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ABSTRACT

Objective: Inclusion of range, course, and speed parameterization is proposed in target state vector of modified gain bearings-only extended Kalman 
filter to obtain fast convergence and to track a stationary/nonstationary target.

Methods: In electronic warfare (EW), electronic support measurement systems, the transmissions made by radar on a target ship are assumed to be 
intercepted by an EW system of ownship.

Results: Time to estimate the target motion parameters with reasonable accuracy is highly dependent on the values used for initialization of target 
state vector components.

Conclusion: The performance of the algorithm is evaluated in simulation, and results are presented for two selected scenarios.

Keywords: Kalman filter, Electronic warfare systems, Simulation, Estimation theory.

INTRODUCTION

Surveillance is the most important facet of maritime warfare and is 
undertaken by active as well as passive sensors. Dynamic strategies 
for reconnaissance require acoustic transmissions to be made by the 
observation stage and consequently powerless to capture attempt by 
others. Subsequently, in certain strategic circumstances, it gets to be 
important to utilize aloof mode. In this paper, it is expected that ownship 
gets the bearing estimations of the objective at whatever point it is in 
transmission mode. An electronic warfare (EW) beneficiary introduced 
on ownship catches the estimations emanated by radar housed on an 
objective boat, which is thought to be stationary or moving at consistent 
speed. EW collector creates bearing estimations of the objective boat. 
The objective is thought to be in the dynamic method of transmission. 
This technique gives quick estimation of orientation of emitter and not 
its reach.

In the sea environment, two-dimensional orientation just target 
movement examination is for the most part taken after. The bearing 
estimations produced by uninvolved sensors are adulterated with 
clamor. The ownship forms these estimations and discovers target 
movement parameters  -  viz., range, course, bearing, and speed of 
the objective. Here, the estimation is nonlinear, making the entire 
procedure nonlinear. For perceptibility of the procedure, ownship 
completes S-move on viewable pathway.

Established least square estimator and Kalman channel cannot be 
specifically connected. The customary Kalman channel is ideal when 
the model is direct. Tragically, a hefty portion of the state estimation 
issues like following of the objective utilizing course just data are 
nonlinear, in this way restricting the down to earth handiness of the 
Kalman filter and extended Kalman filter (EKF). The difference in EKF is 
disposed of by altering the addition function [1], and this calculation is 
named as modified gain bearings-just EKF (MGBEKF). The key thought 
behind MGBEKF is that the nonlinearities “modifiable.” A disentangled 
adaptation of the adjusted addition capacity was made accessible by 
Galkowski and Islam [2]. This calculation was further changed for 
submerged target following applications [3,4], where course just 
estimations are accessible.

As of late, the attainability of a novel change, known as unscented 
change, which is intended to proliferate data as mean vector and 
covariance framework through a nonlinear procedure, is investigated 
for submerged applications. The unscented change is combined with 
specific parts of the traditional Kalman channel. It is simpler to actualize 
and it utilizes the same request of estimations [5,6]. Unscented Kalman 
filter can be dealt with as other options to MGBEKF [7].

Particle filters [5,6,8,9] are the new era of cutting edge channels, which 
are valuable for nonlinear and non-Gaussian applications. Molecule 
channels or successive Monte Carlo strategies utilize an arrangement 
of weighted state tests, called particles, to surmised the back likelihood 
circulation in a Bayesian setup. Anytime of time, the arrangement 
of particles can be utilized to rough the probability density function 
of the state. More computational exertion is required for superior of 
the molecule channel. The cost that must be paid for the elite of the 
molecule channel is an expanded level of computational exertion.

The writers are roused by the work exhibited by “Branko Ristic, Sanjeev 
Arulampalam and Neil Gordon” in “Past the Kalman filter-particle 
channels for following applications” [5]. These researchers isolated 
the reach interim of enthusiasm into various sub-interims, and every 
sub-interim is managed a free Kalman channel. They proposed that this 
technique can be reached out to course and speed parameterization, if 
earlier information of target course and speed separately are obscure. 
Parameterization in introduction diminishes the reliance of joining of 
the arrangement on initialization [10]. In aloof target following, earlier 
learning of target boat range, course, and speed is ambiguous. The 
point is to gauge target movement parameters as precisely as would 
be prudent at the most punctual. Consideration of reach, course, and 
speed parameterization is proposed for MGBEKF to track an objective 
utilizing direction just estimations and this calculation is named as 
parameterized MGBEKF (PMGBEKF). In this paper, PMGBEKF is created 
to track an objective boat utilizing EW electronic support measures 
(ESMs) bearing estimations.

The ownship is thought to get ESM bearing estimations from EW 
collector. The estimations are not accessible at uniform time interim, 
as ESM orientation accessible at EW collector will be founded on the 
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reception apparatus examine rate of the objective. ESM orientation 
input rate for hunt radar and track while check radar may shift from 
2.5 to 20 seconds. In specific cases, when the objective is bolted on, the 
information sources will be accessible consistently. In spite of the fact 
that the bearing estimations are like latent sonar estimations, there are 
two noteworthy contrasts: (1) The clamor in the estimations in ESM 
estimations is in the request of 2° rms, while in the event of detached 
sonar, it is around 0.5° rms, (2) The estimation interim is not uniform, 
as target may utilize number of radars (each one in turn) working at 
various sweep rates.

