
LEARNING THE EFFICIENT ESTIMATION TECHNIQUES FOR SUCCESSFUL SOFTWARE
PROJECT MANAGEMENT

KHIN SHIN THANT1, HLAING HTAKE KHAUNG TIN2*
1Department of Information Science, University of Computer Studies, Hinthada, Myanmar, 2Department of Information Science, University

of Information Technology, Yangon, Myanmar. Email: hlainghtakekhaungtin@gmail.com

Received: 20 May 2023, Revised and Accepted: 23 May 2023

ABSTRACT

The process of software project management involves planning and supervising the development of software projects to deliver a quality product
within the customer’s budget and schedule. This process begins with project planning, which includes estimating the work to be done, required
resources, and project schedule. Once these activities are accomplished, a project schedule is established that defines software engineering tasks,
identifies responsible parties, and specifies inter-task dependencies. The paper aims to explore project management activities and techniques for
estimating project size. Overall, software project management involves managing, allocating, and timing resources to develop software that meets
requirements and is delivered within budget and schedule. This paper highlights the significance of employing efficient estimation methods to
achieve successful software project management. Estimation plays a critical role in the software development process, as it helps project managers to
determine the resources and time required for completing the project. The paper starts by introducing the concept of software project management
and highlighting its importance in delivering successful projects. The advantages and disadvantages of each technique are discussed, and guidelines
for selecting the appropriate technique for a specific project are provided. The paper also explores the importance of accurate estimation in agile
software development and the use of estimation tools to simplify the process. Finally, the paper concludes by summarizing the key takeaways from the
discussion and emphasizing the significance of efficient estimation techniques in ensuring successful software project management.

Keywords: Software engineering, Lines of code, Function point, Project management activities, Estimation techniques.

INTRODUCTION

Software project management is a discipline of planning and
supervising software projects’ development process activities to
deliver a quality product within the customer’s budget and schedule.
Estimation is a crucial aspect of software project management that
involves determining the resources and time required to complete the
project successfully. Accurate estimation can help project managers to
make informed decisions, identify potential risks, and avoid project
delays and cost overruns. On the other hand, inaccurate estimation can
lead to significant project failure and negative impacts on the project
team, customer, and organization.

This paper aims to explore the efficient estimation techniques for
successful software project management. It discusses the importance
of software project management, the part of estimation in the software
development process, and the consequences of inaccurate estimation.
The paper provides an overview of various estimation techniques.
It examines the advantages and disadvantages of each technique
and provides guidelines for selecting the appropriate technique for a
specific project.

Furthermore, the paper discusses the importance of accurate estimation
in agile software development and the use of estimation tools to
simplify the process. Finally, the paper concludes by summarizing the
key takeaways from the discussion and emphasizing the significance of
efficient estimation techniques in ensuring successful software project
management.

LITERATURE REVIEW

Software project management [1] involves planning, monitoring, and
controlling the development process of software projects to ensure
that they are completed on time, within budget, and to the required
quality standards. The estimation of project resources is an essential

part of the project planning process, which involves estimating
the effort, cost, and duration required to complete the project
successfully. In recent years, several techniques have been proposed
for efficient estimation of software projects. This literature review
aims to explore these techniques and their effectiveness in software
project management.

Efficient estimation of software projects is crucial for successful
project management. Several techniques, including function point
(FP) Analysis, COCOMO Model [2], Agile Estimation Techniques, and
Machine Learning-Based Estimation Techniques, have been proposed
for software estimation. These techniques have their strengths and
weaknesses, and the choice of technique depends on the project’s
requirements and constraints. However, the use of these techniques
can improve the accuracy of project resource estimation and help in
successful software project management.

Project monitoring and control activities begin once development
activities commence. They are focused on ensuring that the software
development proceeds as planned. During this stage, the project
manager may need to adjust the plan to address specific situations
that arise. Effective project monitoring and control are essential to the
success of a software project [3].

