imaging methods were used [31]. 

RESULTS AND DISCUSSION 

Screening of eplerenone nanoemulsion components 

Each component of the nanoemulsion was carefully chosen by the 
guidelines provided by the US Food and Drug Administration (FDA) 
for compliance and pharmaceutical acceptability of nanoemulsion 
components for topical administration. By going through this 
selection process, the nanoemulsion formulation is guaranteed to 
meet the exacting safety, efficacy, and quality standards needed to 
receive regulatory approval. Following FDA guidelines guarantees 
that the formulation is compatible with skin physiology, minimizes 
potential adverse effects, and improves topical delivery of the drug. 

Screening of oils 

When choosing oils for nanoemulsion formulations, it is vital to 
consider the drug's ability to dissolve in the oil phase. This factor is 
critical because the solubility of the oil phase directly influences the 
nanoemulsion's ability to maintain the drug in a soluble state 
throughout its shelf-life and during application. Generally, 
hydrophilic drugs work better in water-in-oil nanoemulsions 
because they dissolve easily in aqueous solutions but poorly in oils. 
Conversely, lipophilic drugs that dissolve well in oils but poorly in 
water are best formulated in oil-in-water nanoemulsions. A drug's 
solubility in different formulation components must be carefully 
assessed before a drug is incorporated into a nanoemulsion system, 
which is an important step in the process. Minimizing formulation 
volume is important because it allows for effective drug delivery 
through nanoemulsion. Upon diluting the nanoemulsion, the 
surfactant's or co-surfactant's solvent capacity may decrease, which 
could lead to precipitation if these components are involved in 
solubilizing the drug. It is crucial to take into account factors that 
affect drug incorporation capability, maintain the system's capacity 
for aqueous monophasic dilution, and reduce the risk of drug’s 
settling or crystallization in dilute systems to develop stable and 
suitably low-volume nanoemulsions for drug delivery applications. 
In other words, the drug's solubility in the oil phase served as the 
basis for selecting the oils [32]. 

It was found that eplerenone was soluble in several oils (table 6). 
Semi-synthetic oils were chosen for the current study to determine 
which oil had the best drug Solubility. In comparison to the other 
oils, Kollicream®OA (171.37±0.92 mg/ml) and Paceol (169.32+2.22 
mg/ml) were found to have the highest levels of eplerenone 
Solubility. It was shown that, in contrast to natural oils, the semi-
synthetically produced oils had a higher solubility of eplerenone [33, 
34]. It was demonstrated that eplerenone was much less soluble in 
propanediol, isopropyl myristate, coconut oil, sesame oil, castor oil, 
and ethanediol. With time, normal intermediate-chain triglyceride 
oils are being successfully replaced by new semi-synthetic 
intermediate-chain compounds with surfactant potentials [35]. 
Consequently, Kollicream®OA was chosen as the oil phase for 
synthesizing the eplerenone Nanoemulsion because of its high 
emulsification potential and ability to solubilize eplerenone. Paceol 
was rejected due to its low emulsifying capabilities with surfactants 
and co-surfactants. 

 

Table 6: Eplerenone's solubility in different constituents 

Components Solubility in mg/mla 
Oils  
Kollicream®OA 171.37 ±0.92 
Paceol 169.32±2.22 
Iso Propyl Myristate 15.81±0.65 
Castor Oil 2.72±0.15 
Coconut Oil 1.15 ±0.14 
Sesame Oil 1.62 ±0.14 
Ethanediol 1.46±0.11 
Olive Oil 1.28±0.034 
Propanediol 1.36±0.090 
Surfactants  
Tween 20 126.51± 2.24 
Kolliphor®EL 36.26 ±1.03 
Kolliphor®RH 40 4.53± 0.11 
PEG 200 3.42± 0.20 
Labrafil M1944 3.35± 0.47 
Kollisolv®PEG400 3.21±0.23 
Propylene Glycol 1.34±0.19 
Glycerine 1.51±0.09 
Lauroglycol™ FCC 1.78± 0.12 
PEG 400 3.03±0.19 
Co-Surfactants  
Transcutol®P 180.8±1.11 
Isopropyl Alcohol 14±0.28 
Ethanol 2.52±0.14 

[A data are expressed as mg/ml±SD Mean±SD, n = 3] 
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Screening of surfactants 

