FORMULATION AND CHARACTERIZATION OF SAMBILOTO EXTRACT ORALLY DISSOLVING FILMS: A DUAL MECHANISM FOR PROBIOTIC GROWTH AND ANTIBACTERIAL ACTION

Authors

  • MIKSUSANTI MIKSUSANTI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • ELSA FITRIA APRIANI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • ADIK AHMADI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • SHAUM SHIYAN Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • DINA PERMATA WIJAYA Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia
  • VIO AGISTER RISANLI Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indralaya, South Sumatra, Indonesia

DOI:

https://doi.org/10.22159/ijap.2025v17i2.52902

Keywords:

Antibacterial activity, Bifidobacterium longum, Nutraceutical, Orally dissolving films (ODF), Sambiloto extract

Abstract

Objective: This study aimed to develop Orally Dissolving Films (ODFs) containing Sambiloto leaf extract and evaluate their effects on the growth of the probiotic bacterium Bifidobacterium longum (B. longum) and their antibacterial activity against Escherichia coli (E. coli).

Methods: The ODFs were prepared using the solvent casting method with three concentrations: F1 (0.4%), F2 (0.6%), and F3 (0.8%). The growth of B. longum was assessed through the Total Plate Count method, while antibacterial activity was determined using the disc diffusion method.

Results: F2 was chosen as the optimal formulation, characterized by a smooth texture, a pH of 6.240 ± 0.026, thickness of 0.102 ± 0.008 mm, weight of 0.059 ± 0.002 mg, disintegration time of 16.633 ± 0.822 seconds, folding endurance of 433.00 ± 2.000 folds, and elongation of 22.250 ± 1.372%. F2 significantly enhanced the growth of B. longum, yielding 2.43 × 10¹⁰ CFU/mL and a prebiotic index of 1.056 (p<0.05). Additionally, it demonstrated antibacterial activity with an inhibition zone diameter of 7.500 ± 0.408 mm (p<0.05).

Conclusion: This research highlights F2's potential as a nutraceutical product with both probiotic growth-enhancing and antibacterial properties.

Downloads

Download data is not yet available.

References

Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950-2002. Emerging Infectious Diseases. 2012;18(5):741–9. doi:10.3201/eid1805.111153

Bhatnagar A. A Comprehensive Review of Kalmegh's Biological Activities (Andrographis paniculata). International Journal of Pharmacy and Pharmaceutical Sciences 2023;15(2):1-7. doi:10.22159/ijpps.2023v15i2.46705

Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Research International. 2014;57:176–95. doi:10.1016/j.foodres.2014.01.025

Martinez FAC, Balciunas EM, Converti A, Cotter PD, De Souza Oliveira RP. Bacteriocin production by Bifidobacterium spp. A review. Biotechnology Advances. 2013;31(4):482–8. doi:10.1016/j.biotechadv.2013.01.010

Mandal B. Bacteriocin Produced by Lactic Acid Bacteria: A Probiotic. International Journal of Pharmacy and Pharmaceutical Sciences. 2024;16(3):1-7. doi:10.22159/ijpps.2024v16i3.50326.

Yang L, Gao Y, Farag MA, Gong J, Su Q, Cao H, et al. Dietary flavonoids and gut microbiota interaction: A focus on animal and human studies to maximize their health benefits. Food Front. 2023;4(4):1794–809. doi:10.1002/fft2.309

Chauhan ES, Sharma K, Bist R. Andrographis paniculata: A review of its phytochemistry and pharmacological activities. Research Journal of Pharmacy and Technology. 2019;12(2):891–900. doi:10.5958/0974-360X.2019.00153.7

Li Z, Ren Z, Zhao L, Chen L, Yu Y, Wang D, et al. Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chemistry. 2023;399:133959. doi:10.1016/j.foodchem.2022.133959

Arikatla SK, Chalasani U, Mandava J, Yelisela RK. Interfacial adaptation and penetration depth of bioceramic endodontic sealers. Journal of Conservative Dentistry. 2018;21(4):373-377. doi:10.4103/JCD.JCD_64_18.

