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ABSTRACT 

As a prospective material for biosensing, drug administration, and bioimaging, carbon dots (C-dots) have grown in popularity due to their 
outstanding visual characteristics, great biocompatibility, and low cytotoxicity. As a result, there has been a lot of curiosity about the development, 
characteristics, and potential applications of CDOTs. Based on variations in precursors and methods of preparation, CDOTs were divided into two 
classes. The procedure for the formation of CDots was outlined, and their luminescence process was investigated. Also presented were CDOTs' uses 
in biosensing, medication administration, and bioimaging. For their continued development, CDOTs' challenges and challenges were reviewed. 
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INTRODUCTION 

Recently, a novel class of zero-dimensional fluorescent carbon 
nanostructures called carbon dots (C-dots; CDs) was discovered. In 
2004, Xu et al. made the discovery of C-dots while utilising gel 
electrophoresis to purify single-walled carbon nanotubes (SWCNTs). 
Researchers' interest in this brand-new class of luminous carbon 
nanomaterial grew rapidly [1]. Carbon dots, often known as C dots, 
are a brand-new type of fluorescent carbon material that is smaller 
than 10 mm. Due to its makeup and biocompatibility, C dots are 
emerging as a possible substitute for metal-based quantum dots [2]. 
Due to their high fluorescence qualities, strong biocompatibility, and 
low toxicity, C dots were investigated as biosensors, drug carriers 
for gene transfer, and bio-imaging probes [3]. 

During the purification of carbon nanotubes, Xu et al. discovered a 
luminous fraction that was later shown to be carbon nanomaterial 
by atomic force microscopy characterisation [4]. Later, in 2006, 
Sun et al. laser-ablated the carbon target while using argon as a 
carrier gas and water vapour to produce 5 nm carbon 
nanoparticles (CNPs) [5]. 

CNPs were produced in 2007 utilising a simple combustion 
technique. Later, CDs with other topologies and morphologies, such 
as carbon quantum dots (CQDs), graphene quantum dots (GQDs), 
carbon nanodots (CNDs), polymer dots (PDs), and carbonised 
polymer dots, appeared (CPDs) [6, 7] Due to their unique and 
noteworthy properties, such as excellent electron conductivity, 
photobleaching and photoblinking properties, high 
photoluminescent quantum yield, fluorescence property, resistance 
to photo-decomposition, alterable excitation and emission 
attributes, increased electro-catalytic activity, good solubility in 
aqueous media, excellent biocompatibility, and long-term chemical 
stability, CDs have attracted a lot of attention from researchers (48-
51) [8-10]. 

Here, we primarily cover the categorization of CDs, their ideal 
characteristics, general synthesis methods, and key characterization 
procedures. More significantly, we inform the audience on current 
CD usage patterns in healthcare applications (viz., their substantial 
and prominent role in the areas of electrochemical and optical 
biosensing, bioimaging, drug delivery, as well as in photodynamic 
therapy and photothermal therapy).  

According to Liu et al. summary's CDs are currently among the most 
popular research and development issues in energy materials. 
Nonetheless, more research into the subject is required to enable 
new experimental methods to the functional processes of CDs [11]. 

Advantages 

• Excellent yield, high purity, manageable size, excellent 
repeatability, and reasonable cost  

• By altering experimental conditions, a straightforward 
experimental apparatus may generate particles with various sizes 
and adjustable morphologies.  

• Expensive machinery and large-scale c-dot production 

• Simplicity 

• Rapid and constant volumetric heating 

• Quick synthesis reaction [12, 13] 

• Minimal cost, with easy control over important factors, including 
thereaction vessel's temperature, time, and pressure. The created c-
dots are likewise non-toxic and have a high quantum efficiency.  

• The process is simple to operate, solvent-free, inexpensive, and 
capable of producing c-dots on a large scale [14, 15]. It also has a 
quick reaction time and easy particle size control. 

C-Dots's structure and morphology [16, 17]  

In general, C-Dots are made up primarily of carbon skeletons, with 
smaller amounts of two other basic elements like oxygen and 
hydrogen. They typically have amorphous, spherical geometries and 
are composed of carbon atoms that have undergone both sp2 and 
sp3 hybridization and are less than 10 nm. As compared to graphene 
quantum dots (GQDs), which are made solely of sp2 hybridised 
carbon arranged in a two-dimensional honeycomb lattice, C-Dots are 
different. While making C-Dots, several species of carbon-based 
materials are formed using various precursors and synthesis 
techniques. Polar groups like carboxyl and carbonyl groups allow for 
extensive surface modification of C-Dots. 

