ISSN- 0975-7066

Vol 7, Issue 4, 2015

Review Article

EMESIS DURING CHEMOTHERAPY: A REVIEW ON GRANISETRON, ITS EFFICACY AND DELIVERY SYSTEMS

VANI SHARMA, SAAHIL ARORA

ISF College of Pharmacy, MOGA, Punjab, India Email: vanisharma567@gmail.com

Received: 21 Jul 2015, Revised and Accepted: 03 Sep 2015

ABSTRACT

Nausea and vomiting are common problems occurs in disease, non-disease condition and after the chemotherapy, results from the activation of protective physiological mechanism in order to eliminate the toxin from the body. Principal four pathways that act on vomiting center to trigger nausea and vomiting are chemotherapy trigger zone (CTZ), cortex, peripheral pathway and the vestibular system. In emesis different treatment strategy are used in which Granisetron is a drug emerge as a drug of great potential to overcome chemotherapy induce nausea and vomiting. Current review aims to introduce emesis (CIE) during chemotherapy along with different novel therapeutic approaches and various clinical studies. In variety of studies to overcome the CIE novel approaches are of great importance.

Keywords: Emesis, Granisetron delivery system, Chemotherapy.

INTRODUCTION

Vomiting is medically known as "EMESIS". It is a forceful expulsion of the contents of one's stomach through the mouth and sometimes the nose. The feeling of about vomiting is called as nausea, which occurs as a precedes, but not always leads to vomiting [1]. Vomiting is a complicated process and includes a pre-ejection phase, ejection phase and post-ejection phase. In pre-ejection phase gastric smooth muscle relaxes and retrograde peristalsis. In ejection phase abdominal and diaphragmatic muscles contract [2]. In post-ejection phase come back to quiescent state [3].

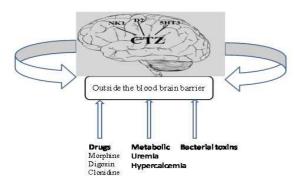


Fig. 1: Natural mechanism of controlling nausea and vomiting

There are 4 pathways that which originates the vomiting center to trigger nausea and vomiting i.e. chemotherapy trigger zone (CTZ), cortex, peripheral pathway and the vestibular system. The CTZ is exterior to blood brain barrier and reveal to toxins, i.e. chemotherapy and cerebral spinal fluid which triggers vomiting. In CTZ D₂, SHT_3 , NK1 neuro receptors are present. Dopamine receptor antagonists act in the neural pathway. Clozapine was the first typical antipsychotic. Antipsychotic are known to be used for nausea and vomiting. They act by obstruct the dopamine receptors which are class of metabotropic G protein-coupled receptors that are prominent in the vertebrate central nervous system. The neurotransmitter dopamine is the main endogenous ligand for dopamine receptors [4].

Chemotherapy induced nausea and vomiting

Nausea and vomiting are the two most panic factors of chemotherapy. Various other causes of nausea and vomiting that are

linked with cancer or other treatments for example treatment with radiation block in the intestine caused by the tumor, reaction of medications, imbalance in body fluids [5].

Side-effects of chemotherapy [6]: 1. Fatigue 3. Nausea 5. Mouth sores

2. Hair loss 4. Vomiting 6. Bleeding

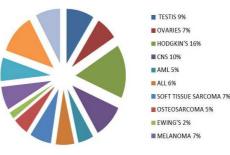


Fig. 2: Percentage pervalence of emesis in cancer patients undergoing chemotherapy

Classification of chemotherapy induced nausea and vomiting [7].

1. Acute CINV: It is the phenomena that occur in the first 24 h when patients received chemotherapy.

2. Delayed CINV: It is the phenomena that occur more than 24 h when patients received chemotherapy.

3. Anticipatory CINV: It is a learned response which occurs after patients CINV had poor controlled in the past.

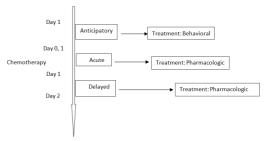


Fig. 3: Three types of chemotherapy induced nausea and vomiting: Timing and treatment

This diagram shows that line going along with the arrow on it told that Day1, Day 0, Day 1, Day 2, is usually chemotherapy. Chemotherapy is given on Day 0 in this anticipatory happen any time up until then. Acute is generally on the first day of treatment and then delayed is mentioned from Day 1 onward.

