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ABSTRACT

The performance evaluation of various passive underwater target tracking algorithms such as pseudo-linear estimator, maximum likelihood 
estimator, modified gain bearings-only extended Kalman filter (MGBEKF), unscented Kalman filter, parameterized MGBEKF (PMGBEKF), and particle 
filter coupled with MGBEKF using bearings-only measurements is carried out with various scenarios in Monte Carlo simulation. The performance of 
PMGBEKF is found to be better than all estimates.
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INTRODUCTION

Surveillance is the most important feature of maritime warfare and 
is undertaken by active as well as passive sensors. Active methods 
of surveillance require acoustic transmissions to be made by the 
surveillance platform and hence susceptible to interception by others. 
Hence, in certain situations, it becomes necessary to maintain silence 
on active mode. In the ocean environment, two-dimensional bearings-
only target motion analysis (TMA) is generally used. An ownship 
monitors noisy sonar bearings from a radiating target and finds out 
target motion parameters (TMP)  -  viz., range, course, bearing, and 
speed of the target. The basic assumptions are that the target moves at 
constant velocity most of the time. The ownship motion is unrestricted. 
The target and ownship are assumed to be in the same horizontal 
plane.  The problem is inherently nonlinear as the measurement is 
nonlinear. The determination of the trajectory of a target solely from 
bearing measurements is called bearings-only tracking (BOT). The BOT 
area had been widely investigated and numerous solutions for this 
problem had been proposed [1]. In underwater, the ownship can be ship 
or submarine and the target will be submarine, ship or torpedo. Hence, 
there will be six types of ownship and target scenarios. It is observed 
pseudo-linear estimator (PLE), maximum likelihood estimator (MLE), 
modified polar coordinate extended Kalman filter (MPEKF), modified 
gain bearings-only extended Kalman filter (MGBEKF), unscented 
Kalman filter (UKF), parameterized MGBEKF (PMGBEKF), and particle 
Filter coupled with MGBEKF (PFMGBEKF) are successful contributions 
to this field. These days, very high processor based hardware is 
available. Hence, the algorithm optimization with respect to kilo lines of 
code, number of iterations, execution time, etc., is of minor importance. 
In practical applications, accuracy in the estimated solution and the 
number of samples required for convergence of the solution are of 
prime importance for the evaluation of the algorithms. In this paper, 
the required accuracy in the estimated solution is assumed. Hence, the 
purpose of this paper is performance evaluation of PLE, MLE, MPEKF, 
MGBEKF, UKF, PMGBEKF, and PFMGBEKF algorithms with respect to 
accurate convergence of the solution. The algorithms are evaluated with 
the scenarios shown in Table 1. In scenarios 1, 2 and 3, the ownship is 
assumed to be submarine and target is assumed to be submarine, ship 
and torpedo, respectively. Similarly in scenarios 4, 5 and 6, the ownship 
is assumed to be ship and target is assumed to be submarine, ship and 
torpedo, respectively. The target range and speeds are chosen as per 
the scenario. It means that for scenario 1, a submarine and submarine 
encounter, ownship speed is considered as 3.09 m/s and target speed 
as 4.12 m/s and initial range as 5 km. In all scenarios, the RMS error in 

bearing is assumed to be 0.33°. The algorithms are also evaluated to high 
bearing error (i.e. lower SNR) of the magnitude of 0.66° RMS, as worst 
condition. In underwater, sometimes outliers in the measurements are 
inevitable. Hence, it is assumed that 5% of the measurements are with 
5  times of the error that is 1.65° (5*0.33°) RMS. All these algorithms 
are evaluated against outliers also. The algorithms are realized through 
software, and the results in Monte Carlo simulation are presented.

A brief discussion of these algorithms is carried out in section 2. The 
results are presented and the performance evaluation of the algorithms 
against acceptance criteria is carried out in section 3. Finally, the paper 
is concluded in section 4.

BRIEF DISCUSSION ON PASSIVE TARGET TRACKING ALGORITHMS

PLE
There is a development of PLE using an EKF [1] for passive target 
tracking using bearings-only measurements. Although this offers biased 
estimate at long ranges in certain scenarios, it has a practical advantage 
as it never diverges. The sophisticated estimators like MLE, require 
initial state estimates. Instead of choosing some arbitrary values, the 
PLE can be used to generate initial estimates for these estimators. Here, 
PLE is presented such that it does not require any initial estimate at 
all and at the same time offers sequential processing and flexibility to 
adopt the variance of each measurement.

