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ABSTRACT 

This review describes recent progress made in the aptamer and application of biomedically relevant aptamers and relates them to their future 
clinical prospects. 
Aptamers are single-stranded nucleic acid or amino acid polymers that recognize and bind to targets with high affinity and selectivity. In nature 
they exist as a nucleic acid based genetic regulatory element called a riboswitch. Aptamers, simply described as chemical antibodies, are synthetic 
oligonucleotide ligands or peptides that can be isolated in vitro against diverse targets including toxins, bacterial and viral proteins, virus-infected 
cells, cancer cells and whole pathogenic microorganisms. They are isolated by the technique called SELEX- systematic evolution of ligands by 
exponential enrichment. The applications of aptamers range from diagnostics and biosensing, target validation, targeted drug delivery, therapeutics, 
templates for rational drug design to biochemical screening of small molecule leads compounds, in virology,as novel radio pharmaceuticals. 
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INTRODUCTION 

Aptamers are single stranded short oligonucleotide sequence which 
is basically made up of nucleic acid with high affinity to specific 
targets, like ions, whole cells, peptides, proteins, etc.  Aptamers have 
been generated without difficulty that bind to organic dyes, drugs, 
amino acids, nucleotides such as ATP, vitamins, pharmacologically 
important proteins such as substance P16, the anticoagulant 
thrombin17, growth factors, proteases, and several other small and 
large proteins and enzymes [1,2] Some of the distinguished 
properties possessed by aptamers are that they can remain stable at 
the high temperature [3,4]and high pH.[5]. Aptamer mainly comes 
from the latin language “aptus” means to fit, are artificial specific 
antibody.[6]. 

An affinity of the aptamers depends upon its target type. They had 
also shown their affinities in nano and pico molar concentrations. [7] 
. Often aptamers are called chemical antibodies, that are poised to 
take on the monoclonal antibodies in therapeutics, diagnostics, 
treatment of cancer[8], Alzheimer disease [9], isoforms of prion 
proteins ,. One reason for the tremendous interest generated by 
aptamers is the practical advantages of aptamers over antibodies, as 
they neither exhibit toxicity nor immunogenicity[10]. 

    

Figure-1: NMR structure of the aptamer.[96] 

TYPES OF APTAMERS 

 There are basically three types of the aptamers: 

 

DNA Aptamers 

The DNA aptamers that bind specifically to the human protein 
fractalkine (FKN) are better suited for targeted drug delivery than 
other technologies such as antibodies and are non-immunogenic. 
Fractalkine is involved in different types of cancer such as 
lymphoma, prostate, lung, and colorectal cancer. [11] DNA aptamers 
Useful for increasing drug efficacy by targeting correct cells and 
decreasing drug side effects caused by non-specific delivery to the 
healthy cells Production of DNA aptamers is not easy as RNA 
aptamers as they form less 3D structure than RNA aptamers and 
they bind to the target with the entire sequence. [12] 

 

Figure-2:DNA aptamers.(97) 

RNA Aptamers 

RNA aptamers can fold into complex structures and bind with high 
affinity and selectivity to various macromolecules, viruses, and cells. 
They are isolated from a large pool of nucleic acids by a conceptually 
straightforward iterative selection process called SELEX. Diverse 
range of structures can be obtained with RNA as compared to DNA, 
and they are more beneficial for screening process. [13] FDA 
approved in 2005 and a number of novel RNA aptamer-based 
therapeutics are currently undergoing clinical trials for treating 
diseases such as macular degeneration, choroidal 
neovascularization, intravascular thrombus, acute coronary 
syndrome, von Willebrand factor related disorders, von Hippel–
Lindau syndrome (VHL), angiomas, acute myeloid leukemia, renal 
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cell carcinoma, non-small cell lung cancer, thrombotic 
thrombocytopenic purpura, and several others. [14] 

Figure3.Structure of an RNA aptamer specific for biotin[98] 

Peptide-Based Aptamers 

Peptide aptamers are proteins that are designed to interfere with 
other protein interactions inside cells. [3] They consist of a variable 
peptide loop attached at both ends to a protamersein scaffold. This 
double structural constraint greatly increases the binding affinity of 
the peptide aptamer to levels comparable to an antibody’s.[15] 
Peptide aptamer selection can be made using different systems, but 
the most used is currently the yeast two-hybrid system. Peptide 
aptamer can also be selected from combinatorial peptide libraries 
constructed by phage display and other surface display technologies 
such as mRNA display, ribosome display, bacterial display and yeast 
display. [16] 

 

 

Figure4 A: Combinatorial peptide libraries using surface 
technologies. [99]B: RNA Aptamer [100] 