Shah KA, Gao B, Kamal R, Razzaq A, Qi S, Zhu QN, et al. Development and Characterizations of Pullulan and Maltodextrin-Based Oral Fast-Dissolving Films Employing a Box–Behnken Experimental Design. Materials (Basel). 2022;15(10). doi:10.3390/ma15103591

Fong RJ, Robertson A, Mallon PE, Thompson RL. The impact of plasticizer and degree of hydrolysis on free volume of poly(vinyl alcohol) films. Polymers (Basel). 2018;10(9):1–15. doi:10.3390/polym10091036

Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(2):187–99. Adoi:10.1016/j.ejpb.2010.11.023

Hardestyariki D, Al-Rasyid RS, Apriani EF. Sambiloto leaves (Andrographis paniculata (Burm.f.) Wall. Ex. Nees) nanoemulsion preparations: Optimization of Tween 80 and PEG-400 concentrations as photoprotective agents. Journal of Research in Pharmacy. 2024;28(5):1435–48. doi:10.29228/jrp.821

Indarti K, Apriani EF, Wibowo AE, Simanjuntak P. Antioxidant Activity of Ethanolic Extract and Various Fractions from Green Tea (Camellia sinensis L.) Leaves. Pharmacognosy Journal. 2019;11(4):771–6. doi:10.5530/pj.2019.11.122

Sudirman S, Herpandi, Safitri E, Apriani EF, Taqwa FH. Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (Pistia stratiotes) leave extracts. Food Research. 2022;6(4):205–10. doi:10.26656/fr.2017.6(4).484

Idorenyin E, Ekpenyong E, James I, Ibuot A. Antimicrobial properties of Andrographis paniculata (vinegar) leaf on selected human pathogens. World Journal of Biology Pharmacy and Health Sciences. 2020;3:60-65. doi:10.30574/wjbphs.2020.3.1.0047

Shah KA, Gao B, Kamal R, Razzaq A, Qi S, Zhu QN, Lina S, Huang L, Cremin G, Iqbal H, et al. Development and Characterizations of Pullulan and Maltodextrin-Based Oral Fast-Dissolving Films Employing a Box–Behnken Experimental Design. Materials. 2022;15(3591):1-19. doi:10.3390/ma15103591

Palezi SC, Fernandes SS, Martins VG. Oral disintegration films: applications and production methods. Journal of Food Science and Technology. 2023;60(10):2539–48. doi:10.1007/s13197-022-05589-9

Owolabi IO, Dat-arun P, Takahashi Yupanqui C, Wichienchot S. Gut microbiota metabolism of functional carbohydrates and phenolic compounds from soaked and germinated purple rice. Journal of Functional Foods. 2020;66:103787. doi:10.1016/j.jff.2020.103787

Liu Q, Liu Y, Li F, Gu Z, Liu M, Shao T, et al. Probiotic culture supernatant improves metabolic function through FGF21-adiponectin pathway in mice. The Journal of Nutritional Biochemistry. 2020;75:108256. doi:10.1016/j.jnutbio.2019.108256.

Apriani EF, Shiyan S, Hardestyariki D, Starlista V, Sari AL. Optimization of Hydroxypropyl Methylcellulose (HPMC) and Carbopol 940 in Clindamycin HCl Ethosomal Gel as Anti-acne. Research Journal of Pharmacy and Technology. 2024;17(2):603–11. doi:10.52711/0974-360X.2024.00094

Mardiyanto M, Apriani EF, Alfarizi MH. Formulation and In-vitro Antibacterial Activity of Gel containing Ethanolic extract of Purple Sweet Potato Leaves (Ipomoea batatas (L.) Loaded Poly Lactic Co-Glycolic Acid Submicroparticles against Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2022;15(8):3599–605. doi:10.52711/0974-360X.2022.00603

Miksusanti, Apriani EF, Bihurinin AHB. Optimization of Tween 80 and PEG-400 Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against Staphylococcus aureus. Sains Malaysiana. 2023;52(4):1259–72. doi:10.17576/jsm-2023-5204-17.