The relevant equations of PLE in batch processing were presented [1]. 
The solution of the gradient equation was obtained by a Gauss-
Newton iteration scheme. In Rao’s study [2], PLE in batch processing 
was converted to sequential processing to suit real-time underwater 
applications such as passive target tracking by modifying the 
equations. All the elements of the covariance matrix were represented 
recursively in terms of the measurement equation. These were known 
as recursive sums and are maintained throughout the algorithm. 
This approach avoids computational complexity by computing only 
the incremental values for every new bearing measurement. These 
incremental values were used to update the recursive sums in the 
covariance matrix. Only a few recursive sums were updated on the 
arrival of a new bearing measurement. This method does not increase 
the computational burden even with an additional number of samples. 
Detailed mathematical modeling with simulation and results of PLE 
are available in Rao’s study [2]. In this paper, PLE is used to compare its 
performance with those other standard estimators for passive target 
tracking application.

Review Article
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MLE
MLE using batch processing for passive target tracking was 
developed [1]. In Rao’s study [3], MLE in batch processing was converted 
into sequential processing. The procedure used for conversion was 
similar to that of PLE.

MLE requires an initial estimate to estimate TMP. Instead of assuming 
some arbitrary values for initialization, PLE’s outputs are utilized 
as initial estimates for MLE. As PLE generates bias in the estimates, 
its use is restricted to generate a reasonably accurate estimate 
for initialization of MLE. In this paper, MLE is used to compare its 
performance with those other standard estimators for passive target 
tracking application.

MPEKF
In MPEKF [4], the pertinent equations of state and measurement 
were formulated in modified polar coordinates, while the algorithm 
itself was configured as an EKF. This coordinate system is shown to be 
well suited for bearings-only TMA because it automatically decouples 
observable and unobservable components of the estimated state 
vector. Such decoupling prevents covariance matrix ill-conditioning, 
which is the primary cause of filter instability. Further investigation 
also confirmed that the resulting state estimates were asymptotically 
unbiased, as required. It calculates the smoothed bearing and bearing 
rate, which are very useful for target tracking application. The modified 
polar state vector was comprised the following four components-
bearing, bearing rate, range rate divided by range and the reciprocal 
of range. In theory, the first three components can be determined 
from single-sensor bearing data without an ownship manoeuvre; the 
fourth component, however, should remain unobservable until this 
manoeuvre requirement is satisfied. These theoretical properties 
are implicitly preserved in the modified polar filter formulation. In 
essence, the state estimates are constrained to behave as predicted by 
theory, even in the presence of errors in measurements. Under similar 
conditions, standard Cartesian filters often experience covariance 
matrix ill-conditioning which precipitates false observability. In this 
paper, MPEKF is used to compare its performance with those other 
standard estimators for passive target tracking application.

Modified gain extended Kalman filter (MGEKF)
The divergence in EKF [5] was eliminated by modifying the gain 
function, and this algorithm is named as MGEKF [6]. This algorithm is 
another successful contribution to this field. The essential idea behind 
MGEKF is that the nonlinearities be “modifiable.” This algorithm has 
some similarities with the pseudo measurement function but not the 
same. In pseudo measurement filter, the gain is a function of past 
and present measurements. It is to be noted that MGEKF is based on 
EKF algorithm, and the gain of the MGEKF is a function of only past 
measurements. By eliminating the direct correlation of the gain and 
measurement noise process in the estimates of MGEKF, the bias in the 
estimation is avoided. A simplified version of the modified gain function 
is available in Galkowski and Islam’s study [7]. This version is useful 
for air applications, where elevation and bearing measurements are 
available. In underwater, bearings-only measurements are available. 
MGEKF is further modified for underwater applications, and the 
algorithm is named as MGBEKF [8,9]. In this paper, its performance 
is analyzed for ocean environment in which the vehicles move at low 

speeds and the measurements are corrupted with high noise. In this 
paper, MGBEKF is used to compare its performance with those other 
standard estimators for passive target tracking application.