Classification of carbon dots 

• GQD (Graphene quantum dot) 

• CQD (Carbon quantum dot) 

• CND (Carbon nano dot) 

• CPD (Carbonized polymer dot) 

The inherent state luminescence and quantum confinement effect of 
CDs are imparted by a significant number of chemical groups in the 
CQDs, which are nanospheres with crystalline structures. The GDQs 
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are extremely small pieces of anisotropic graphene that are 
composed of mono or multiple layers of graphene sheets with 
graphene networks. Because GQDs have a variety of chemical 
functionalities on their edge or inside their interlayer defect, they 
exhibit quantum confinement and edge effects. Although the 
crystalline or polymeric structures are not visible, the CNDs have a 
high degree of carbonization with edge effects. Additionally, CNDs do 
not adequately exhibit the quantum confinement effect. In their ideal 
form, CPDs are cross-linked nano-hybrids of carbon and aggregated 
polymers, with a central carbonised core surrounded by either 
polymeric chains or functional groups [18, 19]. 

Properties of carbon dots 

Electrochemical properties of CDs 

1. CDs have superior charge transferability, improved 
electroconductivity, a bigger effective surface area, lower toxicity, 
and are comparably more cost-efficient than other carbon-based 
nanomaterials.  

2. There are many functional groups on the surface of CDs, including 
hydroxyl, carboxyl, amine, etc. These functional groups can provide a 
lot of sites for surface modification as well as for improved 
electrocatalytic activity by accelerating intermolecular 
electroconductivity.  

3. Because of the intramolecular charge transferability, CDs may 
have their electrical properties greatly enhanced by doping them 
with heteroatoms like nitrogen, phosphorous, sulphur, boron, etc.  

4. In electrochemical processes, including the oxygen evolution 
reaction (OER), hydrogen evolution reaction (HER), oxygen 
reduction reaction (ORR), and alcohol oxidation reaction (AOR), CDs 
can significantly improve electrocatalysis [20, 21]. 

Hetro atom doping 

Due to the augmentation of the inherent activity of functional 
surface sites, distortion of their electronic configuration, adjustment 
of local densities, and acceleration of adsorption and desorption 
events, heteroatom-doped CDs exhibit outstanding electrochemical 
performance [22]. 

Optical properties of carbon dots 

Fluorescent CDs have been extensively employed in a wide range of 
healthcare applications, particularly in the areas of biosensing, 
bioimaging, and therapeutic development, because to the astounding 
optical properties they offer. Studying and comprehending CDs' 
optical characteristics is crucial if you want to build different CDs for 
a variety of bio-applications [23]. 

Fluorescence properties 

Fluorescence that is down-converted 

A thorough investigation of CDs' luminous process is still pending. 
The energy gap of CDs gets less as they get bigger. As a result, it is 
possible to control the fluorescence property of CDs by changing 
their quantum confinement effect. The surface oxidation that 
oxygen-containing groups experience at the borders of CDs is what 
causes the surface flaws that cause fluorescence [24]. 

Emission characteristics 

Controlling the excitation wavelength of CDs can produce different 
fluorescence emissions, which is accomplished by adjusting a 
number of physiochemical parameters during CD synthesis [25]. 

Chemical resistance and photo-bleaching characteristics 

Long-lasting, intense fluorescence may be produced by CDs. 
Typically speaking, CDs exhibit great photobleaching impedance 
because they are robust to a wide ph range (3–12) [26]. 

Phosphorescence 

Due to its extended lifespan, the room temperature 
phosphorescence (RTP) feature of CDs is crucial. Although 
phosphorescence quenching is frequently seen in water due to 
solvent-assisted relaxation and the presence of dissolved oxygen, the 
creation of RTP in aqueous media is comparatively difficult [27]. 

Electro chemiluminescence 

During electrical activation, CDs may release photons in the visible 
spectrum, which is crucial to understanding their 
electrochemiluminescence (ECL) features. A stable ECL is produced 
as a result of the increased electron transport caused by the 
substantial quantity of sp2 carbon in CDs [28]. 

Synthesis of carbon-dots 

The two main methods for synthesizing C-dots are as follows:  

• Top-down 

• Bottom-up 

These techniques seek to produce C-dots with the benefits of being 
straightforward, affordable, and available from a wide range of 
precursors [fig. 1]. After the synthesis step, large carbon particles, side 
products, unreacted precursors, and unreacted precursors are often 
present in addition to C-dots. Consequently, to get rid of unwanted 
products and any leftover big carbon particles, centrifugation/washing 
cycles must be performed numerous times. High-purity C-dots may be 
made from the supernatant by dialysis [29, 30]. 