ThonteSS, Bachipale RR, Pentewar RS, Gholve SB. and Bhusnure OG.Formulation and Evaluation of Oral Fast Dissolving Film of Levosalbutamol Sulphate. World Journal of Pharmaceutical Research. 2017;4:1298–318.

Luo Z, Murray BS, Ross AL, Povey MJW, Morgan MRA, Day AJ. Effects of pH on the ability of flavonoids to act as Pickering emulsion stabilizers. Colloids Surfaces B: Biointerfaces. 2012;92:84–90. doi:10.1016/j.colsurfb.2011.11.027

Hoque M, Alam M, Wang S, Zaman JU, Rahman MS, Johir MAH, et al. Interaction chemistry of functional groups for natural biopolymer-based hydrogel design. Materials Science &Engineering R: Reports.2023;156:100758.doi:10.1016/j.mser.2023.100758

Cupone IE, Sansone A, Marra F, Giori AM, Jannini EA. Orodispersible Film (ODF) Platform Based on Maltodextrin for Therapeutical Applications. Pharmaceutics. 2022;14(10):1–17. doi:10.3390/pharmaceutics14102011

Malipeddi VR, Awasthi R, Ghisleni DDM, de Souza Braga M, Kikuchi IS, de Jesus Andreoli Pinto T, et al. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system. Drug Delivery and Translational Research. 2017;7(1):66–76. doi:10.1007/s13346-016-0334-7

Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry . 2013;24(8):1415-22. doi:10.1016/j.jnutbio.2013.05.001.

Kemperman RA, Bolca S, Roger LC, Vaughan EE. Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities. Microbiology (Reading). 2010;156(Pt 11):3224-3231. doi:10.1099/mic.0.042127-0.

Hong L, Kim WS, Lee SM, Kang SK, Choi YJ, Cho CS. Pullulan nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum through the induction of mild stress in probiotics. Frontiers in Microbiology. 2019;10:1–12. doi:10.3389/fmicb.2019.00142

Savitskaya I, Zhantlessova S, Kistaubayeva A, Ignatova L, Shokatayeva D, Sinyavskiy Y, et al. Prebiotic Cellulose–Pullulan Matrix as a “Vehicle” for Probiotic Biofilm Delivery to the Host Large Intestine. Polymers (Basel). 2024;16(30):1-21. doi:10.3390/polym16010030

Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Qrimida AM, Allzrag AMM, et al. Andrographis paniculata (Burm. f.) wall. ex nees: An updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life. 2021;11:348. doi:10.3390/life11040348

Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life. 2024;14(5):1–44. doi:10.3390/life14050559

Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, et al. Short-chain fatty acids in diseases. Cell Communication and Signaling. 2023;21(1):1–20. doi:10.1186/s12964-023-01219-9

Anjana, Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria inControlling Dysbiosis of the Gut Microbiota. Frontiers in Cellular and Infection Microbiology. 2022;12:1–11.doi:10.3389/fcimb.2022.85114033.

Yu D, Pei Z, Chen Y, Wang H, Xiao Y, Zhang H, et al. Bifidobacterium longum subsp. infantis as widespread bacteriocin gene clusters carrier stands out among the Bifidobacterium. Applied and Environmental Microbiology. 2023;89(9):1–18. doi:10.1128/aem.00979-23.

Published

16-12-2024

How to Cite

MIKSUSANTI, M., APRIANI, E. F., AHMADI, A., SHIYAN, S., WIJAYA, D. P., & RISANLI, V. A. (2024). FORMULATION AND CHARACTERIZATION OF SAMBILOTO EXTRACT ORALLY DISSOLVING FILMS: A DUAL MECHANISM FOR PROBIOTIC GROWTH AND ANTIBACTERIAL ACTION. International Journal of Applied Pharmaceutics, 17(2). https://doi.org/10.22159/ijap.2025v17i2.52902

Issue

Section

Original Article(s)