UKF
The traditional Kalman filter is optimal when the model is linear. 
Unfortunately, many of the state estimation problems like tracking 
of the target using bearings-only information are nonlinear, thereby 
limiting the practical usefulness of the Kalman filter and EKF. 
Hence, the feasibility of a novel transformation, known as unscented 
transformation, which is designed to propagate information in the form 
of mean vector and covariance matrix through a nonlinear process, is 
explored for underwater applications. The unscented transformation 
is coupled with certain parts of the classical Kalman filter. It is easier 
to implement and use the same order of calculations  [10]. UKF can 
be treated as an alternative to MGBEKF. But still, the basic constraint 
is that the probability density function of noise in the measurements 
is to be Gaussian for optimum results. UKF can take up nonlinearity 
but not non-Gaussian noise in the measurements. In a study by Rao 
and Rao [11,12], detailed mathematical modeling with application to 
BOT is available. In this paper, UKF is used to compare its performance 
with those other standard estimators for passive target tracking 
application.

Particle filter
Particle filter [13-16] is the new generation advanced filter, which is 
useful for nonlinear and non-Gaussian applications. Particle filter uses 
a set of weighted state samples, called particles, to approximate the 
posterior probability distribution in a Bayesian setup. At any point of 
time, the set of particles can be used to approximate the PDF of the 
state. As the number of particles increase to infinity, the approximation 
approaches the true PDF. They provide nearly optimal state estimates 
in the case of nonlinear and non-Gaussian systems, unlike Kalman 
filter based approaches. Because particle filter does not approximate 
nonlinearities or non-Gaussian noise in the system and use a large 
number of particles, they tend to be computationally complex. However, 
with the currently available advanced microprocessors, the computation 
can be easily managed. The basic idea of the particle filter is as follows. 
It was invented to numerically implement the Bayesian estimator. The 
main idea is intuitive and straight forward. At the beginning of the 
estimation problem, N state vectors are randomly generated based on 
the initial PDF p(XS(0)) (which is assumed to be known). These state 
vectors are called particles and are denoted as XS(k,k) k=1, 2 …, N. At 
each time step, the particles are propagated to the next time step using 
the process equation.

XS(k+1,k)=f(Xs(k,k), ω(k+1)), k=1, 2,…, N� (1)

Where plant noise, ω is randomly generated on the basis of its known 
PDF. After receiving the measurement at time k, the conditional 
relative likelihood of each particle, XS(k+1,k) is computed. That is, the 
PDF p(Z(k),Xs(k+1,k)) is evaluated. This can be done if the nonlinear 
measurement equation and the PDF of the measurement noise are 
known. For example, if an m-dimensional measurement equation is 
given as Z(k)=h(Xs(k))+γB(k), and then a relative likelihood q(k) can be 
computed as follows [15].

Table 1: Scenarios chosen for evaluation of algorithms

Encounter Scenario Initial 
range (m)

Initial 
bearing (deg)

Target 
speed (m/s)

Ownship 
speed (m/s)

Target 
course (deg)

Submarine to Submarine 1 5000 0 4.12 3.09 135
Submarine to Ship 2 20000 0 12.36 3.09 135
Submarine to Torpedo 3 18000 0 20.6 3.09 135
Ship to Ship 4 20000 0 12.36 12.36 135
Ship to Submarine 5 5000 0 3.09 12.36 135
Ship to Torpedo 6 20000 0 20.6 12.36 135
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The ~ symbol in the above equation means that the probability is not 
really given by the expression on the right side, but the probability is 
directly proportional to the right side. Hence, if this equation is used 
for all the particles, Xs(k+1,k) (k=1, 2,…, N), then the relative likelihoods 
that the state is equal to each particle will be correct. Now the relative 
likelihoods obtained are normalized as follows:

q k q k

q i
i

N( )
( )

( )

=

=
∑
1 � (3)

Then, the particles using the computed likelihoods are resampled. This 
means a new set of particles are randomly generated on the basis of the 
relative likelihoods q(k).