In this session, the software project management is discipline of
planning and supervising software projects development process
activities to deliver a quality product, keeping the cost within the
customer’s budget and deliver the project as per schedule. It involves
a procedure of managing, allocating, and timing resources to develop
software that fulfills requirements.

Software project management is essential to implement user
requirements, along with budget and time. A project manager is
responsible for managing a project who essentially works as the

Review Article

© 2023 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ijet.2023v11i3.47605. Journal homepage: https://innovareacademics.in/journals/index.php/ijet

Vol 11, 2023 ISSN - 2347-1573

administrative leader of the team and is an experience member of the
project team. Software project management is much more complex
than management of many other types of projects due to invisibility,
changeability, complexity, uniqueness, exactness of the solution, and
team-oriented and intellect-intensive work [1].

Projects are being carried out at all levels of the organization. Their
time period ranges from a few weeks to more than 5 years. Projects
can include a single unit of an organization or cross institutional
boundaries, such as joint ventures and partnerships.

PROPOSED SYSTEM WITH TWO SIZE ESTIMATION TECHNIQUES

At present, project managers may utilize diverse methodologies
and techniques for managing software projects across various
organizations. However, there are five core activities [4] that are
universally recognized as fundamental to software project management
across all organizations.

Project planning
Project planning is the process of defining the objectives and goals of a
project, determining the tasks needed to achieve those objectives, and
estimating the resources required to complete those tasks. It involves
creating a roadmap for the project that outlines the scope, timeline,
budget, and deliverables. Effective project planning ensures that the
project is well-organized, well-managed, and delivered on time and
within budget. Project planning includes activities such as feasibility
study, requirements analysis, specification, and project schedule
development. It is a critical activity in software project management
that sets the foundation for the project’s success.

Risk management
Risk management is the process of identifying, assessing, and
controlling risks that may affect the success of a software project. It
involves identifying potential risks that may arise during the project’s
lifecycle and implementing measures to mitigate their impact. The
goal of risk management is to minimize the likelihood and impact of
negative events on the project’s objectives and outcomes.

The risk management process involves four steps: risk identification, risk
assessment, risk response planning, and risk monitoring and control. In
the risk identification phase, the project team identifies potential risks,
such as technical risks, operational risks, and external risks. In the risk
assessment phase, the team analyzes and prioritizes the risks based on
their potential impact and likelihood of occurrence. In the risk response
planning phase, the team develops strategies to mitigate the risks, such
as avoiding, transferring, mitigating, or accepting the risks. Finally, in
the risk monitoring and control phase, the team continually monitors
the project’s risks, evaluates the effectiveness of the risk response
strategies, and adjusts them as necessary. Effective risk management
is critical to the success of a software project, as it helps project teams
to proactively identify and manage risks, minimize project delays, and
avoid cost overruns.

People management
People management is the process of managing the human resources
involved in a software project. It involves managing the project
team’s recruitment, selection, training, motivation, and performance
evaluation. Effective people management ensures that the project team
has the necessary skills, knowledge, and resources to complete the
project successfully.

People management [1] in software project management includes
several activities, such as team formation, team building, communication
management, conflict resolution, and stakeholder management. Team
formation involves selecting and assembling a project team that has the
necessary technical and interpersonal skills to complete the project.
Team building involves developing a cohesive team culture, establishing
team norms, and fostering collaboration and communication among
team members.

Communication management involves establishing effective
communication channels between project stakeholders, team members,
and other project participants. Conflict resolution involves identifying
and resolving conflicts that may arise during the project’s lifecycle.
Finally, stakeholder management involves identifying and managing
project stakeholders, such as customers, end-users, sponsors, and other
project participants. Effective people management is critical to the
success of a software project, as it ensures that the project team is well-
managed, motivated, and equipped to complete the project successfully.
It also helps to foster a positive project culture and maintain good
relationships with project stakeholders.