General risk factors and etiologies

Not all the cancer patients familiar the nausea and vomiting. [9] Several patient characteristics have also been identified. Includes the following points:

1. Occurrence and seriousness of nausea and vomiting during past courses of chemotherapy [10].

2. Background of chronic alcohol use [11].

3. Age: Nausea and vomiting more likely to be in younger patients than 50 y old [12].

4. Gender: Nausea and vomiting generally occurs in female [12].

Other possible causes are [13]

1. Fluid and electrolyte imbalances i.e. water intoxication and hypercalcemia.

- 2. Tumor invasion or growth in the GI tract, CNS.
- 3. Many drugs such as opioids.
- 4. Infection or septicemia.

Risk factors of chemotherapy induced and vomiting

Regimen that is joined to the high incidence ie.90% or higher of nausea or vomiting is referred as highly emetogenic chemotherapy and causing moderate incidence i.e. 30-90% is referred as moderately emetogenic chemotherapy [14].

Adverese event	Grade	Description
Nausea	1	Loss of appetite without alteration in eating habits
	2	Oral intake decreased without significant weight loss, dehydration or malnutrition.
	3	Inadequate oral caloric or fluid intake, tube feeding
	4	Grade not available
	5	Grade not available
Vomiting	1	1-2 episodes(separated by5 min) in 24 h
0	2	3-5episodes(separated by5 min) in 24h
	3	>Episodes(separated by 5 min) in 24h; tube feeding, TPN
	4	Life threatening consequences; urgent intervention indicated
	5	Death

N& V= Nausea and vomiting (emesis); TPN= Total parenteral nutrition, ^aAdapted from National Cancer Institute (CTCEA version 4.0 2010), ^bDefinition: A disorder identify by a queasy sensation and/or the urge to vomit, ^cDefinition: A disorder identify by the reflexive act of ejecting the contents of the stomach through the mouth.

Table 2: Emetogenic risk-related with Interavenously (iv) administered Antineoplasticagents [15]

Level 1	
Minimal risk,<10%	Vinblastin
	Bleomycin
Level 2	
LOW RISK, 10-30%	Fluorouracil
	Topotecan
Level 3	
Moderate risk, 31-90%	Doxorubicin
	Carboplatin
Level 4	
HIGH RISK,>90%	Cisplastin
	Cyclophosphamide

The chemotherapy trigger zone (CTZ) is the region located in the area postrema and the nucleus solitaries (NTS) are the important relay areas for afferent impulses arising in the g. i. t throat and other viscera (KD Triphathi). The CTZ is having high level concentration of serotonin (5-HT3), dopamine (D2), and opioid receptors and the NTS is luxury in enkephaline, histamine and cholinergic receptors and 5-HT3 receptors [16].

5-HT₃Antagonsits

It is a class of drug that work as receptor antagonists at 5-HT₃ receptor, a scientific serotonin receptor found in the terminals of vagus nerve and various areas of the brain [17].

History

The history begans in 1957, when two scientists J. H. Gaddum and Zuleika P. Picarelli offer the two serotonin receptor subtype M and D receptors i.e. morphine and dibenzyline. In 1970's the scientists named Fozrad identified potent selective 5-HT₃ receptor antagonists ICS 205-930 from which first 5-HT₃ receptor antagonists ondansetron and granisetron were developed [18].

5-HT₃ Receptor

It is a member of the superfamily of the ligand-gated ion channels; it also includes the neuronal nicotinic acetylcholine receptors (nAChRs) and inhibitory neurotransmitter receptors for GABA and glycine.

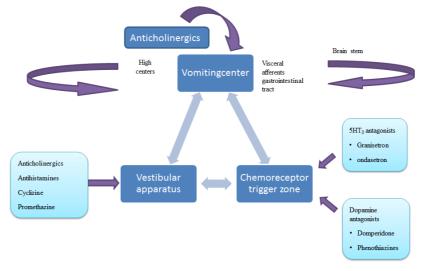
It consists of 5 subunits arranged around a central ion conducting pore, which is permeable to sodium, potassium and calcium ions [19].

Receptors involved in various causes of nausea and vomiting [20].

