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ABSTRACT 

Objective: Prediction of pharmacokinetic behaviour of new candidate drugs is an important step in drug design. Clearance is a key pharmacokinetic 
parameter, controlling drug exposure in the body. It depends on numerous factors and is frequently restricted by plasma protein binding. The study 
is focused on the development of quantitative structure-pharmacokinetic relationship (QSPkR) for the unbound clearance (CLu

Methods: The dataset consisted of 117 neutral drugs, divided into training set (n = 94) and external test set (n = 23). Chemical structures were 
encoded by 113 theoretical descriptors. Genetic algorithm and step-wise multiple linear regression were applied for model development. The model 
was evaluated by cross-validation in the training set and external test set.  

) of neutral drugs.  

Results: Significant, predictive and interpretable QSPkR model was developed with explained variance r2 = 0.617, cross-validated correlation 
coefficient q2 LOO-CV = 0.554, external test set predictive coefficient r2 pred = 0.656, and root mean square error in prediction RMSEP = 1.89. The model 
was able to predict CLu

Conclusion: The model reveals the main molecular features governing CL

 for 56% of the drugs in the external test set within the 2-fold error of experimental values.  

u of neutral drugs. CLu

Keywords: QSPkR, Clearance, Unbound clearance, In silico modelling, Prediction of ADME 

 is favoured by lipophilicity, the presence of fused 
aromatic rings, ester groups, dihydropyridine moieties and nine-member ring systems, while polarity, molecular size and strong electron 
withdrawing atoms and groups as substituents in aromatic rings affect negatively CL  
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INTRODUCTION 

Prediction of pharmacokinetic (PK) behaviour of new candidate 
drugs became a mandatory step in drug discovery process over the 
last two decades. Drug clearance (CL) is important pharmacokinetic 
(PK) parameter characterizing the ability of the body to eliminate 
the drug. It controls both half-lives, whence it is a major determinant 
of the dosage rate required for maintaining desired therapeutic 
concentration in multiple drug administration [1]. 

Several approaches have been developed for prediction of drug 
CLbased on in vivo data from preclinical species and allometric 
scaling, in vitro experiments, physiologically based, or in silico 
modelling. A brief review on the current state of methodology was 
published recently [2]. One of the most frequently applied 
techniques is quantitative structure–pharmacokinetics relationship 
modelling (QSPkR). QSPkR is a method of choice at very early stages 
of drug development as it can be based solely on easily computed 
molecular descriptors and allows predictions to be made even on 
virtual structures. It enables the screening of large databases of 
potential drug candidates and the choice of compounds with 
acceptable, if not ideal, PK properties. 

Several reports have been published recently on QSPkR modeling of 
total plasma CL [3–9], as well as for renal CL [10–12]. It is difficult to 
compare their predictive performance because of the incomplete 
description of the model’s algorithms and validation procedures and 
the different statistical metrics used. Some of the models were 
applicable only for ionized molecules [6], others showed different 
predictive accuracy for drugs of different ionization type [7, 10]. 
There was an agreement in three points:  

- Prediction of total CL is rather a difficult task due to the 
involvement of multiple mechanisms in drug elimination. Most 
drugs are cleared via several pathways and their CL is determined 
by the rate and the extent of numerous processes such as uptake in 
liver, kidney and bile, metabolism, glomerular filtration, active 

secretion, reabsorption in kidney–each one with different structural 
requirements. 

- CL may be restricted by the binding of drugs with plasma 
proteins, especially for drugs with low extraction ratio. 

- Drugs follow elimination patterns depending on their ionization 
state. On average, acids have lower CL than neutral and bases. 
Analysis of a dataset of 754 compounds showed that 78% of the 
anionic drugs and 80% of zwitterions have low CL (<4 ml/min/kg), 
and only 1-2%–high CL (>16 ml/min/kg). In contrast, most of the 
basic drugs have moderate (53%) or high CL (18%), and only 29%–
low CL. Neutral drugs are in an intermediate position: 45% low-CL 
drugs, 39 %-moderate, and 16%-high CL drugs [7]. Acidic drugs 
seem to be more often subjected to renal or biliary excretion, while 
basic drugs are cleared primarily by metabolism [13]. Different 
membrane transporters facilitate drug uptake into clearing organs–
organic anion transporters for acids, and organic cation transporters–
for bases [14]. Neutral drugs tend to show low renal CL (CLR), unless 
their logD7.4 is negative. For drugs with logD7.4>0, CLR

Given the above, development of separate QSPkR models according 
to the ionization type of the drugs seems reasonable as it could 
reveal the most significant structural features governing CL of drugs 
of different classes. The effect of plasma protein binding (PPB) could 
be avoided by the development of QSPkR for the unbound CL (CL

 decreases with 
the increase of lipophilicity due to tubular reabsorption [15]. 
Lipophilic drugs are expected to be cleared primarily by metabolism 
[16]. Considering CytP450 oxidation, anionic drugs are preferred 
substrates of CYP2C9, while most of the basic and neutral drugs are 
metabolized by CYP2C19 or CYP3A4 [13].  

