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ABSTRACT

Objective: The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic 
fluid through a rotating channel filled with saturated porous medium and nonuniform walls temperature has been discussed.

Methods: Supposed that the fluid has minor electrical conductivity and the electromagnetic power taken as small. The set of equations is solved by 
perturbation technique.

Results: The flow governed by the nondimensional parameters, α is the viscoelastic parameter, R is the radiation parameter with fixed values of Gr 
the Grashoff number, and Pe Peclet parameter. The expressions for velocity, temperature, and species concentration fields are obtained. The effects of 
numerous physical parameters on the above flow quantities are studied with the help of graphs.

Conclusions: The magnitude of the velocity component u experiences retardation and the behaviors of the velocity component v remain the same 
with the increasing values of the Hartmann number. The magnitude of the temperature increases with increasing Re, D,α, R, E, and experiences 
retardation with increasing the magnetic field parameter. Due to brevity, more content will not be presented.
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INTRODUCTION

Heat transfer in porous media has received considerable attention and 
has been the field of a number of investigations during the last two 
decade. The need for fundamental studies in porous media heat transfer 
stems from the fact that a better understanding of a host of thermal 
engineering applications, in which porous materials are present is 
required. Some of the examples of thermal engineering disciplines 
which stand to benefit from a better understanding of heat and fluid 
flow processes through porous media are geothermal systems, thermal 
insulations, grain storage, solid matrix heat exchangers, oil extraction, 
and manufacturing numerous products in the chemical industry. The 
application of electromagnetic fields in controlling the heat transfer as in 
aerodynamic heating leads to the study of magnetohydrodynamic heat 
transfer. This magnetohydrodynamics (MHD) heat transfer has gained 
significance owing to recent advancement of space technology. The MHD 
heat transfer can be divided into two parts. One contains problems, 
in which the heating is incidental by-product of electromagnetic 
fields as in MHD generators and pumps, etc., and the second consists 
of problems, in which the primary use of electromagnetic fields is to 
control the heat transfer. Heat transfer in channels partially filled 
with porous media has gained considerable attention in recent years 
because of its various applications in contemporary technology. These 
applications include porous journal bearing, blood flow in lungs or 
in arteries, nuclear reactors, porous flat plate collectors, packed bed 
thermal storage solidification of concentrated alloys, fibrous and 
granular insulation, grain storage and drying, paper drying, and food 
storage. Besides, the use of porous subtracts to improve heat transfer 
in channels, which is considered as porous layers, finds applications in 
heat exchangers, electronic cooling, heat pipes, filtration and chemical 
reactors, etc. In these applications, engineers avoid filling entire channel 
with a solid matrix to reduce the pressure drop. The flow between 
parallel plates is a classical problem that has important applications 
in magneto hydrodynamic power generators and pumps, accelerators, 
aerodynamic heating, electrostatic precipitation, polymer technology, 
petroleum industry, purification of crude oil, and fluid droplets and 
sprays. The stream of an electrically directing liquid has essential 

applications in numerous branches of designing science. A  review of 
MHD studies in the mechanical fields can be found in Moreau [1]. The 
stream of liquids through permeable media is a critical subject due to 
the recuperation of raw petroleum from the pores of the store rocks; for 
this situation, Darcy’s law speaks to the gross impact. Raptis et al. [2] 
have explained the hydro attractive free convection course through a 
permeable medium between two parallel plates. Aldoss et al. [3] have 
discussed on blended convection stream from a vertical plate inserted 
in a permeable medium within sight of an attractive field. Makinde and 
Mhone [4] have considered heat transfer to MHD oscillatory stream in 
a channel loaded with the permeable medium. The outcomes are great 
concurrence with [4]. The consolidated impact of a transverse attractive 
field and radiative heat transferon insecure stream of a leading 
optically thin viscoelastic liquid through a pivoting channel loaded with 
immersed permeable medium and nonuniform dividers temperature 
has been examined. The scientific arrangements are acquired through 
annoyance system. The constitutive condition for the incompressible 
second request liquid is of the structure.

σ=pI+µ1A1+µ2A2+µ3(A1)2� (1)

Where, σ is the stress tensor, p is the hydrostatic pressure, I is the unit 
tensor, and An (n=1, 2) are the kinematic Rivlin-Ericksen tensors, µ1, µ2, 
and µ3 are the material coefficients describing viscosity, elasticity, and 
cross-viscosity, respectively.

The material coefficients µ1, µ2, and µ3 have taken constants with µ1 
and µ3 as positive and µ2 as negative [5]. The Equation 1 was derived 
by Coleman and Noll [6] from that of the simple fluids by assuming 
that stress is more sensitive to the recent deformation than to the 
deformation that occurred in the distant past.