2.6.1 PARTICLE FILTER COMBINED WITH OTHER FILTERS

One approach that has been proposed for improving particle filtering is 
to combine it with another filter such as the EKF, UKF, or MGBEKF [15]. 
In this approach, each particle is updated at the measurement time 
using the EKF, UKF, or MGBEKF and then resampling (if required) is 
performed using the measurement. This is like running a bank of 
Kalman filters (one for each particle) initialized with randomly chosen 
state vectors and then adding a resampling step (if required) after each 
measurement. After Xs(k+1,k) is obtained, it can be refined using the 
EKF, UKF, or MGBEKF measurement-update equations. In this thesis 
particle filter is combined with the MGBEKF and the algorithm is 
named as PFMGBEKF. Xs(k+1,k) is updated to Xs(k+1,k+1) according to 
the following MGBEKF equations [15].
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Where G(k+1) is Kalman gain, P(k+1,k) is a priori estimation error 
covariance for the ith particle and g(.) is modified gain function. g(.) is 
given by
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Since true bearing is not available in practice, it is replaced by the 
measured bearing to compute the function g(.).

Resampling
In every update of PFMGBEKF, it is monitored to decide whether 
resampling of particles in respect of target state vector and its 
covariance matrix is required or not. Resampling is required when the 
effective sample size, Neff<N/3 [15].
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Whenever resampling is required, the following procedure based on 
weight of particles is adopted. In this method, weights are sorted in 
descending order. The corresponding original indexes before sorting are 
remembered. Then, replication of particles (both the state and covariance 
matrices) is carried out in proportion to the weight of particles starting 
with the particle with maximum weightage. This procedure is repeated 
for the particle with the next maximum weightage. This process is 
continued till all the particle positions are filled up. This method is close 
to the method suggested in Simon’s study [15].

PMGBEKF
The work presented in Ristick et  al.’s study [14] is found interesting. 
Ristick et  al.’s study [14] divided the range interval of interest into a 
number of sub-intervals following geometric progression and each sub-
interval was dealt with an independent Kalman filter. They suggested 
that this method can be extended to course and speed parameterization, 
if prior knowledge of target course and speed respectively are 
vague. Parameterization in initialization reduces the dependence of 
convergence of the solution on initialization. In underwater scenario, 
prior knowledge of target range, course and speed is vague.

In this situation, obtaining fast convergence has an important role and 
this is achieved using parameterization. Inclusion of range, course and 
speed parameterization is proposed for MGBEKF to track a torpedo 
using bearings-only measurements. This algorithm is named as 
PMGBEKF.

Let the range, course and speed intervals of interest be (maximum-
range, minimum-range), (maximum-course, minimum-course) and 
(maximum-speed, minimum-speed), respectively. The initial weights of 
each MGBEKF are set to 1/N, subsequently, the weight of filter i at time 
k is given by






i
i

j
j

Nk
p B k i k

p B k j k
( ) = ( )( ) −( )

( )( ) −( )
=∑

,

,

1

1
1 � (7)

Where, p(B(k),i) is the likelihood of measurement B(k). Assuming 
Gaussian statistics, the likelihood p(B(k),i) can be computed as:
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where ( )−ˆ , 1iB k k is the predicted angle at k for filter i and σiinv
2 is the 

innovation variance for filter i given by

( ) ( ) ( )σ = − +σ2 2ˆ ˆ, 1i i i iT
inv BH k P k k H k

� (9)

where ( )ˆ iH k is the Jacobian of nonlinear measurement function and 
Pi(k,k−1) is the predicted covariance for filter i. Let the state estimate 
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of filter i be ( )ˆ ,iX k k and its associated covariance be Pi(k,k), then 
the combined estimate of PMGBEKF is computed using the Gaussian 
mixture formulas [14] as follows.
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SIMULATION AND RESULTS

Simulator is developed to create target, ownship and measurements. It 
is assumed that the ownship is at the origin and bearing is considered 
with respect to Y-axis, 0-360° and clockwise positive. Target and 
ownship movements are updated at every second. All one second 
samples are corrupted by additive zero mean Gaussian noise. It is 
assumed that the bearing measurements are available continuously at 
every second. The ownship is assumed to be carrying out S-manoeuver 
with a turning rate of 1°/s. The ownship moves initially at a course 
of 90° for a period of 2  min, and then, it changes to course 270°. At 
9th, 16th, and 23rd min, the ownship changes its course from 270-90°, 
90-270° and 270-90°, respectively, as shown in Fig. 1. The experiment 
is conducted for 1000 s.