 

 

Fig. 1: Strategies for carbon-dots synthesis 
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Top-down approach 

Carbon on a macroscale for the manufacturing of CDs, aceous 
materials such activated carbon, CNTs, and graphite are widely used 
through top-down techniques like arc discharge, laser ablation, 
ultrasonic treatment, and electrochemical procedures. Yet, these 
procedures are often carried out in environments with high 
potential, acidity, and energy [31]. 

Arc discharge method 

While CDs produced by arc discharge treatment could have low QYs, 
the arc discharge approach can be used to prepare CDs from raw 
CNTs. Additionally, according to Arora and Sharma, the arc 
discharge method can be used to reorient the C-atoms that are 
created when bulky C-precursors disintegrate in order to achieve 
high energy within the reaction assembly during the synthesis of 
CDs. In general, the arc discharge process uses a lot of composite 
segments, and it can be challenging to purify these segments [32]. 

Laser ablation/irradiation method 

In comparison to conventional chemical synthesis methods, laser 
ablation/irradiation is a single-step process that has advantages. 
The key benefits are the reduced byproduct production and the 
utilisation of fewer chemical precursors. At extremely high 
temperatures and pressures of the solid-liquid interface, the laser's 
light can induce the solid target to produce plasma through thermal 
evaporation. The plasma grows adiabatically, interacts with the 
environment, condenses, and causes clusters to form quickly. The 
nanoparticles are then launched into the liquid, where they interact 
with the surface of the liquid to create nanomaterials [33]. 

Electrochemical oxidation/exfoliation method 

A potent method for the production of CDs is the electrochemical 
oxidation/exfoliation method, which utilises various bulk carbon 
sources as the precursors. Alcohol could be converted into CQDs by 
electrochemical carbonization in an alkaline environment. These 
CQDs were shown to grow in size and graphitization level with 
applied voltage, negating the requirement for labor-intensive 
passivation and purifying processes. These CQDs were reported to 
have a quantum yield of up to 15.9% [34, 35]. 

Ultrasonic-assisted methods 

With the advantages of moderate preparation conditions and 
increased product yield, ultrasonic treatment can optimise the 
preparation of CDs. Graphite quantum dots (GQDs) of various 
shapes, sizes, and defect levels were also produced by exfoliating 
several graphite predecessors. Anthracite was used as a plentiful 
and affordable precursor in a straightforward one-step ultrasonic 
cutting procedure for the creation of blue luminous graphene 
quantum dots (C-GQDs), which are obtained from coal. The graphite 
rod was electrochemically stripped to form the CQDs, which were 
then mixed with ammonium hydroxide and subjected to a 3-hour 
ultrasonic treatment at 80 °C to produce N-CDs [36]. 

Bottom-UP approach 

Samples with clearly specified molecular weight, size, shape, and 
characteristics can be targeted with C-dots in particular. In addition to 
offering more control, bottom-up approaches are frequently inexpensive 
and effective for mass-producing fluorescent C-dots, which are necessary 
for the practical use of these innovative C-dots. There are numerous 
methods for carrying out the dehydration and carbonization processes, 
including enhanced hydrothermal microwave-hydrothermal plasma 
hydrothermal methods, hydrothermal, microwave, and combustion 
methods, pyrolysis in concentrated acid, carbonization in a microreactor, 
and many others [37, 38]. 

Hydro/solvothermal methods  

The most popular "bottom-up" methods for the synthesis of CDs are 
hydro and solvo-thermal techniques. To create CDs, the organic 
precursor solution is thermally processed at 150–200 °C in an oven 
while being sealed inside of a reactor. A typical method for the 
synthesis of CQDs involves solvo thermal carbonization, followed by 
organic solvent extraction. The extraction and concentration steps 

are carried out after the carbon compound is heated with an organic 
solvent with a high boiling point [39, 40]. 

Microwave-assisted method 

The microwave-assisted process has high CD yields and is easy, 
affordable, quick, clean, and adaptable. Polar molecules' dipolar 
moments can interact with a solvent's alternative electric and 
magnetic fields during the synthesis process to cause molecular 
heating. This method enables good control of experimental 
parameters, safety, and reproducibility. Moreover, microwave 
processing is essential for quickly raising the product yield and 
lowering the size [41-43]. 