Causes of nausea and vomiting Receptors involved

1. Cancer chemotherapy _____> Dopamine, Serotonin, Cannabinoid

3. Vestibular system dysfunction Cholinergic, Histamine


Anti-Emetic

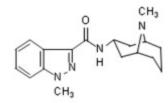
It is a drug that is powerful towards vomiting and nausea. There are generally used to treat motion sickness and the side effects of opoid analgesics, general anesthetics and chemotherapy administered against cancer [21].

Dopamine antagonists vanquish pro-emetic stimuli by blocking D2 receptors in the chemoreceptor trigger zone (CTZ).

5-HT₃ antagonists have been more recently progress to block the nausea and vomiting reflexes mediated by stimulation of 5-HT₃ receptors in both the small intestine and the CTZ.

Antihistamines, has widely being used in the migraine and generally used for motion sickness as they work at the level of the vestibular apparatus. Anticholinergic agents i.e. atropine and hyoscine are quite unsuccessful in the treatment of prevention of vomiting due to causes other than motion [22].

Fig. 4: Certain different sites of action of anti-emetics


Table 3: Classification of 5-HT ₃ receptor antagonist	Table 3:	Classification	of 5-HT ₃ re	ceptor	antagonist
--	----------	----------------	-------------------------	--------	------------

Class	Dolasetron	Ondansetron	Granisetron	Palonosetron
Trade Name	Anzement ^R	Zofran ^R	Kytril ^R	Aloxi ^R
Half-Life	7.5	4	9	40
Receptor Binding Affinity Pki(nM)	7.7	8.1	8.4	10.4
Route of Administration	IV and Oral	IV and Oral	IV and Oral	IV Only

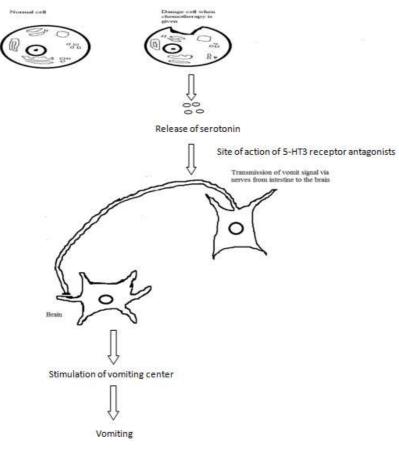
Drug: granisetron; Granisetron is a potent serotonin 5-HT3 receptor antagonist used as an antiemetic to treat nausea and vomiting following chemotherapy. Common adverse events related with granisetron [23].

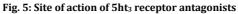
1	Constipation.	
2	Diarrhea.	
3	Asthenia.	
4	Somnolence.	
5	Headache.	
6	Anemia	
7	Infertility.	

Structure of granisetron

Chemical formula: C18H24N4O, Mol mass: 312.41 gm/mol

Pharmacokinetic profile


- 1. Bioavailability: 60%,
- 2. Protein binding: 65%,
- 3. Half-life: 3-14 h,


- 4. Log P: 2.64,
- 5. Log PK_a(9-14.7) not suitable for intestinal absorption,
- 6. Excretion: renal,
- 7. Dose: 1-2 mg

Mechanism of action of granisetron

It is a selective 5-hyroxytryptamine3 (5-HT3) receptor antagonist with little or no affinity for other serotonin receptors including 5-HT1, 5-HT1A, 5-HT1B/C, and 5-HT2 or alpha 1or alpha 2 or β -adrenoreceptors for dopamine D2, histamine H1.

Serotonin receptors of the 5-HT3 type are located peripherally on vagal nerve terminal and centrally in the CTZ of the area postrema. During chemotherapy-induced vomiting, mucosal entero chromaffn cells, release serotonin, which stimulates 5-HT3 receptors.