PMGBEKF is developed and extensive simulation is carried out. The 
measurement is assumed to be available whenever the target ship is 
in active mode. The solution is updated, whenever, the measurement 
is received and the solution is extrapolated at the rate of one second. 
The estimated state vector is used to find out target motion parameters. 
Section 2 describes the mathematical formulation of the PMGBEKF. 
Simulation and results are presented in Section 3. The limitations of the 
algorithm are presented in Section 4, and finally, the paper is concluded 
in Section 5.

MATHEMATICAL MODELING

MGBEKF
The alternative derivation of the modified gain function [1] of Song and 
Speyer’s EKF is slightly modified as follows. Let the target state vector 
be Xs(k) where,

( ) ( ) ( ) ( ) ( ) =   

T
s x yX k x k y k R k R k � (1)

Where, x k( )  and y k( )  are target velocity components and Rx(k) and 
Ry(k) are range components, respectively. The target state dynamic 
equation is given by:

Xs(k+1) = φXs(k)+b(k+1)+Гω(k)� (2)

Where, φ and b are transition matrix and deterministic vector, 
respectively. The transition matrix is given by,
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Where, x0 and y0 are ownship position components. The plant 
noise ω(k) is assumed to be zero mean white Gaussian with 

( )  =′  kjE w k w (j) Qd . All angles are considered with respect 
to Y-axis, 0 to 360° and clockwise positive to reduce mathematical 
complexity and for easy implementation. The bearing measurement, Bm 
is modeled as:
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Where, ϛ(k) is error in the measurement and this error is assumed to 
be zero mean Gaussian with variance σ2. The measurement and plant 
noises are assumed to be uncorrelated to each other. Equation  (4) 
is a nonlinear equation and is linearized using the first term of 
the Taylor series for Rx and Ry. The measurement relation vector is 
obtained as:
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Since the true values are not known, the estimated values of Rx  and 
Ry  are used in Equation (5). The covariance prediction is given by:

P(k+1|k) = φ(k+1|k)P(k|k)φT(k+1|k)+ГQ(k+1)ГT� (6)

The Kalman gain is given by:

G(k+1)=P(k+1|k)HT(k+1)[σ2+H(k+1)P(k+1|k)HT(k+1)]−1� (7)

The state and its covariance corrections are given by:

X(k+1|k+1)=X(k+1|k)+G(k+1)[Bm(k+1)−h(k+1, X(k+1|k))]� (8)

Where, h(k+1,X(k+1|k)) is the bearing using predicted estimate at time 
index k+1:

P(k+1|k+1)=[I – G(k+1)g(Bm(k+1), X(k+1|k))]P(k+1|k)

[I–G(k+1)g(Bm(k+1), X(k+1|k))]T + σ2 G(k+1)GT(k+1)� (9)

Where, g (.) is modified gain function [2]. g is given by,
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Since the true bearing is not available in practice, it is replaced by the 
measured bearing to compute the function g (.).

PMMGBEKF
The basic idea is to use a number of independent MGBEKF trackers 
in parallel, each with a different initial estimate. To do so, the range, 
course, and speed interval of interest are divided into a number of 
sub-intervals following geometric progression and each sub-interval is 
dealt with an independent MGBEKF. Let the range, course, and speed 
intervals of interest are rangemin, rangemax; coursemin, coursemax; speedmin, 
speedmax, respectively [10].

If hardware support for sufficient computation capacity is available, 
the size of the sub-intervals can be increased as much as possible to 
improve the accuracy of the estimated target motion parameters. The 
initial weight of each MGBEKF is set to 1/N. Subsequently, the weight of 
filter i at time k is given by:
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Where, p(B(k)|i) is the likelihood of the measurement B(k).

Assuming Gaussian statistics, the likelihood p(B(k)|i) can be computed 
as:
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Where, ( )−ˆ 1iB k k  is the predicted angle at k for filter i and  2i
inv  is 

the innovation variance for filter i and it is given by:

( ) ( ) ( )σ = − + σ2 2ˆ ˆ1i i i iT
inv H k P k k H k � (13)

The combined estimate of PMMGBEKF is computed using the Gaussian 
mixture formulas.
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SIMULATION AND RESULTS