Template method 

• Calcination of the desired CDs in a suitable template or 
mesoporous silicon spheres is the first stage in the template 
method's two-phase process for creating CDs.  

• Etching procedure for removing supports [44, 45]  

Other approaches  

In addition to the methods mentioned above, other noteworthy 
approaches that can be utilised to prepare CDs include thermal 
pyrolysis, self-assembly, anchor/support-based methods, the metal-
organic framework template-based approach, and so on [46]. 

Mechanism of carbon dots  

In general, CDs are incorporated into inorganic substances through 
chemical adsorption to produce functional inorganic materials based 
on CDs, which can be accomplished in the following ways:  

1) CDs are put together using different synthetic inorganic 
nanoparticles  

2) Creation of CD/inorganic composite materials in a single pot.  

Based on these functionalization techniques, CDs can be utilised to 
generate materials for a variety of applications (including SCs, 
batteries, and electrocatalysis) by combining them with metals, 
metal oxides/sulfides, carbon compounds, and polymers [47]. 

Characterization of C-DOTS 

Characterization techniques for CDs 

Various types of CDs made using various synthetic methods are 
currently being studied for their morphology (i.e., size, shape, and 
structure), topography, elemental composition, crystallographic 
information, size distribution, and granular orientation using a wide 
range of characterization techniques. Microscopy, spectrometry, 
spectroscopy, and diffraction techniques are the main components 
of these approaches.  

Microscopy-based CD characterization  

Atomic force microscopy (AFM), transmission electron microscopy 
(TEM), and scanning electron microscopy are used to characterise 
CDs (SEM).  

Analysis of TEM and HRTEM  

In-depth research on C-Dot characterization has recently been 
published in order to better comprehend their special characteristics. 
The average size of the C-Dots, which is less than 10 nm, can be utilised 
to determine their size and form via TEM examination. 

Characterization of CDs by spectroscopy 

Various spectroscopic techniques such as ultraviolet-visible (UV-Vis), 
photoluminescence (PL), infrared (IR), Raman spectroscopy (RS), 
energy dispersive X-ray (EDX), nuclear magnetic resonance (NMR), 
dynamic light scattering (DLS), and X-ray photoelectron spectroscopy 
have also been used for the characterization of CDs [48]. 

XPS and FTIR analysis 

The surface characteristics of the C-Dots are investigated using X-ray 
photoelectron spectroscopy (XPS) and Fourier-transform infrared 
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spectroscopy (FTIR). While XPS identifies the components, FTIR 
spectrum catches the functional groups in C-Dots. The hydrophilic 
groups (-OH,-COOH, and-NH2) found in C-Dots indicate that they are 
easily dispersed in water [49]. 

Raman and XRD analysis 

Raman spectroscopy is frequently employed to identify materials 
and analyse the spectrum properties of molecular structures. The 
structural features of the C-Dots can be further examined using X-
ray powder diffraction (XRD) [50]. 

Characterization of CDs by mass spectrometry 

An outstanding method for characterising CDs is mass spectroscopy, 
which allows for the clarification of the chemical structures of 
required Nano-sized CDs. His approach uses methods like matrix-
assisted laser desorption/ionization time-of-flight mass 
spectrometry and electrospray ionisation quadrupole time-off light 
tandem mass spectrometry (ESIQ-TOF-MS/MS) (MALDI-TOF MS). 

Photoluminescence and ultraviolet-visible spectroscopy  

The optical properties of CDs can be studied using PL and UV-Vis 
spectroscopies, which are frequently used techniques. These two 
spectroscopies can also be specifically used to determine the QY of 
CD. Typically, the UV-Vis portion of the electromagnetic spectrum is 
where all types of CDs exhibit their activity. Additionally, ex-
dependent emission can be seen in the fluorescence of CDs. The 
most used method for determining the photoluminescent lifetime of 
CDs is PL spectroscopy. It provides examples of PL spectra at various 
wavelengths, UV-Vis absorption spectra, and time-resolved PL 
spectra of sulfur-doped carbon dots (S-CDs) [51]. 

Applications OF C-DOTS 

Analytical applications of C-dots (diagnostic) 

C-dots offer a wide range of biomedical applications because of their 
distinct optical characteristics, substantial surface area, and 
adaptable surface functionalization capabilities. Although there are 
still some biosafety issues regarding the use of C-dots, research on in 
vitro cytotoxicity have shown that C-dots have low toxicity and good 
biocompatibility and that no acute toxicity or morphological 
alterations have been observed thus far [52]. 