Table 4: Formulation	of granisetron	approved by FDA	4
----------------------	----------------	-----------------	---

S. No.	Formulation	Invention	Year	Approved	Company
1.	Transdermal patch	SANCUSO	2008	FDA	Prostrakan
		(KYTRIL)			
2.	Granisetron Hcl injection USP	KYTRIL ^R	1993	FDA	PARENTA
		Injection			Pharmaceutical
3.	Granisetron tablets	Kytril tablets	1995	FDA	Roxane Laboratories
4.	Granisetron oral solution	Granisol ^R oral solution	2001	FDA	Aprius Pharmaceutical

Table 4: Advantage and	disadvantage of various formulatior	15

Formulation	Advantage	Disadvantage	Reference
1. Fast dissolving	1. East to administer.	1. Hygroscopic in nature.	[24]
tablets.	2. Cost effective.	2. Requires special packaging.	
	3. Pleasant mouth feel.		
2. Transdermal	1. Provides a controlled release of medication.	1. Medications whose molecules are small enough to	[25]
patch.	2. Ease to apply.	penetrate the skin can be delivered by this method.	
3. Oral	1. Easy to administer geriatric, pediatric, mentally	1. The ODT's size for both easy to swallow and easy to	[26]
disintegration	disabled, who cannot swallowed the tablet.	handle is difficult to achieve.	
tablets.	2. The bioavailability is greater.	2. Expensive.	
4. Injectables	1. Bypasses the digestive system.	1. Increased chance of infection.	[27]
	2. More efficient usage.	2. Increased chance of infection.	

Problems associated with the conventional dosage form

Conventional dosage form i.e. tablets or capsules are recent facing problems such as dysphagia, which follow high incidence of noncompliance and making the therapy inadequate [28] Problem associated with conventional oral dosage forms involve the mentally ill, the developmentally disabled, and patients who are uncooperative on taking less liquid-intake plans or are nauseated [29].

Challenges for development for novel formulation

- 1. The solubility landscape.
- 2. Low "hit" rate for novel drugs.
- 3. Increasing quality-Q &B.
- 4. Reducing the cost base.

- 5. Time to market.
- 6. Maximizing the product portfolio.

Various novel formulation of granisetron

- 1. Bilayer buccal tablets of granisetron.
- 2. Transdermal patches of granisetron.

- 3. A nanoemulsion of granisetron.
- 4. Fast dissolving tablets of granisetron.

In the field of formulating the granisetron dosage form a number of approaches including fast dissolving tablets, nanoemulsions, transdermal patch, bilayer buccal tablets etc have come in to play which is represented in table: 5,6,7,8.

Table 4: table showing problem regarding formulation and improvement in the formulation

Formulation	Problem regarding formulation	Improvement	Reference
1. Fast dissolving tablets.	1. Unpleasant taste (30]	Taste masking in FDTs is attained by adding sweet-tasking substances such as diluents, adding flavors or encapsulating the unpleasant drug in to micro particles or granules.	[31]
	2. Not enough mechanical strength.	Wow tab and durasolv Technologies can make tablets that are importantly hard and durable to allow them to be packed in multi-dose bottles.	[32]
2. Effervescent granules.	Instability in presence of moisture, problem in packing and storage. [33]	Stability of effervescent granules and powder is significantly enhanced by their packing in aluminum bags tightly closed.	[34]
3 . Film coated tablets.	Film cracking [35]	PVA-PEG based polymer is successful in attaining the reduced process time and energy consumption, for the production of pharmaceutical formulations.	[36]
4. Injections	Pain [37]	Micro emulsion is a recent approach which has potential to reduce the pain on injection.	[38]

Table 5: Fast dissolving tablet of granisetron

S. No.	Ingredients used	Conclusion	Formulation type	Reference
1.	Sodium starch glycolate crosspovidone, mannitol, microcrystalline cellulose, sodium stearyl fumerate, granisetronHCl.	Drug release (t _{50%} 2.0 min)	Design of fast dissolving granisetronHCl tablets using novel co-processed superdisintegrants.	[39]
2.	GranisetronHCl, sodium bicarbonate, citric acid, tartaric acid, aspartame, flavor, talc, mannitol, sodium stearyl fumerate, croscarmellose sodium.	In-vitro dispersion time of 10 sec of formulation	Formulation design of fast dissolving tablet of granisetron using effervescent blend with improved efficacy.	[40]