Reporting
Reporting in software project management involves the regular and
systematic collection, analysis, and dissemination of project-related
information to project stakeholders. The goal of reporting is to provide
project stakeholders with timely, accurate, and relevant information
about the project’s progress, status, and performance. Effective
reporting helps stakeholders to make informed decisions, manage
project risks, and ensure that the project stays on track.

Reporting in software project management includes several activities,
such as data collection, data analysis, report generation, and report
dissemination. Data collection involves collecting project-related
data from various sources, such as project team members, project
documents, and project management tools. Data analysis involves
analyzing the collected data to identify trends, patterns, and insights
that can inform decision-making.

Proposal writing
Proposal writing in software project management involves the process
of preparing and presenting a document that outlines the project’s
scope, objectives, requirements, timelines, and budget to potential
customers or stakeholders. The goal of proposal writing is to convince
the potential customers or stakeholders that the project team is capable
of delivering a quality product that meets their needs and expectations.

Proposal writing in software project management includes several activities,
such as researching and understanding the customer’s requirements and
needs, developing a project plan that meets those requirements, and
presenting the plan in a clear, concise, and persuasive manner. Effective
proposal writing also involves developing a budget that accurately reflects
the resources needed to complete the project successfully.

METHODS

Effective project planning requires not only a comprehensive
understanding of different estimation techniques but also past
experience. It is important for both the project manager and customer
to recognize that software requirements variability can lead to cost
and schedule instability. Project estimates should aim to define best-
case and worst-case scenarios to help establish boundaries for project
outcomes [5]. It is essential to adapt and update the plan as the project
progresses to ensure it remains relevant and effective.

During project planning, a project manager is responsible for various
activities such as cost, duration and effort estimation, scheduling,
staffing, risk management, and miscellaneous planning [6]. The first
activity undertaken by the project manager is size estimation, as
size is the most fundamental attribute that affects the accuracy and
effectiveness of estimates and project planning. The project size is
critical because as it increases, the interdependency among various
software elements grows rapidly.

The size of a software project [1] can be measured by the amount of effort
and time necessary to develop the product, and it can be estimated by
taking into account factors such as the project type, application domain,
functionality delivered, and the number of components. There are
various estimation techniques available, but two of the most commonly
used metrics for estimating project size are mentioned.

 Thant and Tin
 Innovare Journal of Eng. & Tech, Vol 11, 2023, 4-8

5

Lines of code (LOC)
LOC is a software metric used to measure the size or complexity of a
software program. It counts the number of lines of source code in
a program [7]. It is a simple and widely used metric that can give an
indication of the scale of a project or the effort required to develop it.
However, it has some limitations as it does not account for differences
in programming languages, coding styles, or the quality of the code.
In addition, as software development increasingly involves the use of
third-party libraries and frameworks, the use of LOC as a metric may
not accurately reflect the true size or complexity of a project.

Despite these limitations, LOC can still be a useful metric when used
appropriately and in combination with other metrics and estimation
techniques. When used to measure problem size, LOC has several
disadvantages Table 1.

Overall, while LOC can be a useful metric for measuring code size, it
should be used in conjunction with other metrics to provide a more
comprehensive picture of the size and complexity of a software project.

Based on the given information, the estimated LOC Table 2 for the
project is 33,200. The average productivity of the organization for a
system is 620 LOC per person-month, which means that it will take
approximately 54 person-months (33,200/620) to complete the
project. The labor rate of the organization is $8,000 per month, so the
total cost of the project can be estimated by multiplying the labor rate
by the estimated effort in person-months, which is: 54 person-months
* $8,000 per month = $432,000. The estimated cost per line of code is
around $13, so the total cost of the project can also be estimated by
multiplying the number of LOC by the estimated cost per line of code,
which is: 33,200 LOC * $13 per line of code = $431,600.

These two estimates are quite close and suggest that the projected total
cost of the project is around $431,000 to $432,000 with an estimated
effort of 54 person-months.

FP
FP is a software measurement technique used to measure the functional
size of a software application. It is based on the concept that software
functionality can be quantified by the business transactions that the
software performs. FPs measure the functionality of software by
quantifying the inputs, outputs, inquiries, files, and interfaces required
to support the business processes.