Initialization of state vector and its covariance matrix
In PLE, algorithm initialization of target state vector is not required. In 
MLE algorithm PLE’s outputs obtained after ownship first manoeuvre 
is used for initialization of MLE. Let the sonar range of the day be 
20 km that means sonar can detect the ship at the range of maximum 
20 km on that particular day. Using this information in MGBEKF, UKF 

and PFMGBEKF, target state vector position components are initialized 
with 20  km. As the speed of the target is not available, the velocity 
components of target are each assumed as 10 m/s. (It is known that the 
submarine target moves at around 3 m/s and torpedo moves at around 
17 m/s. As the same algorithm is to be used to track ship, submarine and 
torpedoes, average speed of the underwater vehicles is considered). In 
PF, it is observed that around 10,000 particles are necessary to obtain 
good results. When PF is combined with MGBEKF, 1000 particles are 
sufficient to get the required accuracy in the solution. (It is also seen 
that by increasing the particles to 10,000 there is no improvement in 
accuracy of the solution). In PMGBEKF, the range, course and speed sets 
contain 3-20 km, 0-359° and 3-20 m/s, respectively. The elements of 
range, course and speed sets follow geometric progression. In MPEKF 
algorithm, the target state vector in modified polar coordinates is 
initialized using the above said position and velocity components.

It is assumed that initialized target state vector follows uniform density 
function. Accordingly, the covariance matrix of initial target state vector 
components is derived for MGBEKF, UKF, and PFMGBEKF. In the case of 
MPEKF, it is assumed that the variance of course and speed are 0.5° and 
0.1 m/s, respectively, and the covariance matrix is derived as given in 
Aidala and Hammel’s study [4].

Performance evaluation of the algorithms
It is assumed that the TMP are said to be converged when the error in 
the range, course and speed estimates are less than or equal to 10% of 
the actual range, 5° of the actual course and 20% of the actual speed, 
respectively. As mentioned earlier, in PFMGBEKF-1000 KF’s are used. In 
PMGBEKF range, course and speed sets with 5 elements (in geometric 
progression) each are used and so 125 KF’s work in parallel. Although 
it takes more execution time when compared to with that of PLE, 
MLE, MGBEKF, UKF and less execution time with that of PFMGBEKF, 
execution time is not considered to select as right algorithm for 
passive target tracking as mentioned earlier. The convergence time 
to obtain the range, course and speed estimates together with the 
required accuracies using each algorithm in each scenario is shown in 
Table  2. From the results obtained, it is evident PMGBEKF estimates 
the solution faster when compared to that of other estimators. For 
robustness, PMGBEKF is tested for the following cases namely-lower 
SNR and outliers. For the purpose of presentation of the results, the 
bearing error is increased from 0.33° to 0.66° RMS in scenario 1 and the 
results obtained are shown in Table 2. It is assumed that 5% outliers 
in underwater do exist and so 5% of the measurements are randomly 
chosen with 1.65° (5*0.33) RMS error. Again Scenario 1 is chosen with 
outliers and the results obtained are shown in Table 2.

Detailed analysis
Scenario 1 is chosen for the presentation of the results in detail. 
The convergence time for range, course and speed estimates with 
0.35° RMS, 0.66° RMS and 5% outliers with 1.65° RMS error in bearing 
measurements is shown in Table 3. The estimates of range, course, and 
speed when the error is 0.33° RMS in bearing measurements are plotted 
with respect to time in Figs. 2a and b, 3a and b, 4a and b, respectively.Fig. 1: Ownship in S-manoeuvre

Table 2: Convergence time of various algorithms in seconds

Scenario RMS error in bearing, deg PLE MLE MPEKF MGBEKF UKF PFMGBEKF PMGBEKF
1 0.33 477 459 465 461 462 408 362

0.66 604 470 494 512 510 458 430
5% outliers with 1.65 574 483 478 474 477 429 385