u = 
CL/fu, where fu is the unbound fraction of the drug in plasma). CLu is 
independent on PPB and is determined solely by molecular 
structure. Recently we published QSPkR models for CLu of anionic 
and cationic drugs [17, 18]. The present study is focused on QSPkR 
modelling of CLu for neutral molecules.  
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MATERIALS AND METHODS 

The dataset consisted of 117 neutral molecules with available data for 
fu, extracted from the largest available database for key PK parameters 
following iv administration of drugs in human [19]. A drug was 
considered as neutral if the fraction ionized as an acid (fA) or as a base 
(fB) at pH 7.4 didn’t exceed 3%. Drugs with fB>3% were classified as 
bases provided that fB was considerably higher than fA

The values of CL

. The fractions 
ionized at pH 7.4 were calculated as previously described [17, 18]. The 
mol-files of the drugs were derived from several public databases–
Drug Bank, Chemical Book, or ChEBI [20–22]. 

u varied between 0.35 and 37,368 (mean 634 ± 
3,896, median 17.68), and they were logarithmically transformed in 
order to achieve close to normal distribution. Thus, logCLu varied 
between-0.46 and 4.57 (mean 1.35, median 1.25). With respect to 
CLu

- Low CL drugs: CL

 values, the drugs in the dataset could be classified into three 
groups:  

u

- Moderate CL drugs: 4<CL

≤ 4 ml/min/kg (n = 29); 

u

- High CL drugs: CL

<40 ml/min/kg (n = 46) 

u

The whole dataset was divided into training and test sets. To this 
end, the molecules were arranged in an ascending order according 
to their CL

≥ 40 ml/min/kg (n = 42). 

u

Chemical structures of the compounds were encoded by 113 
molecular descriptors calculated with ACD/logD version 9.08 
(Advanced Chemistry Development Inc., Ontario, Canada) and MDL 
QSAR version 2.2 (MDL Information Systems Inc, San Leandro, CA). 
Several types of descriptors were computed: physicochemical (logP, 
logD

 values and one of every five drugs was allocated to the 
different subset. The first four subsets composed the training set for 
QSPkR model development (n = 94), and the fifth subset (n = 23) 
was used as a test set for external validation.  

7.4

A number of successful QSPkR models were developed using 
multiple linear regression (MLR) and different combinations of 
descriptors. The goodness-of-fit was assessed using standard 
statistical metrics such as explained variance (r

, PSA, dipole moment), constitutional (number of atoms and 
groups of given type, rings, circles, hydrogen bond donors and 
acceptors, etc.); geometrical (volume, surface, ovality), electro 
topological state and connectivity indices, etc. The most significant 
descriptors were selected by genetic algorithm (GA) and stepwise 
linear regression (SWR). Both GA and SWR were implemented in the 
MDL QSAR package. 

2), root mean 
squared error (RMSE), Fisher criteria (F), etc. Drugs which logCLu

Predictive ability of the developed QSPkR model was evaluated by 
internal leave-one-out cross-validation (LOO-CV) on the training set, 
and by the external test set not involved in any step of model 
development. The following statistical metrics were calculated: 
cross-validated coefficient for the training set (q

 
values were predicted with residuals not obeying normal 
distribution law were considered as outliers and were removed 
before building the final model.  

2 LOO-CV), prediction 
coefficient for the external test set (r2 pred

RESULTS AND DISCUSSION 

), mean fold error of 
prediction (MFEP), and root means square error of prediction 
(RMSEP), briefly described recently [2].  

The best QSPkR in terms of statistics given below:  

( ) ( ) ( )
( ) ( ) ( ) 716.1*287.001.1*024.0097.09*72.917.27

_*038.0179.0_*128.0383.0log*031.0237.0log

min +±−±−±+
+±+±+±=

HQxch
acntSdssCacntSaaaCPCL

s

u
 

n = 90r2

Predictive ability of the model was assessed by LOO-CV on the 
training set and external validation on the independent test set. The 
CV squared correlation coefficient q

 = 0.617RMSE = 0.600F = 22.32 

2 LOO-CV = 0.554 and external 
validation r2 pred= 0.656and RMSEP = 0.460meet the accepted criteria 
for good predictive QSAR models [23, 24]. The model was able to 
predict the CLu of 56% of the drugs in the external test set within 
the 2-fold error of experimental values. Six drugs were identified as 

outliers: four–from the training set, and two–for the test set. The 
plot of the observed vs. predicted values of CLu is shown in fig. 1. The 
regression line is very close to the line logCLu,obs = logCLu,pred

 

, which 
is a prove for a good predictive QSPkR model [24]. 