SCREENING METHOD FOR APTAMERS: SELEX 

SELEX (systematic evolution of ligands by exponential 
enrichment) is a technique used for the screening of the single 

stranded DNA or RNA ligands from a random library of nucleotide 
sequences. [17] . The ligands which are selected via SELEX are called 
as aptamers.  SELEX research was first reported in the 1990s by 
Gold and Ellington [17-20], and a typical process is as follows: 

 First of all single stranded DNA or RNA is synthesized. The sequence 
of oligonucleotides in the library is composed of random sequences 
in the middle and flanked by fixed sequences as primer binding sites. 
The length of the random region is normally between 20 to 40 base-
pairs, which create a library with a large number of random 
sequences (1015 to 1016) [20-25]. Then this library is incubated 
with specific target molecule for binding. Then the unbound target 
molecules are  washed away from that bound target molecule. Which 
are then eluted from that target molecule and amplified by 
polymerase chain reaction. this selection process is repeated for 
several times until the resulted sequences are highly enriched. The 
SELEX technology generates aptamers with a high binding affinity 
and specificity. [26-29] Aptamers are short single-stranded nucleic 
acid oligomers with a specific and complex three-dimensional 
structure [30] Based on their three-dimensional structures, 
aptamers can bind well to a wide variety of targets. Binding of the 
aptamer to the target is due to structural compatibility, electrostatic 
interactions, van der Waals interactions, and hydrogen bonding [31]. 
Since the discovery of aptamers , many researchers have used SELEX 
technique for selection of  aptamers having high affinity and 
specificity for their target molecule[32-35]. Many of the selected 
aptamers shows affinities comparable to those observed for 
antibodies. Recently, researchers have moved to a microfluidic 
chip/system to perform SELEX that can be optimized, giving 
significant advantages in terms of increased speed and reduced costs 
[36]. 

 

 

Figure5: SELEX technique for screening of Aptamers [101] 

RECENT ADVANCES IN SCREENING METHODS OF APTAMERS  

Typically, the SELEX method is an iterative process of incubation, 
separation, and nucleic acid amplification. Multiple rounds of 
selection are generally necessary to screen aptamers with a 
sufficient specificity and a high binding affinity, which requires more 
sample/reagent consumption and time (3 in CE MICROFUIDIC 
CHIPS). In order to accelerate this lengthy screening process, a wide 
variety of microfluidic incubation, separation and amplification 
techniques have been explored as a means to enhance the efficiency 
of aptamer selection, including capillary electrophoresis (CE), sol-gel 
isolation and magnetic-bead-based selection. 

CE Microfluidic Chips 

A library of ssDNA is incubated with the target molecules. Capillary 
electrophoresis is used to separate bound sequences. Binding 
nuclear acids are amplified by PCR and purified giving an enriched 
ssDNA pool which suitable for further rounds of selection. High-
affinity aptamers are typically obtained after two to four rounds of 
selection.[37,38] Furthermore, the high partitioning efficiency of the 
CE-SELEX method in comparison with the traditional SELEX method 
decreases the number of rounds of SELEX to 1–3 rounds. In general, 
the incubation time of the CE-SELEX is less than an hour at room 
temperature. The short incubation time also maintains the activity of 
the targets. [39] 
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Figure6: CE-SELEX[37-39] 

 Sol-Gel Microfluidic Chips for Screening of Aptamers 

A library of ssDNA is incubated with sol-gel arrays of proteins in a 
microfluidic system for efficient selection of ssDNA aptamers against 
target molecules. [40] The sol-gel microfluidic chips greatly 
improved selection efficiency, reducing the number of selection 
cycles needed to produce high affinity aptamers. Thus, it can lead to 
the isolation of aptamers specific to many of the target proteins, and 
improve the selection of aptamers to these specific proteins.[41] 

 

Figure7: SELEX processes in sol-gel microfluidic chips.(40,41) 

3. Magnetic-Bead-Based Microfluidic Chips for Screening of 
Aptamers (42-44) 

The microfluidic selection process begins with the incubation of the 
random ssDNA library with target proteins conjugated to magnetic 
beads. After incubation, the partitioning step to separate the target-
bound aptamers from the unbound nuclear acids is performed in the 
microfluidic chip. [42] Stringent washing conditions than are 
imposed in the microchannel to continuously elute weakly- and 
unbound nuclear acids from the microfluidic chip. [43] After the 
separation, the external magnets are removed, and the beads 
carrying the selected aptamers are released from the device. The 
entire separation process with trapping, washing, and bead elution 
performs on the chip. Finally, the selected Aptamers are amplified 
via PCR. The use of magnetic beads to select aptamers in a 
microchannel has improved the efficiency of the SELEX method.[44] 

 

Figure8: SELEX processes in magnetic-bead-based 

Microfluidic chips 

Advantages of Aptamers [45] 

 Can disrupt protein- protein interactions. 
 Aptamers therapeutics which are used are 

given by the subcutaneous route. 
 They are stable at room temperature so their 

storage at room temperature is possible. 
 Aptamers have wide therapeutic margins, more 

stable, have modulated pharmaco-kinetic 
activity. 