Imaging 

Due to their unique advantages, including their multicolor emission 
profile, small sizes, low cytotoxicity, good biocompatibility, and 
excellent photostability-as opposed to the majority of currently used 
fluorescence tracking dyes—C-dots tend to be superior to current 
organic dyes and semiconductor QDs. By a dehydration reaction in 
the solid state, the C-dots were heated in the presence of mannose 
and folic acid to produce mannose-and folic acid-functionalized C-
dots, respectively [53, 54]. 

Sensing 

Because of their distinctive characteristics, such as excitation-
dependent emission, higher photostability, low cytotoxicity, and 
aqueous solubility, C-dots have been used by researchers as bio and 
chemical sensing materials. A change in their fluorescence 
properties, which can happen by a variety of mechanisms, including 
resonance energy transfer, the inner filter effect, and photo-induced 
electron and charge transfer, is the typical way that this sensing is 
carried out. Hydrogen peroxide (H2O2), glucose, vitamin B12, L-
cysteine, and galactose are just a few of the biological substances 
and intracellular ions that can be detected with C-dots [55-57]. 

Metal ion detection 

C-dots can be employed for direct chemical sensing of metal ions in 
addition to biological metal ions. These interactions with the surface 
functional groups of the C-dot result in the development of novel 
electron-hole rearrangements, which alters the C-dots' ability to 
fluoresce. This review paper will mostly focus on C-dots used for 
mercury sensing, while it can be used to detect other types of metal 
ions as well. Analysis of tap, lake, and saltwater samples with 
minimal matrix effects proved the practicality [58]. 

Other recent diagnostics 

C-dots have recently been demonstrated to be helpful for 
quantifying misused medicines. The quantification of 4-
cholorethcathinon has been done using C-dots made from L-arginine 
using a hydrothermal method. A straightforward one-step dry 
heating procedure was used to create the C-dots with nitrogen and 
chloride residues from spermidine trihydrochloride [59, 60]. 

Biomedical applications of C-dots (therapeutic) 

Drug delivery and gene transfer 

Moreover, C-dots were employed in the fields of gene transfer and 
medication administration. As an excellent method for developing 
cell screening and disease diagnostics, folic acid-modified C-dots by 
amide condensation reaction were used for the recognition of cancer 
cells. C-dots with PEI modifications were another common 
alteration. After transfection for three hours, C-dots DNA composites 
were able to penetrate the cell. Despite being excited at several 
wavelengths during the transport process, C-dots nonetheless 
retained their multicolor fluorescence characteristics [61, 62]. 

In vitro imaging 

It is possible to learn a great deal about the distribution, cytotoxicity, 
and imaging properties of probes in cells by using in vitro imaging. 
Many cell transfection imaging methods, including Hela, human 
neural stem cells, 4T1 NIH-3T3, A549, and HepG-, were successfully 
carried out using C-dots. Endocytosis was the primary mechanism 
by which C-dots entered cells, where they were primarily found in 
the cytoplasm. We created a biomolecule that mimics C-dots by 
subjecting dopamine-mimicking molecules to a neutralising heat 
treatment. Nuclear localization and imaging could be accomplished 
using C-dots to "fool" nuclear membranes [63, 64]. 

In vivo imaging 

Because of their clearly defined developmental stages and optical 
imaging propensity, zebrafish are frequently employed in 
fundamental medical science to study the progression of diseases, 
developmental mechanisms, and pattern creation. PEG-modified C-
dots have a slower metabolism than unmodified ones. Following 
intravenous administration, C-dot fluorescence was seen at the 
stomach, where it accumulated after one hour. At 4 h after injection, 
the fluorescence signal dropped and gathered at the kidney, showing 
that C-dots were eliminated from animals through the urine. C-dots 
that emit blue light were also utilised for in vivo imaging, and it was 
discovered that they may enter the brain [65]. 

CONCLUSION  

This review discusses several CD types, production techniques, and 
uses as electrode materials in SC and Li-/Na-/K-ion batteries, as well 
as electrocatalysts for water electrolysis cells, metal-air batteries, 
and fuel cells using HER, OER, and ORR. The findings of this study 
demonstrate that CDs are among the most effective Nanomaterials, 
with remarkable characteristics such as a large specific surface area, 
adjustable Nanoscale size, quick electron transfer ability, quantum 
size effect, abundance of surface functional groups, and various 
defects, which confirm their great potential in electrochemical 
energy applications. 
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