2 0.33 725 718 580 582 585 519 385
3 0.33 610 601 305 301 300 248 280
4 0.33 548 520 515 520 525 390 380
5 0.33 358 348 390 400 405 412 300
6 0.33 431 417 420 411 415 450 360
PLE: Pseudo linear estimator, MLE: Maximum likelihood estimator, MPEKF: Modified polar coordinate extended Kalman filter, MGBEKF: Modified polar 
coordinate extended Kalman filter, UKF: Unscented Kalman filter, PFMGBEKF: Particle filter coupled with modified gain bearings‑only extended Kalman filter, 
PMGBEKF: Parameterized modified gain bearings‑only extended Kalman filter
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Table 3: Convergence time in seconds for range, course and speed estimates with scenario

RMS error in bearing, deg Target parameters PLE MLE MPEKF MGBEKF UKF PFMGBEKF PMGBEKF
0.33 Range 242 238 465 309 311 300 245

Course 477 459 431 461 462 408 362
Speed 344 315 428 411 409 400 301

0.66 Range 272 279 494 399 405 401 256
Course 604 470 452 510 512 458 430
Speed 584 323 441 430 427 410 315

5% outliers with 1.65 Range 263 266 478 319 325 360 246
Course 574 483 433 474 477 429 385
Speed 385 326 431 418 414 403 306

PLE: Pseudo linear estimator, MLE: Maximum likelihood estimator, MPEKF: Modified polar coordinate extended Kalman filter, MGBEKF: Modified polar coordinate 
extended Kalman filter, UKF: Unscented Kalman filter, PFMGBEKF: Particle filter coupled with modified gain bearings‑only extended Kalman filter, PMGBEKF: 
Parameterized modified gain bearings‑only extended Kalman filter

Fig. 2: (a) Estimated ranges of pseudo linear estimator, maximum likelihood estimator and modified polar coordinate extended Kalman 
filter algorithms. (b) Estimated ranges of modified polar coordinate extended Kalman filter, unscented Kalman filter, particle filter 

coupled with modified gain bearings-only extended Kalman filter and parameterized modified gain bearings-only extended Kalman filter 
algorithms

a b

Fig. 3: (a) Estimated courses of pseudo linear estimator, maximum likelihood estimator and modified polar coordinate extended Kalman 
filter algorithms. (b) Estimated courses of modified polar coordinate extended Kalman filter, unscented Kalman filter, particle filter 

coupled with modified gain bearings-only extended Kalman filter and parameterized modified gain bearings-only extended Kalman filter 
algorithms

a b

Fig. 4: (a) Estimated speeds of pseudo linear estimator, maximum likelihood estimator and modified polar coordinate extended Kalman 
filter algorithms. (b) Estimated courses of modified polar coordinate extended Kalman filter, unscented Kalman filter, particle filter coupled 
with modified gain bearings-only extended Kalman filter and parameterized modified gain bearings-only extended Kalman filter algorithms

a b
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From Tables 2 and 3, it is clear that MLE is better than PLE as expected. 
In fact, after observability of the process, the PLE outputs are used to 
initialize MLE target state vector. The performance of MGBEKF and UKF 
is almost same and it is observed that MGBEKF generates solution faster 
with few samples when compared to that of UKF. A similar statement is 
also reported in Rao’s study [17]. The performance of MPEKF is better 
when compared to that of MLE. It is difficult to say which is better when 
compared with MGBEKF/UKF. The performance of PFMGBEKF is in 
between to that of UKF and MGBEKF. Undoubtedly PMGBEKF generates 
the solution faster. In PMGBEKF solution converges at around 330±50 s 
for all types of scenarios because of parameterization in target state 
vector.

SUMMARY AND CONCLUSION

In underwater, the ownship can be ship or submarine and the target 
will be submarine, ship or torpedo. Hence, there will be six types of 
ownship and target scenarios. In this chapter, six scenarios as shown 
in Table  1 are chosen covering the above said types. Various passive 
target tracking algorithms as shown in Table  2 are considered for 
the comparative study of performance evaluation of algorithms with 
respect to convergence of the solution. For robustness, the algorithms 
are tested against at low SNR and with outliers. Simulation is carried 
out and the results are presented in Table  2. It is observed that 
PMGBEKF generates the solution faster when compared to that of other 
estimators.
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