 Very low toxicity and low immunogenic 
activity. 

 Can produce chemically and in readily scalable 
process. 

 Small sized aptamers can easily and efficiently 
get entered into the biological compartments. 

  Aptamers reversibly get denatured and 
phosphodiester bond is more stable chemically. 
 

Disadvantages of aptamers [46-47] 

 Pharmacokinetic properties and other systemic 
properties are very hard to determine and are variable. 
[46] 

 They have small size, so they can easily pass from the 
renal filtration, thus they have a very short half-life. Some 
un-modified aptamers are also highly susceptible to 
serum degradation. This technology is now covered by a 
single intellectual property portfolio. [47] 

 
Strategies to overcome Aptamers limitations (48-50) 

Aptamers are collected for an activity and persistence under 
different physiological conditions while selecting or doing the 
structure activity relationship and medicinal chemistry study 
conducted after discovery. [48] 

By adding conjugation partner we can increase circulating half-life 
like polyethylene glycol.[49] 

Chemical changes made into the sugars enhance nuclease resistance. 
[50] 

DIFFERENCE BETWEEN APTAMER AND ANTIBODY.(51-58) 

 Aptamers are capable of greater specificity and affinity 
than antibodies [51] 

 They can easily be modified chemically to yield improved, 
custom tailored properties.  For instance, a reporter and 
functional groups and PEG can easily be attached to the 
aptamer in a deterministic way.  In fact, they can even be 
combined with antibodies [52,53].  

 Similarly, their ADME properties can be readily tuned by 
conjugation to other groups (PEG, etc.). 

 Their small size leads to a high number of moles of target 
bound per gram, and  they may have improved transport 
properties allowing cell specific targeting and improved 
tissue penetration [54]. 

 They are much more stable at ambient temperature than 
antibodies yielding a much higher shelf life.[55] 

 They can tolerate transportation without any special 
requirements for cooling, eliminating the need for a 
continuous cold chain. [56-58] 

 

Figure9: Aptamers vs. Antibody[102] 
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Prospective Applications of Aptamers in the field of science 

Therapeutic Potential of Aptamers [59-82] 

 Aptamers are getting developed as therapeutics in a variety of 
indications: the treatment of cancer [59], inhibiting proteins 
involved in Alzheimer disease [60], against apparently folded 
pathological isoforms of prion proteins [61,62] that cause 
Creutzfeldt-Jakob disease, against Mycobacterium tuberculosis [63], 
and against hepatitis C virus (HCV) [64-68]. 

Some of the best examples of therapeutic aptamers that have 
progressed through preclinical to clinical development include 
antithrombin aptamer (ARC183) [69,70], anti-platelet-derived 
growth factor (PDGF) aptamer (ARC127 [71-73] and an anti-von 
Willebrand factor aptamer (ARC1779) [74,75], for use as an 
anticoagulant during coronary artery bypass graft surgery, 
treatment of proliferative diseases such as intimal hyperplasia and 
thrombotic thrombocytopenic purpura and other thrombotic 
microangiopathies. These aptamers showed no acute toxicities, no 
evidence of genotoxicity, and no adverse effects in preclinical and 
clinical evaluations. 

The most advanced aptamer in the potential treatment of cancer is 
AS1411. AS1411 aptamer binds nucleolin on the surface of cancer 
cells and induces apoptosis. [76,77] Another aptamer, called SM20, 
isolated against plasminogen activator inhibitor-1, has 
demonstrated in vitro therapeutic potential as an antimetastatic 
agent and could possibly be used as an adjuvant to traditional 
chemotherapy for breast cancer [78]. There are several aptamers 
that have been recently isolated for potential treatment of other 
cancers such as glioblastoma (79), T cell leukemia [79-81], and 
epithelial cancer cells in the breast, colon, lung, ovaries and pancreas 
[82]. Clearly, as aptamer research burgeons and more enter clinical 
trials, aptamers are likely to make a direct and significant 
contribution in the treatment of infectious and acute diseases, and 
chronic diseases such as cancer. 