The algorithm is realized using Matlab on a personal computer. The 
simulator is developed to create target, ownship and measurements. 
Target and ownship movements are updated at every 1 second. All 1 
second samples are corrupted by additive zero mean Gaussian noise of 
2° rms. An EW receiver system is assumed to be intercepting the active 
measurements generated by radar on a target ship. Ownship is assumed 
to be carrying out S-maneuver on line of sight (LOS) at a constant 
speed of 10.3 m/s with turning rate of 1°/s as shown in Fig. 1. In the 
simulation, all angles are considered with respect Y-axis, 0-360°, and 
clockwise positive. The ownship moves initially at 90° for a duration 
2 minutes and then it changes its course to 270°. Subsequently at 19th, 
16th, and 23rd  minutes, the ownship changes its course from 270° to 
90°, 90° to 270°, and 270° to 90°, respectively. Extensive simulation 
is carried out and for the purpose of presentation, two scenarios as 
shown in Table 1 are chosen for evaluation of the algorithm. In the first 
and second scenarios, target is assumed to be stationary and moving 
at a speed 15.45 m/s, respectively. Same algorithm is used to track a 
moving or stationary target. The target is assumed to be using radars 
with six types of scanning rates. Five radars with the measurement 
interval 1, 2, 3, 4, and 5 seconds, respectively, assumed to be operating 
one at a time for 240  seconds each. The simulation is carried out 
for 1800  seconds. The sixth radar with the measurement interval 
of 6 seconds is assumed to be operating for the remaining period of 
600 seconds.

Performance of MGBEKF algorithm
To start with simulation, the performance of MGBEKF algorithm 
is evaluated using the two scenarios as shown in Table  1. The 
initial estimate of target state vector is chosen as follows. As only 
bearing measurements are available, it is not possible to guess the 
velocity components of the target. Hence, these components are 
each assumed as 10 m/s, which are close to the realistic speeds of 
the vehicles on seawaters. The sonar range of the day, say 25  km, 

is utilized in the initialization of target state vector components as 
follows:

( )  =  0 0 10 10 25000sin 25000cos T
m mX B B � (14)

It is assumed that initial X(0|0) is uniformly distributed. Accordingly, 
the elements of initial covariance are a diagonal matrix and are given 
by:
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It is assumed that the errors allowed in the estimated target motion 
parameters are 20% in range, 10° in course and 20% in speed. The 
details about the convergence of range, course, and speed estimates 
obtained with required accuracies are shown in Table 2. The results 
are shown in Figs.  2 and 3 with identification MGBEKF using 
initialization 1 “MGBEKF Init 1.” It is observed from the results that 
the convergence of the solution for the scenario 1, which describes a 
stationary target, is not satisfactory. The initialization of target state 
vector is modified slightly as follows to track a stationary target as 
follows.

( )  =  0 0 0.1 0.1 25000sin 25000cos T
m mX B B

With this modification, the convergence of the solution for scenario 1 is 
satisfactory but not satisfactory for scenario 2 as shown in Figs. 2 and 3 
with identification “MGBEKF Init 2.” From this simulation, it is 
understood the time to obtain the convergence of the solution is highly 
dependent on the values used for initialization of target state vector 
components, as shown in Table 2.

Simulation of PMMGBEKF algorithm
In this section, the performance of PMMGBEKF algorithm is evaluated 
using two scenarios shown in Table 2. In simulation, rangemin, rangemax; 
coursemin, coursemax; speedmin, speedmax are considered as 5000  m, 
40,000  m; 0°, 359°; 0  m/s, 20  m/s, respectively. The numbers of 
elements in each subinterval are considered as 10, resulting the 
number of filters 1000. The results obtained in simulation are shown 
in Figs. 2 and 3 with identification of “Parameterized.” It is observed 
that range, course, and speed estimates with required accuracies are 
obtained and the details about the convergence of the solution are 
shown in Table  2. PMGBEKF is able to track stationary or moving 
target satisfactory.

From Tables  2 and 3, it is understood that inclusion of 
parameterization reduces the time to obtain convergence of the 
solution when compared to that without parameterization (i.e., with 
single MGBEKF algorithm).

Limitations of the algorithm
Angle on target bow (ATB) is the angle between the target course and 
LOS. When, ATB is more than 60°, the distance between the target and 
ownship increases as time increases, and the bearing rate decreases 
substantially with the increase in number of samples. In such situation, 
it is very difficult to track the target. Furthermore, the algorithm cannot 
provide good results when the measurement noise is more than 2° rms. 
In general, these two situations are constraints to any type of filtering 
technique.

CONCLUSION

In this application of passive ship target tracking, prior knowledge 
of target range, course, or speed is not available. Time to obtain 
convergence greatly depends on the initialization of the target 
state vector. Parameterization in initialization of MGBEKF state 
vector is included to reduce the dependency of the convergence 

Fig. 1: Ownship in S-maneuver on line of sight

Table 1: Scenarios chosen for evaluation of the algorithm

S.No. Parameters Scenario 
1

Scenario 
2

1. Initial range (m) 18,520 40,000
2. Initial bearing (°) 210 210
3. Target speed (m/s) 0 15.45
4. Target course (°) 45 45
5. Ownship speed (m/s) 10.3 10.3
6. Rms error in bearing (°) 2 2
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Fig. 2: Error in estimates for scenario 1. (a) Range, (b) course, (c) speed

c

ba

Fig. 3: Error in estimates for scenario 2. (a) Range, (b) course, (c) speed

c

ba
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time on initialization. From the results obtained in simulation, 
PMGBEKF  is  recommended to track the target using ESM bearing 
measurements.
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