Glycerine, propylene glycol, Kollisolv®PEG400, LauroglycolTM FCC, 
Tween20, Kolliphor®EL, Kolliphor®RH40, PEG 200, Labrafil M1944, 
and Kollisolv®PEG400 are the ten non-ionic surfactants whose 
solubilisation capacities were assessed in the current study. Non-ionic 
surfactants are less irritant and damaging than their anionic and 
especially cationic analogues, often used in place of anionic surfactants 
[36]. The surfactant-surfactant interaction may diminish as 
concentrations increase. Non-ionic surfactants were chosen as they 
restrict changes in pH and ionic strength, as well as their reputation 
for being safe and compatible with biological systems. Due to 
toxicological reasons, ionic surfactants were not used in this 
experiment. Conversely, some writers have chosen surfactants 
according to how well they bind drugs [37]. We claim that another 
critical factor is the oil's solubility in an emulsifier. Emulsifiers must 
have a strong affinity for the oil phase and effective drug solubilisation. 
The surfactant chosen should have a large nanoemulsion area when 

used independently to dissolve the oil phase without requiring a co-
emulsifier. The emulsifier's capability to form nanoemulsions 
increases as the nanoemulsion area in the phase diagram expands. 

The surfactants Kolliphor®EL and Tween 20 were chosen for the 
nanoemulsion development process because they were the best at 
solubilising Kollicream®OA, while Paceol remained insoluble. 
Surfactant-oil miscibility can therefore be used in this situation as a 
preliminary indicator of nanoemulsion production capacity. To 
synthesise the o/w nanoemulsions, the HLB value is desirable to be 
greater than 10. This significantly affected the choice of surfactant. 
When choosing emulsifiers, several factors are considered, such as 
their capacity to dissolve in both oil and water, HLB value, and their 
lower toxicity compared to other options; when preparing an o/w 
nanoemulsion, it is important to follow the proper steps. [36]. Non-
ionic surfactants with HLB values ranging from 8 to 16 are 
recommended. In this investigation, we used Kolliphor®EL (HLB 
between 12 and 14) and Tween 20 (HLB 16) as the surfactants. 

 

Table 7: Emulsification efficacy of surfactant with selected oil (Oil 1: surfactant 3) w/w 

Surfactant 
(3% w/w) 

Oily phases (1% w/w) 
Kollicream®OA  Paceol 
Dispersibility and 
presence  

Self-emulsification 
period (min) 

Score Dispersibility and 
presence  

Self-emulsification 
period (min) 

Score 

Kolliphor®EL Bluish emulsion formed 1-2 min  +++Very good Turbid more than 2 min -Poor 
Tween 20 Turbid emulsion 3-4 min +Good Turbid more than 2 min -Poor 

 

Table 8: Emulsification efficiencies of surfactants–co-surfactant combinations with oil 

Co-surfactant (1% 
w/w) 

Oily phases (1% w/w) Kollicream®OA 
Surfactant (2% w/w) 
Kolliphor®EL Tween 20 
Dispersibility and 
presence  

Self-emulsification 
period (min) 

Score Dispersibility and 
presence  

Self-emulsification 
period (min) 

Score 

 Transcutol®P 
 

Clear nanoemulsion 
formed  

<1 min ++++ 
Very 
good 

Turbid more than 2 min -Poor 

(Oil 1: Surfactant 2: Co-surfactant 1) w/w 

 

 

Fig. 4: Solubility of eplerenone in several oils, surfactants, and co-surfactants, [aData are expressed as mean±SD, n = 3] 
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Screening of co-surfactants  

Co-surfactants are essential since single surfactants regularly 
struggle to maintain a stable fluid layer and achieve a quick drop in 
interfacial tension. Co-surfactants are important because they 
reduce interfacial tension and give the interfacial layer the elasticity 
it needs to accept the different curvatures that are necessary for the 
generation of nanoemulsions. The unique characteristics of 
Transcutol®P, with its HLB value of 4.2, make it a valuable asset in 
our investigation, enhancing the stability of nanoemulsions and 
offering formulation flexibility [38]. 

Co-surfactants are incorporated to enhance the flexibility of the 
interfacial film, a task that surfactants alone cannot accomplish. 
They also aid in oil solubilisation by altering the oil-water interface's 
curve. Co-surfactants' ability to modify the way lipophilic drugs or 
therapeutic agents separate into the aqueous and oil phases makes 
their selection extremely important [39]. Single-chain surfactants 
frequently cannot effectively lower the o/w interfacial tension, 
preventing nanoemulsion formation [40]. Surfactants can be used to 
lower interfacial tension and increase the flexibility at the interface. 
When the concentration of surfactants is low, incorporating co-
surfactants offers a unique method to create nanoemulsion systems 
[1, 2, 6, 9, 41]. 