Aptamers as Templates for Rational Drug Design and Small 
molecule Lead Compounds [83-87] 

Aptamers can also be used indirectly as templates for structure-
based rational drug design and for biochemical screening of small 
molecule lead compounds. Generally, aptamers have a predilection 
of binding functional sites on target proteins in a manner similar to 
small molecule drugs. This property allows structural elucidation of 
the aptamere protein complex to provide insights on the identity of 
the active site that could then be used for rational drug design. Co-
crystal structures of aptamer-thrombin have provided valuable 
insights into the molecular recognition mechanisms adopted by 
aptamers to their respective targets. [83,84] 

The structure function relationship of gp120 binding and HIV-1 
neutralizing aptamer has shown that the Aptamers sterically blocks 
the active site of the protein, and also interferes with protein activity 
by allosteric or non-competitive inhibition. Taken together, these 
biophysical properties of Aptamers make them desirable tools for 
structure-based rational drug design and for biochemical screening. 
[85] 

Aptamers can also be used in high-throughput screening of libraries 
of small molecules, where the displacement of target bound aptamer 
by a small molecule in competition binding could be an effective 
method to identify hits. In recent studies, peptide aptamers have 
also been used for high-confidence validation of therapeutic targets 
and for guiding the discovery of small molecule drugs. [86,87] 

Diagnostic and Bio sensing Potential of aptamers [88-92] 

For aptamer-based diagnostics or biosensors, binding of an aptamer 
to its target molecule must be reported by attaching a signal 
transduction mechanism to the aptamer sequence. Allosteric 
aptamer-based fluorescence resonance energy transfer (FRET) for 
detection of molecular targets offers an excellent choice because of 
the convenience of detection, sensitivity and availability of 
numerous fluorophores and quenchers of nucleic acids. 

 

A study has described linking an RNA aptamer isolated against C 
reactive protein, which is a biomarker for inflammation, sepsis and 
tissue necrosis, to a secondary antibody labelled with a dye or 
enzyme that is easily measured in an immunoassay [89]. This 
aptamer-based sandwich immunoassay provides the unique 
potential of detecting C reactive protein in serum samples of low-
risk patients (1e3 mg/l) as well as high-risk patients (>500 mg/l). 
Through innovation and with the development of automated high-
throughput isolation of aptamers, the aptamer-based sandwich 
immunoassays have evolved to high-throughput microarray-based 
diagnostics. [90,91,92] 

POTENTIAL OF APTAMERS IN TARGETED DELIVERY OF DRUGS 
[92-95] 

Nanoparticle-aptamer technology is dynamic and its application 
extends beyond diagnostics to targeted delivery of drugs. One of the 
common uses of nanoparticle aptamer bioconjugates is for targeted 
delivery of drugs to cancer cells. 

Drugs are loaded inside the nanoparticles that are conjugated to the 
antigen-binding recognition element which bind specifically to 
antigen expressing cells. The nanoparticles are rapidly internalized 
once bound on the surface of diseased cells. The drugs encapsulated 
in the nanoparticles are released inside the cells and destroys the 
integrity of cells. [93] 

Aptamer conjugated magnetic nanoparticles are proposed for in vivo 
isolation of specific cells and also for magnetic resonance imaging 
(MRI) techniques. Aptamer-magnetic nanoparticles were used to 
isolate mesenchymal stem cells and endothelial progenitor cells for 
isolating “ready to transplant” cells as promising methods. [94] 

Nanomaterials for drug delivery are required to be stable and 
biocompatible. Current technology can supply materials that are 
capable of partially fulfilling these properties. Thus, combinations of 
surface coatings with complementary properties are proposed for 
developing better functioning delivery systems. In one example, gold 
nanorods were encapsulated within thin and uniform layer of silica 
shell for enhanced stability and a layer of PEG was used for 
biocompatibility. The composite nanoparticles were functionalized 
with PSMA aptamers and tested for their ability to target the 
nanoparticles to prostate cancer cells. [95] 

CONCLUSION 

With remarkable target specificity and sensitivity, versatile 
biophysical and pharmacokinetic properties, opportunities for 
alternative formulations and schedule of administration, 
improvements in process chemistry and manufacturing economics, 
including economies of scale, aptamers have found themselves a 
substantial niche and are becoming established as a promising new 
class of medicines. Nanoparticle-aptamer bioconjugates provide 
exciting prospects in medical nanotechnology for future disease 
treatments. The advancements in nanomaterial field together with 
cell- Selex procedures offer the controlled release polymer systems 
conjugated to aptamers tweaked to the any target diseased cell. 
Therefore, it is possible to produce a diverse range of specific and 
selective nanoparticle-aptamer bioconjugates. 
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