This method is independent of the technology used to implement the
software and can be used to measure software of different types and
sizes. The use of FPs enables more accurate estimates of project size,
effort, and cost and provides a means to measure and compare the
productivity of different development teams. FP computation Table 3
typically involves three steps.

Step 1: Compute the unadjusted FP (UFP) using a heuristic expression
that considers the five components of functionality and their
corresponding complexity weights.

Step 2: Refine the UFP. This involves adjusting the complexity
weights of each FP component based on specific factors, such as data
processing requirements, user interface complexity, and performance
constraints.

Step 3: Compute the final FP count by additional refining. This involves
applying adjustment factors for the general system characteristics,
such as distributed processing, transaction rate, and operational ease.
The result is a more precise estimate of the effort, cost, and schedule
necessary to develop the software system.

FINDINGS AND DISCUSSION

Software project management involves various estimation techniques
to ensure the success of software projects. One of the commonly used

techniques is the FP analysis, which measures the size of a software
system in terms of its functionalities. FP analysis has three main steps:
computing UFP, refining UFP based on the complexity of parameters,
and further refining UFP based on the project’s specific characteristics.
The technical complexity factor (TCF) is then computed to adjust the
estimated effort and cost of the project based on the degree of influence
(DI) of various project parameters. However, FP analysis has some
disadvantages, such as not considering the algorithmic complexity of
a function. Another technique used in software project management is
LOC, which measures the size of a software project based on the number
of LOC. Overall, choosing the most suitable estimation technique for
software project management depends on various factors such as
project requirements, available data, and expertise.

Step 1. UFP Computation

The computation of UFP involves using a heuristic expression that takes
into account five different parameters of the software application. The
equation for UFP computation is as follows:

UFP = (Count of External Inputs × Weight for External Inputs)+(Count
of External Outputs x Weight for External Outputs)+(Count of External

Table 1. Disadvantages of LOC

1 Different programming languages have different levels of
abstraction, which can lead to different LOC counts for the
same functionality, making it difficult to compare projects
written in different languages.

2 LOC measures the size of the code, but not the complexity
of the code or the functionality it provides. Therefore,
two programs with the same number of LOC may have
different levels of functionality or complexity.

3 LOC does not take into account the quality of the code,
such as readability, maintainability, or performance.

4 LOC can be easily manipulated by using code generators
or copy-pasting code, which can result in an inaccurate
measurement of the actual problem size.

5 LOC does not consider the reuse of code or the use of
external libraries or components, which can significantly
impact the size and complexity of a project.

Table 2. Estimation table for the LOC methods

Function Estimated LOC
User interface and control facilities
Two-dimensional geometric analysis
Three-dimensional geometric analysis
Database management
Computer graphics display facilities
Peripheral control function
Design analysis modules

2300
5300
6800
3350
4950
2100
8400

Estimated lines of code 33200

Table 3. Function Point Computation Steps

No Function Point Computation Steps
1 Identify the functions that the software system will

perform, based on the requirements.
2 Categorize these functions into different types, based

on their complexity and how they will be implemented
in the system. These categories include inputs, outputs,
inquiries, internal files, and external interfaces.

3 Assign a weight to each category, based on the complexity
of the functions in that category, and then compute the
total function points by adding up the weighted scores for
each category.

 Thant and Tin
 Innovare Journal of Eng. & Tech, Vol 11, 2023, 4-8

6

Inquiries×Weight for External Inquiries)+(Count of Internal Logical
Files x Weight for Internal Logical Files)+(Count of External Interface
Files×Weight for External Interface Files)

where:
Count of External Inputs: the number of inputs to the system from
external entities

Weight for External Inputs: a weighting factor that reflects the
complexity of processing external inputs

Count of External Outputs: the number of outputs from the system to
external entities

Weight for External Outputs: a weighting factor that reflects the
complexity of producing external outputs

Count of External Inquiries: the number of queries to the system from
external entities