Table 6: Nanoemulsion of granisetron

S. No.	Ingredients used	Conclusion	Formulation type	eference
1.	Granisetron, lipoid E80, HPMC, HP-β-CD, tween80, sodium taurocholate, lauroglycol90, poloxamer188, penicillin, streptomycin.	Size of oil droplet was 50 nm.	A novel lipid nanoemulsion system for improved permeation of granisetron.	[41]
2.	GranisetronHCl, isopropylmyris-tate, n-methylpyrrolidone, tween85, ethanol, methanol.	No changes in long term stability and accerlerating stability studies. 12 mo stable at room temperature.	Preparation and the in-vitro evaluation of nanoemulsion system for the transdermal delivery of granisetronHCl.	[42]

Table 7: Bilayer buccal tablet of granisetron

S. No.	Ingredients used	Conclusion	Formulation used	Reference
1.	Granisetron, sodium alginate, HPMC 50cps, carbopol 934p, polyvinylpyrrolidine K-30, polyethylene glyocol4000,ethylcellulose, D-mannitol.	Final formulation having composition SA (47%W/W), CP (3%W/W), PVP (30%W/W) and DM (15%W/W) was found to be promising having in-vitro drug release of 94% in 8h along with bioadhesion strength (4.6g).	Formulation design and evaluation of bilayer buccal tablets of granisetronHCl.	[43]
2.	GranisetronHCl, sodium car boxymethylcellulose, HPMC15cps, carbopol 934p, ethyl cellulose, aspartame, magnesium stearate, D-mannitol.	Final formulation having composition HPMC cps (47% W/W), Carbopol 934p (3%W/W) and mannitol (45%W/W), was found to be promising having in- vitro release of 94% in 8h along with bioadhesion strength (4.3 gm).	Design and evaluation of buccoadhesive bilayer tablets of granisetronHCl.	[44]

Table 8: Transdermal patch of granisetron

S. No.	Ingredients used	Conclusion	Formulation used	Reference
1.	GranisetronHCl, Lutrol F-127, potassium dihydrogen phosphate, sodium hydroxide, silver chloride, silver wire.	It showed that the feasibility of granisetron transdermal patch transport through Lutrol F-127 gel by iontophoresis.	Enhanced transdermal delivery of granisetron by using iontophoresis.	[45]
2.	Crystalline granisetronHCl, amorphous granisetron patch, placebo patch, silicon low background sample holder.	Simpler and better technique for the crystallinity determination in transdermal patch.	An approach to determine crystalline content of granisetron in transdermal patches using X-ray diffraction technique.	[46]

Therapeutic use

The granisetron serves as an important therapeutic candidate in treating emesis during chemotherapy treatment. Now a day's

various combinations of granisetron with other drugs and granisetron alone are used in chemotherapy for the treatment of emesis. Table: 9 indicate the usage of granisetron in various clinical studies thus conforming its efficacy and safety status.

Table 9: Clinical studies (Comparetive studies)	
---	--

S. No.	Studies	Reference	Result	Conclusion
1.	Efficacy and tolerability of transdermal granisetron for the control of chemotherapy-induced nausea and vomiting associated with moderately and highly emetogenic multi-day chemotherapy: a randomized, double blind, phase III study.	[47]	In granisetron transdermal delivery system group headache is 0.3% which is lower as compared to oral granisetron group i.e. 2.5% but constipation was more frequent in GTDS i.e. 6.6% as compared to oral granisetron i.e. 3.1%.	The study indicates the GTDS (Granisetron transdermal delivery system) is well tolerated in cancer patients.
2.	Granisetron versus Dexamethasone in prophylaxis of nausea and vomiting after laparoscopic cholecystectomy.	[48]	In the first 24 h after operation, 7 patients in the dexamethasone group had nausea and 3 patients having vomiting. In granisetron group 5 patients had nausea and 2 have vomiting and there is no difference between the groups. In one case dexamethasone shows headache and in granisetron group one case show vertigo and one case headache. No difference in 2 groups in the regard (Pvalue: 0.614).	Concludes that dexamethasone and granisetron injection before anesthesia induction has same effects on nausea and vomiting prophylaxis after laparoscopic Cholecystectomy.
3.	Efficacy of generic granisetron vs. kytril for PONV in major gynecological operations: a randomized, double blind clinical trial.	[49]	In generic granisetron group there were 47 and 13 patients and in kytril group 45 and 15 patients experience hysterectomy and myomectomy. No dissimilarity between two treatment groups concerning postoperative nausea and vomiting control during 18 h after drugs administration.	Generic granisetron utilize efficacy against PONV after gynaeological surgeries which is non-inferior to that of kytril.
4.	Pre-treatment with intravenous granisetron to alleviate pain on propofol injection: a double blind, randomized, controlled trial.	[50]	24 patients (60%) objection on pain in the group pre-treated with normal saline as compared with six (15%) in the group pre-treated with granisetron. Pain was less in the granisetron group (p <0.05). Seriousness of pain was also low in the granisetron group when related to the placebo group (2.5% vs.37.5%).	They conclude that pre- treatment with granisetron along with venous occlusion for 1 min for prevention of propofol- induced pain was highly successful.
5.	Ondansetron verus granisetron in the prevention of chemotherapy induced nausea and vomiting in children with acute lymphoblastic leukemia.	[51]	About 36.7% patients had experience of nausea on day four of chemotherapy in ondansetron and it was only 3.3% in granisetron group due to adverse effects of antiemetic drug itself(p=0.001). Extremely experience of vomiting were found on the second day in ondansetron group 33.3% and in granisetron group 3.3%(P=0.003). Though adverse effects like headache, constipation, abdominal pain and loose motions were reported in both group of children but there were less in children who receive granisetron. On the second day of therapy nausea and vomiting wax maximum in ondansetron and less in granisetron. On day 4 results was significant.	Conclude that to prevent acute and delayed chemotherapy induced and vomiting in children with all, oral granisetron is more effective as well as well tolerated with less adverse effect as compared to ondansetron.