Mathematical formulation and solution of the problem
Consider the flow of a conducting optically thin fluid in a channel filled 
with saturated porous medium under the influence of an externally 
applied homogeneous magnetic field and radiative heat transfer. It 
is assumed that the fluid has small electrical conductivity and the 
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electromagnetic force produced is very small. The x-axis is taken along 
the center of the channel, and the z-axis is taken normal to it. In the 
initial undisturbed state, both the plates and the fluid rotate with 
the same angular velocity Ω. At t>0, the fluid is driven by a constant 
pressure gradient parallel to the channel walls. Then, assuming a 
Boussinesq incompressible fluid model, the equations governing the 
motion are given by,
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Corresponding boundary conditions:

u=0, v=0, T=Tw

on z=1.� (5)

u=0, v=0, T=T0

on z=0� (6)

It is assumed that the fluid has small electrical conductivity and the 
electromagnetic force produced is very small.

Where, B0(=µeH0) and vi=µi/ρ, (i=1, 2). It is assumed that both walls of 
temperature T0, Tw are high enough to induce radiative heat transfer. 
Following Cogley et al. [7], it is assumed that the fluid is optically thin 
with a relatively low density and the radiative heat flux is given by,
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Combining Equations 2 and 3 and let q=u+iv and ξ=x+iy, we obtain,
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The following nondimensional quantities are introduced:
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Making utilization of nondimensional variables, the dimensionless 
administering conditions together with suitable limit conditions 
(dropping indicators) are,
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With,
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Solving the Equations 9 and 10 for purely oscillatory flow, Let,
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Where, λ is constant and ɷ is the frequency of oscillation.

Substituting the above expressions (13) into the Equations 9 and 10, and 
making use of the corresponding boundary conditions (11) and (12), 
we obtain,
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Subjected to the boundary conditions,

q0=0, θ0=1 on z=1� (16)

q0=0, θ0=0 on z=0� (17)

Where, m M iE S i Re1
2 1 2

2= + + +−   and m R i Pe2
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Equations 14 and 15 are solved.

We obtained the solution for the fluid velocity and temperature as 
follows:
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RESULTS AND DISCUSSION

The stream represented by the nondimensional parameters, α is 
the viscoelastic parameter, and R is the Radiation parameter with 
altered qualities. We have considered the genuine and nonexistent 
parts of the outcomes u and v all through the problem. The velocity 
profiles for the segments against z is plotted in Figs. 1-4, whereas 
Fig. 5 to watch temperature profiles on the viscoelastic impacts and 
Radiation parameters for different arrangements of qualities with 
Pe = 2, t = 0.1, Gr = 2, λ = 1, and ω = 1. It is apparent from (Figs. 1-4) 
that, the velocity profiles are explanatory in nature, and the extent 
of speed u and v increment with the expanding estimations of the 
viscoversatile parameter |α|, radiation parameter R. We watch that 
lower the porousness of the permeable medium lesser the liquid 
pace in the whole liquid district. The resultant speed q improves 
with expanding the parameters Re, D, |α|, R, and encounters 

impediment with expanding the force of the attractive field. It is 
apparent that the temperature profiles display the way of the 
stream on administering parameters. The extent of the temperature 
increments with expanding Re, D, |α|, R, E, and encounters 
hindrance with expanding the attractive field parameter (Hartmann 
number M).

It has additionally been watched that the temperature field is not 
essentially influenced by the viscoelastic parameter. The graphs were 
drawn with Re = 50, M = 2, S = 1, E = 0.01, R = 1.5, α = −0.1.

CONCLUSIONS

The combined effect of a transverse magnetic field and radiative heat 
transfer on unsteady flow of a conducting optically thin viscoelastic 
fluid through a rotating channel filled with saturated porous medium 
and nonuniform walls temperature has been discussed. It is assumed 
that the fluid has small electrical conductivity and the electromagnetic 
force produced is very small. The analytical solutions are obtained for 
the problem making use of perturbation technique.
1.	 The magnitude of velocity u and v increase with the increasing values 

of the viscoelastic parameter α, radiation parameter R.
2.	 The magnitude of the velocity component u experiences retardation 

and the behaviors of the velocity component v remain the same with 
the increasing values of M.

3.	 Lower the permeability of the porous medium lesser the fluid speed 
in the entire fluid region.
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Fig. 1: Velocity profile for u on visco-elastic parameter

Fig. 2: Velocity profile for u on visco-elastic parameter

Fig. 4: Velocity profile for v on Radiation parameter

Fig. 3: Velocity profile for u on Radiation parameter

Fig. 5: Temperature profile for v on visco-elastic parameter
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