Weight for External Inquiries: a weighting factor that reflects the
complexity of processing external inquiries

Count of Internal Logical Files: the number of logical files maintained
by the system

Weight for Internal Logical Files: a weighting factor that reflects the
complexity of maintaining internal logical files

Count of External Interface Files: the number of interface files used by
the system

Weight for External Interface Files: a weighting factor that reflects the
complexity of using external interface files

The weights used in the heuristic expression are typically based on industry
averages and can vary depending on the complexity of the application being
developed. The parameters in Table 4 are classified into five categories:

Each of these parameters is assigned a weight factor that reflects the
complexity of the parameter. The weight factors are determined by a set
of rules defined by the international FP users group. The weight factors
are used to adjust the UFP.

Step 2: Refine the UFP

FP relative complexity adjustment factors are used to refine the UFP
count to reflect the complexities of the different parameters used in UFP
computation. The following Table 5 shows an example of complexity
adjustment factors for different types of functions:

For example, if a project has ten simple inputs, five average outputs,
eight complex inquiries, 12 average number of files, and seven simple
number of interfaces, then the total complexity adjustment factor
would be calculated as follows:

(10 × 3) + (5 × 5) + (8 × 6) + (12 × 10) + (7 × 3) = 209

This complexity adjustment factor of 209 would be multiplied by the
UFP count to obtain the final FP count.

Step 3: Refined UFP based on complexity of the overall project

After computing the UFP in step 1, the next step Table 6 is to refine it
to reflect the complexity of the overall project. This involves assigning

Table 4. Five Categories of Parameters

Parameters Description Complexity
External Inputs (EI) These are user interactions that result in the system

receiving data from an external source. Examples include
user input screens, sensors, and data feeds.

The complexity of an EI is determined by the number of data
elements that are maintained an the number of different
data element types.

External Outputs (EO) These are user interactions that results in the system
producing data for an external source. Examples include
reports, screen displays, and alarms.

The complexity of an EO is determined by the number of
data elements that are produced and the number of different
data element types.

External Inquiries (EQ) These are user interactions that result in the system
producing data from internal sources. Examples include
inquires, search functions, and data retrieval.

The complexity of an EQ is determined by the number of
files referenced and the number of data elements retrieved.

Internal Logical Files
(ILF)

There are logical groupings of data that are maintained within
the system. Examples include tables, databases, and files.

The complexity of an ILF is determined by the number of data
elements and the number of different data element types.

External Interface Files
(EIF)

These are logical groupings of data that are used by the
system but are maintained by external sources. Examples
include message files and data exchange files.

The complexity of an EIF is determined by the number of data
elements and the number of different data element types.

Table 5. Example of Complexity Adjustment Factors

Type Simple Average Complex
Input (I) 3 4 6
Output (O) 4 5 7
Inquiry (E) 3 4 6
Number of Files (F) 7 10 15
Number of Interface 5 7 10

Table 6. Function Point Relative Complexity Adjustment Factors

14 Parameters Value 0
(not present/no
influence) to 6
(strong influence)

Requirement for reliable backup and recovery
Requirement for data communication
Extent of distributed processing
Performance requirements
Expected operational environment
Extent of online data entries
Extent of multi-screen or
multi-operation online data input
Extent of online updating of master files
Extent of complex inputs, outputs, online
queries and files
Extent of complex data processing
Extent that currently developed code can be
designed for reuse
Extent of conversion and installation included
in the design
Extent of multiple installations in an organization
and variety of customer organizations
Extent of change and focus on ease of use

4
3
2
5
4
5
4

4
4

4
4

4

3

5

 Thant and Tin
 Innovare Journal of Eng. & Tech, Vol 11, 2023, 4-8

7

weights to the UFP based on various factors such as the complexity of
the inputs, outputs, and user interactions. The weights are typically on
a scale of 0 to 5, with 0 indicating no complexity and 5 representing
maximum complexity.