While co-surfactants are necessary, some studies suggest that a 
single surfactant may be preferable over a mixture of surfactants in 
this study. A single surfactant exhibits greater stability in the 
nanoemulsion formulation than a mixture of surfactants [42]. 
Nanoemulsion systems are made with them at low surfactant 
concentrations [38]. As co-surfactants, short-to intermediate-chain 
alcohols are widely used to decrease interfacial tension and increase 
contract fluidity [1, 2, 35, 41]. More oil permeates in this region, 
driven by the hydrocarbon ends. These molecules can interact and 
alter the packing of surfactant monolayers at the interface, thereby 
modifying interfacial energy and curvature due to their terminal 
hydroxyl group, short hydrophobic chain, and amphiphilic behavior. 
Alcohols, capable of moving between the oil and aqueous phases, 
enhance miscibility. Therefore, Transcutol®P was chosen as a co-
surfactant [43]. 

Effect of the Smix mass ratio in nanoemulsion region of a 
pseudo-ternary phase diagram 

One method to demonstrate the formation of a nanoemulsion is 
using a pseudo-ternary phase diagram. In our study, Kollicream®OA 
served as the oil phase, while Kolliphor®EL and Transcutol®P 
functioned as the surfactant and co-surfactant, respectively. Analysis 
of the phase diagrams indicated the presence of a nanoemulsion 
area. Several researchers have previously documented that using 
surfactants alone often leads to a limited nanoemulsion area. Hence, 
this study took careful measures to avoid achieving a Smix ratio of 
1:0 without including a co-surfactant. The primary objective of this 
research was to investigate nanoemulsion formation, specifically 
concerning incorporating a co-surfactant. Phase diagram analysis 
revealed that, as shown in fig. 1A and 1C, the largest region for 
nanoemulsions was identified in Smix proportions of 1:1 and 1:3. 
The maximum amounts of oil that could be soluble can be seen in 

these diagrams. Particularly, fig. 1A displays a 26% wt/wt 
solubilisation capacity at a 40% w/w Smix ratio for 1:1, and fig. 1C 
reveals a 22% w/w solubility at a 51% w/w Smix ratio for 1:3. 
Greater emulsification efficiency inside the system is shown by an 
increased nanoemulsion area. The results in Tables 6 and 8 show 
that Transcutol®P performed better than the other groups, probably 
because of its high eplerenone solubility. As a significant result of 
their reduced solubility, other co-surfactants, in contrast, showed 
reduced efficiency. Increasing the surfactant concentration at a 3:1 
Smix ratio (fig. 1D) resulted in a smaller nanoemulsion area than the 
1:1 Smix ratio. However, with a surfactant concentration of 40% 
w/w of Smix, this ratio's maximum amount of oil dissolved was 26% 
w/w. When the surfactant concentration was increased relative to 
the co-surfactant, a decrease in the nanoemulsion region was 
observed in the 3:1 blend ratio, while a slight increase was detected 
in the 3:2 blend ratio. This suggests that increasing the surfactant 
concentration did not effectively increase the nanoemulsion area, 
indicating that optimal emulsification was not achieved. In contrast, 
the nanoemulsion area expanded when maintaining the 1:1 mixture 
ratio. 

Therefore, experimenting with a 4:1 Smix ratio was unnecessary. 
Consequently, the boundaries of single-phase nanoemulsion zones 
are dictated by the composition of a singular surfactant [42]. A 
decrease in the nanoemulsion region was noted after the surfactant 
concentration of Smix was raised from 1:1 to 3:1. One possible 
explanation is a low concentration of co-surfactant, which would 
reduce interfacial tension and give the interface and nanoemulsion 
region more flexibility [43, 44]. When analysing the nanoemulsion 
region about the entire area, it was observed that the reduction in 
the area was seen as the concentration of co-surfactant increased 
from Smix 1:1 to Smix 1:2. The area expanded when the co-
surfactant concentration was raised even more, resulting in a Smix 
ratio of 1:3. Smix 1:2 required 42% w/w for 5 % w/w oil 
solubilisation, whereas Smix 1:3 only needed 40 percent w/w. The 
higher concentration of Transcutol®P in the 1:2 mixture and the 
increased surfactant concentration in the 3:1 mixture are likely 
contributors to the smaller nanoemulsion area. Phase diagrams 
showing an extension of the nanoemulsion area towards an 
aqueous-rich region led to more diluted formulations. The mass 
ratio of the co-surfactant and surfactant significantly impacted the 
phase characteristics [30]. The nature and amounts of oil used are 
other aspects [45]. The maximum nanoemulsion area was observed 
with Smix ratios of 1:1 and 1:3, in contrast to other ratios. This 
outcome is attributed to surfactant and co-surfactant packing 
variations at the oil-in-water (o/w) interface. Therefore, selecting an 
appropriate surfactant concentration is crucial for achieving 
maximum transdermal flux of lipophilic drugs. This situation is 
typically avoided in formulations containing the maximum 
surfactant because it reduces the drug's affinity for the vehicle and 
intensifies its thermophysics action. Therefore, careful optimisation 
of nanoemulsions is essential. Phase diagrams visually illustrate how 
Smix decreases interfacial tension and increases interfacial area and 
dispersion entropy. Introducing Smix can significantly lower the free 
energy of the nanoemulsion system to a minimum concentration, 
ensuring thermodynamic stability and presenting a promising 
approach for efficient drug delivery [46]. 