CONCLUSION

Nausea and vomiting in cancer chemotherapy are highly distressing side effects in cancer treatment, development of effective combination chemotherapy regimens capable of prolonging lives and curing patients could not proceed until the parallel development of highly effective, innovative CINV prevention and treatment strategies.

Among different treatment approaches the novel vesicular and particulate carrier are seems to be of great importance and have huge applications because of their targeting potential to act at molecular basis and better control over tumor, restricted biodistribution of drug as compare to conventional formulation. In various clinical studies 5-HT₃ antagonist more specifically granisetron and ondansetron was found to be of great importance in management of CINV but common adverse events include mild headache, transient elevation of hepatic aminotransferase levels, and constipation, however older 5-HT3 antagonists (e. g., granisetron, ondansetron), have shown lower efficacy for the delayed type of chemotherapy-induced nausea and vomiting compared with the acute type, other category of drug neurokinin-1 (NK1) receptor antagonists aprepitant and fosaprepitant, and glucocorticoids were also seems to effective for CINV.

CONFLICT OF INTERESTS

Declared None

REFERNCES

- Tintinalli JE, Stapczynski JS, Ma OJ, Cline D, Cydulka R, Meckler G. Tintinalli's emergency medicine: a comprehensive study guide: McGraw-Hill Medical; 2011.
- 2. Aitkenhead AR, Moppett I, Thompson J. Smith and Aitkenhead's Textbook of Anaesthesia: Elsevier Health Sciences; 2013.
- 3. Biswas B, Rudra A. Comparison of granisetron and granisetron plus dexamethasone for the prevention of postoperative nausea and vomiting after laparoscopic cholecystectomy. Acta Anaesthesiol Scand 2003;47:79-83.
- 4. George E, Hornuss C, Apfel CC. Neurokinin-1 and novel serotonin antagonists for postoperative and postdischarge nausea and vomiting. Curr Opin Anaesthesiol 2010;23:714-21.
- Morrow GR, Dobkin PL. Anticipatory nausea and vomiting in cancer patients undergoing chemotherapy treatment: Prevalence, etiology, and behavioral interventions. Clin Psychol Rev 1988;8:517-56.
- 6. Joensuu H. Systemic chemotherapy for cancer: from weapon to treatment. Lancet Oncol 2008;9:304.
- Bell RM. A review of complementary and alternative medicine practices among cancer survivors. Clin J Oncol Nursing 2010;14:365-70.
- 8. Grunberg SM, Deuson RR, Mavros P, Geling O, Hansen M, Cruciani G, *et al.* Incidence of chemotherapy-induced nausea and emesis after modern antiemetics. Cancer 2004;100:2261-668.
- 9. Jacobsen PB, Die-Trill M, Holland JC, Andrykowski MA, Redd WH, Hakes TB, *et al.* Nonpharmacologic factors in the development of posttreatment nausea with adjuvant chemotherapy for breast cancer. Cancer 1988;61:379-85.
- Sullivan J, Leyden M, Bell R. Decreased cisplatin-induced nausea and vomiting with chronic alcohol ingestion. N Engl J Med 1983;309:796.
- 11. Tonato M, Roila F, Del Favero A. Methodology of antiemetic trials: a review. Ann Oncol 1991;2:107-14.
- 12. Roila F, Tonato M, Basurto C, Bella M, Passalacqua R, Morsia D, *et al.* Antiemetic activity of high doses of metoclopramide combined with methylprednisolone versus metoclopramide alone in cisplatin-treated cancer patients: a randomized double-blind trial of the Italian oncology group for clinical research. J Clin Oncol 1987;5:141-9.
- 13. Cassileth BR, Lusk EJ, Bodenheimer BJ, Farber JM, Jochimsen P, Morrin-Taylor B. Chemotherapeutic toxicity-the relationship between patients' pretreatment expectations and posttreatment results. Am J Clin Oncol 1985;8:419-25.
- 14. Jordan K, Sippel C, Schmoll HJ. Guidelines for antiemetic treatment of chemotherapy-induced nausea and vomiting: past, present, and future recommendations. Oncologist 2007;12:1143-50.