For example, if a project has a high number of inputs, it would be
assigned a weight of 4 or 5, whereas if it has only a few inputs, it
would be assigned a weight of 1 or 2. Similarly, if a project has complex
outputs, it would be assigned a weight of 4 or 5, whereas if the outputs
are simple, it would be assigned a weight of 1 or 2.

Once the weights have been assigned to each of the components, they
are multiplied by the corresponding UFP value to obtain a refined UFP.
The refined UFP reflects the actual complexity of the project and is used
in the final step to compute the FP.

The size of a project can be influenced by various project parameters
such as high truncation rates, response time requirements, scope for
use, and others. Hence, it is necessary to consider the overall project
size while refining the UFP computed in step 2.

Based on the provided values for the 14 parameters, the TCF can be
calculated as follows:

TCF = (0.65 + (0.01 * DI))

DI = (4 + 3 + 2 + 5 + 4 + 5 + 4 + 4 + 4 + 4 + 4 + 4 + 3 + 5) = 55

TCF = (0.65 + (0.01 * 55)) = 1.2

Therefore, the TCF is 1.2.

where,
TCF = a technical complexity factor,
DI = Total degree of influence.
DI can vary from 0 to 84 and TCF can vary from 0.65 to 1.49.

The TCF is calculated using the Total DI, which can vary from 0
to 84, and TCF can vary from 0.65 to 1.49. However, FPA has some
limitations, such as not considering the algorithmic complexity of a
function.

One disadvantage of FP analysis is that two functions with the same
number of inputs and outputs may be given the same FP value, even if
one of the functions requires much more complex processing than the
other. In addition, the process of determining the appropriate weights
for each input and output can be subjective and may vary depending
on the person performing the analysis. Finally, it may not be suitable
for certain types of projects or systems, such as those that involve
significant hardware or infrastructure components.

CONCLUSION

Software project management is a challenging task that requires a lot of
planning, coordination, and efficient estimation techniques. The success
of a software project is dependent on the ability of the project manager
to effectively estimate the resources, cost, and schedule required for the
project. This paper has discussed the fundamental activities of software
project management, including project planning, risk management, people
management, reporting, and proposal writing. In particular, the focus has
been on project planning, which involves estimating project characteristics
and planning project activities based on these estimates. Effective project
planning is essential for successful software project management. The
paper has also discussed the importance of project size estimation and
the different techniques available to estimate project size. It is essential
for software project managers to have a systematic knowledge of the
different estimation techniques and past knowledge to obtain effective
project planning. Finally, the paper emphasized that project plans must be
adapted and updated as the project progresses, and variability in software
requirements means instability in cost and schedule.

AUTHOR CONTRIBUTIONS

Khin Shin Thant and Hlaing Htake Khaung Tin contributed equally to
the conception and design of the study, data collection and analysis,
writing of the manuscript, data interpretation, and critically revised the
manuscript for important intellectual content. Both authors read and
approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare no funding sources or conflicts of interests related
to this research paper.

AUTHORS FUNDING

The authors of a research paper have not received any funding related
to this research or publication of the paper.

REFERENCES

1. Reifer DJ. Software Management. 6th ed. New Jersey: Wiley; 2002.
2. BarryBoehm B, Chris A. Software Cost Estimation with COCOMO II.

New Jersey: Prentice Hall; 2000.
3. Sommerville I. Software Engineering. Global Edition. 10th ed. London:

Pearson Education; 2015.
4. Available from: https://www.onlineengineeringprograms.com/
5. Tin HH. Analysis the learning outcomes survey of the software project

management. Int J Futur Trends Eng Sci 2019;2:13-17.
6. Pressman RS. Software Engineering, a Practitioner’s Approach. 9th ed.

R.S. Pressman and Associates, Inc.; 2015.
7. Mall R. Fundamentals of Software Engineering. 4th ed. Delhi: Prentice

Hall India Learning Private Limited; 2014.

 Thant and Tin
 Innovare Journal of Eng. & Tech, Vol 11, 2023, 4-8

8