 

Table 9: The properties and assessment of the formulations for eplerenone nanoemulsions 

Formulation code Mean globule size (nm)a Polydispersity indexa Viscositya (Pa*s) pHa Per cent drug contenta 
E1 275 ± 3.45 0.345 ± 0.09 6.31 ± 0.22 6.80 ± 0.03 98.23 ±0.34 
E2 315 ±5.52 0.368±0.01 6.34 ± 0.38 5.84 ± 0.07 92.5 ±0.45 
E3 342 ±4.54 0.386±0.01 6.51 ± 0.31 5.56 ± 0.01 96.68 ±0.87 
E4 124 ±4.74 0.128±0.05 6.61 ±0.27 6.12 ± 0.07 98.45 ±0.78 
E5 109 ±3.21 0.107±0.04 6.78 ± 0.24 6.32 ± 0.08 99.48±0.68 
F1  330±4.29 0.387±0.07 7.02 ± 0.31 5.98± 0.09 101.5±1.25 
F2 150 ± 2.44 0.138±0.02 7.25 ± 0.22 6.95 ± 0.04 106±1.45 
F3 328 ±3.51 0.285±0.05 7.65 ±0.22 6.89 ± 0.06 97.87±0.87 
F4 112±2.36 0.112±0.03 7.78 ± 0.20 6.48 ± 0.08 94.48±0.58 

[aData are expressed as Mean±SD, n = 3] 
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Table 10: The properties and assessment of the optimized formulations for eplerenone nanoemulsions 

Formulation code Mean globule size (nm)a Polydispersity 
indexa 

Viscositya (Pa*s) pHa Per cent drug contenta 

DOE_eplerenone_1 347.6±2.16 0.424 ±0.0040 6.57±0.17 6.88 ±0.081 98.4±0.44 
DOE_eplerenone_2 113.1 ±2.53 0.234 ±0.0035 7.46 ±0.18 6.53±0.041 102.4± 0.61 
DOE_eplerenone_3 122.4 ±2.65 0.226 ±0.0055 6.96 ±0.16 6.79 ±0.008 100.9± 0.35 
DOE_eplerenone_4 133.6 ±0.57 0.237 ±0.0036 7.24 ±0.31 5.88 ±0.09 100.1± 0.95 
DOE_eplerenone_5 148.6 ±1.58 0.322 ±0.0015 7.86 ±0.22 6.35 ±0.10 99.5± 0.70 
DOE_eplerenone_6 121.3 ±1.17 0.150 ±0.0020 6.54 ±0.23 5.45 ±0.24 98.9± 0.20 
DOE_eplerenone_7 124.3 ±0.59 0.243 ±0.0021 5.81 ±0.85 6.50 ±0.22 99.3± 0.38 
DOE_eplerenone_8 109.2 ±0.85 0.134 ±0.0031 7.57 ±0.15 6.68 ±0.17 100.4± 0.71 
DOE_eplerenone_9 109.1 ±0.21 0.129 ±0.0010 7.23 ±0.25 6.64 ±0.22 99.3± 0.46 

[aData are expressed as Mean±SD, n = 3] 

 