- 15. Bloechl-Daum B, Deuson RR, Mavros P, Hansen M, Herrstedt J. Delayed nausea and vomiting continue to reduce patients' quality of life after highly and moderately emetogenic chemotherapy despite antiemetic treatment. J Clin Oncol 2006;24:4472-8.
- 16. Medhus A, Bondi J, Gaustad P, Husebye E. Low-dose intravenous erythromycin: effects on postprandial and fasting motility of the small bowel. Aliment Pharmacol Ther 2000;14:233-40.

- 17. De Wit R, Aapro M, Blower PR. Is there a pharmacological basis for differences in 5-HT3-receptor antagonist efficacy in refractory patients? Cancer Chemother Pharmacol 2005;56:231-8.
- King FD, Jones BJ, Sanger GJ. 5-Hydroxytryptamine-3 receptor antagonists: CRC Press; 1993.
- Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 1991;254:432-7.
- Wickham R. Best practice management of CINV in oncology patients: II. Antiemetic guidelines and rationale for use. J Supportive Oncol 2010;8(2 Suppl 1):10-5.
- 21. Kast R, Foley K. Cancer chemotherapy and cachexia: mirtazapine and olanzapine are 5-HT3 antagonists with good antinausea effects. Eur J Cancer Care 2007;16:351-4.
- 22. Richman PB, Reischel U, Ostrow A, Irving C, Ritter A, Allegra J, *et al.* Droperidol for acute migraine headache. Am J Emerg Med 1999;17:398-400.
- 23. Hentosh P, Peffley DM. The cladribine conundrum: deciphering the drug's mechanism of action. Expert Opin Drug Metab Toxicol 2010;6:75-81.
- 24. Ashish P, Harsoliya M, Pathan J, Shruti S. A review-Formulation of mouth dissolving tablet. Int J Pharm Clin Sci 2011;1:1-8.
- 25. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26:1261-8.
- Pahwa R, Piplani M, Sharma PC, Kaushik D, Nanda S. Orally disintegrating tablets-friendly to pediatrics and geriatrics. Arch Appl Sci Res 2010;2:35.
- Coughlin P, Mavor A. Arterial consequences of recreational drug use. Eur J Vascular Endovascular Surgery 2006;32:389-96.
- Sharma D, Kumar D, Singh M, Singh G, Rathore M. Fast disintegrating tablets: a new era in novel drug delivery system and new market opportunities. J Drug Delivery Ther 2012;2:74-86.
- Bhowmik D, Chiranjib B, Krishnakanth P, Chandira RM. Fast dissolving tablet: An overview. J Chem Pharm Res 2009;1:163-77.
- Jain BV, Patil R, Wankhede S, Patil D, Barhate S. Development of mouth dissolving tablets of granisetron hydrochloride using three different techniques. Int J Pharm Res Dev 2011;3:23-6.
- Brown D. Orally disintegrating tablets-taste over speed. Drug Delivery Technol 2003;3:58-61.
- 32. Kaur T, Gill B, Kumar S, Gupta G. Mouth dissolving tablets: a novel approach to drug delivery. Int J Curr Pharm Res 2011;3:1-7.
- Allen LV, Popovich NG. Ansel's pharmaceutical dosage forms and drug delivery systems: Lippincott Williams and Wilkins Baltimore; 2005.
- 34. Jass HU, Kohlhepp FU. Effervescent composition. Google Patents; 1974.
- 35. Rowe R. The cracking of film coatings on film-coated tablets—a theoretical approach with practical implications. J Pharm Pharmacol 1981;33:423-6.
- Hede PD, Bach P, Jensen AD. Fluidized-bed coating with sodium sulfate and PVA- TiO2, 1. review and agglomeration regime maps. Ind Eng Chem Res 2009;48:1893-904.
- 37. Tan C, Onsiong M. Pain on injection of propofol. Anaesthesia 1998;53:468-76.
- Ryoo H-K, Park C-W, Chi S-C, Park E-S. Development of propofol-loaded microemulsion systems for parenteral delivery. Arch Pharm Res 2005;28:1400-4.
- 39. Nagendrakumar D, Raju S, Shirsand S, Para M. Design of fast dissolving Granisetron HCl tablets using novel co-processed superdisintegrants. J Biosci Tech 2009;1:8-14.
- 40. Bhagawati S, Hiremath S, Sreenivas S. Comparative evaluation of disintegrants by formulating cefixime dispersible tablets. Indian J Pharm Educ 2005;39:194.
- 41. Doh HJ, Jung Y, Balakrishnan P, Cho HJ, Kim DD. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids Surf B 2013;101:475-80.
- 42. Zheng W-w, Zhao L, Wei Y-m, Ye Y, Xiao S-h. Preparation and the *in vitro* evaluation of nanoemulsion system for the