 

Fig. 1: A plot of observed vs predicted by the QSPkR model 
values of logCL

 

u 

The regression equation and regression coefficient are shown 

The descriptors in the developed QSPkR model have clear physical 
meaning and give insight to the main structural features governing 
CLu of neutral drugs. Descriptors logP, SaaaC_acnt, Sdss C_acnt and 
xch4 contribute positively, while Qs and Hmin disfavor CLu. 
Lipophilicity (expressed as logP) is the most important factor 
accounting for about 40% of the explained variance for logCLu. This 
is in agreement with the previous QSPkRs, and is quite reasonable as 
lipophilicity is a prerequisite for the main processes involved in drug 
elimination: uptake in the clearing organs and interactions at 
enzyme binding sites. Descriptor Saaa C_acntrepresents the number 
of aromatic C-atoms infused rings. This descriptor was found to 
affect positively PPBof both basic and neutral drugs [25, 26]. The 
positive effect of Saaa C_acnt on CLu may be due to the lowfu. Indeed, 
60% of the drugs, containing aaaC atoms, have fu<0.1. On the other 
hand, the presence of aromatic rings is a prerequisite for 
hydrophobic, van der Waals, CH-π and π-π interactions in the 
binding sites of plasma proteins [27, 28], and the same interactions 
may be involved in the binding with transport proteins and 
metabolizing enzymes. Descriptor SdssC_acnt encodes the number 
of C-atom connected with two simple and one double bond. It is 
presented in 78 molecules as>C=O or>C=C<, and 13 of them are 
high-CLu drugs. Among them are several dihydropyridine calcium 
channel blockers (isradipine, numodipine, nitrendipine, etc.) with 
common structural features: two>C=O as a part of ester groups, and 
four>C=C<in dihydropyridine moiety. They are extensively 
metabolized mainly via aromatization of the dihydropyridine moiety 
and oxidation of the two ester groups [29]. Fluticasone propionate 
also contains 4 dssC-atoms, one of which–part of fluoro methyl 
carbothioate group, which is metabolized extensively by liver 
CYP3A4 hydrolysis to inactive carboxylic acid metabolite [20]. 
Descriptor xch9 accounts for the presence, number and substituents 
in a 9-member ring system. The values of xch9 are higher for 
aromatic and non-saturated heterocycles. Aromatic structures are 
generally considered as more susceptible to oxidative metabolism. 
Qsrepresents molecular and group polarity index. It correlates 
significantly with molecular weight and surface and has high values 
for large molecules with many aromatic and non-aromatic rings. 
Majority of the large molecules in the dataset contain huge number 
hydrophilic atoms and groups like C=O,-OH,-NH, NO2, etc. and a 
large polar surface area (PSA), which is unfavorable for drug 
metabolism [30]. Descriptor Hmin signifies the less polar H-atom in 
the molecule. It has low values for H-atoms in aliphatic chains and 
high values for H-atoms in aromatic rings with electronegative 
substituents like F, Br, Cl, SO2R, etc. It is well known, that the 
presence of Cl-substituents increases metabolic stability by 
preventing aromatic hydroxylation and glucuronidation of phenols 
[31]. Involvement of substituents–strongly electron with-drawing 
atoms and groups such as CF3,-SO2NH2, etc. is one of the recent 
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strategies for improving metabolic stability by deactivation of 
aromatic rings again oxidative metabolism [32, 33]. 

Six drugs were identified as outliers from the QSPkR model. Four of 
them are very high CL drugs despite of the extensive PPB. They have 
extremely high CLu

CONCLUSION 

values (1,875–37,368 ml/min/kg), and were 
highly under-predicted. All they are subjected to extensive 
metabolism. Clevidipine butyrate is rapidly metabolized via 
hydrolysis by esterases in blood and extravascular tissues [34]. 
Maxipost undergoes N-glucuronidation and O-dealkylation to a 
metabolite, covalently bound to HSA [35]. Propofol metabolizes 
extensively in both liver and kidney, mainly by hydroxylation and 
glucuronidation [36, 37]. Estradiol undergoes extensive metabolism 
mainly by aromatic hydroxylation [38]. Decitabine is also very high 
CL drug (CL = 130 ml/min/kg), /however, it is essentially unbound in 
plasma. It undergoes hydrolysis and deamination mediated by cytidine 
deaminase in the liver, granulocytes, intestinal epithelium, and whole 
blood [39]. Its outlier behaviour may be due to the extremely low 
lipophilicity (logP =-1 93). Meprobamate is the only drug which is 
over-predicted by the model. It has very low CL = 0.6 ml/min/kg and 
is completely unbound in plasma. It metabolizes to 
hydroxymeprobamate, meprobamateglucosyluronide and glucuronide 
conjugates, and 10-12% of a dose is excreted unchanged in urine 
[40]. Most probably, the low CL is due to the slow uptake in the liver 
as the drug is fairly hydrophilic (logP = 0.7).  

A significant, validated and interpretable QSPkR model for the 
unbound plasma CL of neutral drugs is developed. The model is able 
to predict the CLu of 56% of the drugs in the independent external 
test set within the 2-fold error of experimental values. The 
descriptors in the model reveal molecular features, important for 
CLu. CLu
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