Thermodynamic stability tests 

Stress testing is necessary to ensure the formulations are stable and do 
not cause any risks. A few selective nanoemulsions were carefully 
chosen from the phase diagram's o/w nanoemulsion area at Smix 1:1 
and 1:3 as they demonstrated the maximum nanoemulsion area. Then, 
these nanoemulsions underwent a series of thermodynamic stability 
assessments, such as freeze-thaw cycles, the heating-cooling cycle, and 
centrifugation. Stress testing is necessary to ensure the formulations are 
stable and do not cause any risks. Phase separation, turbidity, creaming, 
or cracking have all been noted in specific formulations. E4 has been 
chosen for additional optimisation and determined to be stable (data 
hidden). Due to thermodynamic stability, the nanoemulsion has a longer 
shelf life than conventional emulsions. It sets them apart from emulsions 
with kinetic stability that are going to phase separately in the future [31, 
32]. Table 3 lists the ingredients in these formulations, and optimised 
nanoemulsions are shown in fig. 3. They have undergone 
thermodynamic stability tests and passed stress testing. 

Eplerenone nanoemulsions and optimized nanoemulsion 
characterization 

eplerenone nanoemulsion droplet size measurement 

At a 90° angle and 25 °C temperature, light scattering was observed 
with the laser light scattering phenomenon, which examines changes 
in light scattering. Analysing droplet size was performed using 
diluted nanoemulsion samples, each 100 times diluted. Information 
about the polydispersity index and average droplet size was 
collected. The polydispersity index is used to determine the size 
distribution of droplets, and the size of the droplets is measured in 
nanometers. Larger droplet sizes are linked to more significant 
variability in the distribution of droplet sizes [31, 33]. 

ζ Potential measurement of eplerenone nanoemulsion droplets 

The ζ potential of eplerenone nanoemulsions was assessed using a 
Zeta sizer. The nanoemulsions were diluted 1:100 v/v in distilled 

water and vortexed before measurement. Three independent 
analyses were conducted. The absolute value indicates the 
magnitude of the surface charge. Higher absolute ζ potential values, 
regardless of their polarity, typically specify improved stability as 
particles with similar charges repel each other, thereby inhibiting 
flocculation or aggregation [31]. 

Determination of viscosity 

As the oil content increased from 5%w/w to 20%w/w, a rise in 
viscosity was observed in the nanoemulsions (table 6). Notably, 
formulation Optimized_eplerenone_7 exhibited significantly lower 
viscosity than Optimized_eplerenone_4 and Optimized_eplerenone_9 
(p<0.05), which may be attributed to its lower Smix content. Overall, 
the formulations showed optimal viscosity profiles. 

Refractive index 

The refractive index is a metric for system homogeneity that 
represents the collective properties of the nanoemulsion's 
constituent parts. All of the improved formulations had the same 
average refractive index values. However, the refractive index of the 
Optimized eplerenone 4, 6, and 9–13 formulations improved slightly 
(table 3). A decrease in water content, which usually yields a lower 
refractive index, may cause this alteration. 

pH measurement 

The apparent pH of eplerenone Nanoemulsions and optimised 
eplerenone Nanoemulsions was determined in triplicate. Every 
formulation has a pH of ≥5.56±0.01 and ≤6.88±0.081 (Tables 9 and 
10). 

Transmission electron microscopy (TEM) 

Optimised eplerenone 4 was dropped onto a carbon-covered grid for 
TEM analysis. Following the appropriate dilution with water, the 
sample was exposed to the reagent and left to stand for 30 S. After 
the coating was applied [31]. 

 

 

A    B   C 

Fig. 5: Transmission electron microscopy of optimized DOE_EpL 4 (A, B) Scale bar is 50 nm; (C) Scale bar is 100 nm 
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CONCLUSION 

An effective nanoemulsion formulation depends on careful 
component selection. The main conclusion drawn from this study 
showed the application of visual appraisal and grading systems to 
assess the final appearance, dispersibility, and ease of emulsification 
for eradicating the toxicity and irritation that nanoemulsions may 
cause. Kolliphor®EL (3% w/w) was able to emulsify Kollicream®OA 
(1% w/w), and Paceol failed. As well, Smix [Kolliphor®EL (2% w/w) 
and Transcutol®P (1% w/w)] were able to emulsify Kollicream®OA 
(1% w/w). For the synthesis of the ideal nanoemulsion of 
eplerenone, selected excipients were from Kollicream®OA, 
Kolliphor®EL, and Transcutol®P. Selected, optimised formulations 
were characterised by zeta potential, droplet size, morphology, 
viscosity, pH, and polydispersity index. The study offered convincing 
proof of how correct ratios of oil, surfactants, and co-surfactants can 
be used to achieve the required results, and Optimized 
nanoemulsions will be used in the formulation of eplerenone's 
Nanoemulsion Gel for transdermal application. 
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