transdermal delivery of granisetron hydrochloride. Chem Pharm Bull 2010;58:1015-9.

- 43. PV S, Kinagi M, Biradar S, Gada S, Shilpa H. Formulation design and evaluation of bilayer buccal tablets of granisetron hydrochloride. Ind J Pharm Edu Res. 2011;45:242.
- 44. Satishbabu B, Srinivasan B. Preparation and evaluation of buccoadhesive films of atenolol. Indian J Pharm Sci 2008;70:175-9.
- 45. Panzade P, Heda A, Puranik P, Patni M, Mogal V. Enhanced transdermal delivery of granisetron by using iontophoresis. Iranian J Pharm Res. 2012;11:503.
- Pavan K, Ch P. An approach to determine crystalline content of Granisetron in transdermal patches using X-ray diffraction technique. Int J Drug Delivery 2013;4:492-7.
- 47. Einhorn LH, Grunberg SM, Rapoport B, Rittenberg C, Feyer P. Antiemetic therapy for multiple-day chemotherapy and additional topics consisting of rescue antiemetics and highdose chemotherapy with stem cell transplant: review and consensus statement. Supportive Care Cancer 2011;19:1-4.

- Fukami Y, Terasaki M, Okamoto Y, Sakaguchi K, Murata T, Ohkubo M, et al. Efficacy of preoperative dexamethasone in patients with laparoscopic cholecystectomy: a prospective randomized double-blind study. J Hepato-Biliary-Pancreatic Surgery 2009;16:367-71.
- 49. Bhattacharjee DP, Dawn S, Nayak S, Roy PR, Acharya A, Dey R. A comparative study between palonosetron and granisetron to prevent postoperative nausea and vomiting after laparoscopic cholecystectomy. J Anaesthesiol Clin Pharmacol 2010;26:480.
- 50. Hwang J, Park H, Lim Y, Do S, Lee S, Jeon Y. Preventing pain on injection of propofol: a comparison between peripheral ketamine pre-treatment and ketamine added to propofol. Anaesth Pain Intensive Care 2009;37:584-7.
- 51. Siddique R, Hafiz M, Rokeya B, Jamal C, Islam A. Ondansetron versus granisetron in the prevention of chemotherapy induced nausea and vomiting in children with acute lymphoblastic leukemia. Mymensingh Med J. 2011;20:680-8.