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ABSTRACT

Objective: Colloid nodular goiter (CNG) is the most common disease of the thyroid, even in non-endemic regions, but the etiology of CNG is unclear. It 
is known that not merely iodine (I) but other chemical elements (ChE) are involved in goitrogenesis. The current study was performed to clarify the 
preferential accumulation of some ChE either in the colloid or in cells of the thyroid gland.

Methods: Eight ChE: Bromine, calcium, chlorine (Cl), I, potassium, magnesium, manganese, and sodium (Na) in the thyroid tissues with diagnosed 
CNG were prospectively evaluated in 16 patients with macrofollicular CNG and 13 patients with microfollicular CNG. The control group included 
thyroid tissue samples from 105 healthy individuals. Measurements were conducted using non-destructive instrumental neutron activation analysis 
with high-resolution spectrometry of short-lived radionuclides.

Results: It was found that in macrofollicular CNG, the mass fraction of Cl and Na was 2.57 and 1.82 times, respectively, higher than in tissues of the 
normal thyroid. In microfollicular CNG, the mass fraction of I was 59% lower, whereas the mass fraction of Na was 67% higher than in tissues of the 
normal thyroid. The level of I in macrofollicular goiter was 2.08 times higher than in microfollicular goiter

Conclusion: There are substantial changes in ChE contents in the goitrous transformed tissue of the thyroid, which depend on the histology of the 
goiter.

Keywords: Macro- and micro-follicular colloid nodular goiter of thyroid, Intact thyroid, Chemical elements, Instrumental neutron activation analysis.

INTRODUCTION

Colloid nodular goiter (CNG) is the most common thyroid disease, even 
in non-endemic regions [1]. CNG is clinically identified in about 4% of 
people older than 30 years [1]. CNG is a benign lesion; however, during 
clinical examination, it can imitate malignant tumors. Furthermore, 
the origination of CNG can stipulate the beginning of the malignant 
transformation of the thyroid gland [2]. Up to now, the etiology of CNG 
is unclear, and it is probably multifactorial [3]. There is an opinion 
that CNG occurs when the thyroid is not able to meet the metabolic 
demands of the body with adequate hormone production. The thyroid 
gland compensates by enlarging, which usually overcomes mild 
deficiencies of thyroid hormones. For over the 20th century, there was 
the governing opinion that NG is the straightforward sequel of iodine 
(I) deficiency. Although, it was found that NG is a frequent disease 
even in those countries and regions where the inhabitants are never 
exposed to I shortage [4]. Moreover, it was found that I excess has 
severe effects on human health and is associated with the presence of 
thyroidal dysfunctions and autoimmunity, NG and diffuse goiter, benign 
and malignant tumors of the gland [5-8]. It was also demonstrated that 
besides the I deficiency and excess, many other dietary, environmental, 
and occupational factors are associated with the NG incidence [9-11]. 
Among them, a disruption of evolutionary stable input of many chemical 
elements (ChE) in the human body after the industrial revolution plays 
a significant role in the etiology of thyroidal disorders [12].

In addition to I, many other ChE is involved in essential physiological 
functions [13]. Crucial or toxic (goitrogenic, mutagenic, and 
carcinogenic) properties of ChE depend on tissue-specific need or 
tolerance, respectively [13]. Deficiency, overload, or an imbalance of the 
ChE may result in cellular dysfunction, degeneration, death, and benign 
or malignant transformation [13-15].

In our earlier studies, the complex of in vivo and in vitro nuclear analytical 
and related methods was developed and used for the investigation of I 
and other ChE contents in the normal and pathological thyroid [16-22]. 
I level in the normal thyroid was scrutinized in relation to age, gender, 
and some non-thyroidal diseases [23,24]. Hereafter, variations of ChE 
content with age in the thyroid of males and females were studied, and 
age and gender dependence of some ChE was perceived [25-41]. In 
addition, a significant difference between some ChE contents in normal 
and cancerous thyroid was demonstrated [42-47].

Histologically, the CNG is cellular hyperplasia of the thyroid acini. There 
are two histological types of CNG: Macro- and micro-follicular. It is clear 
that these two types of CNG have different volume ratios, “colloid to 
cells.”

The present study was executed to elucidate the preferential 
accumulation of some ChE either in the colloid or in cells of the thyroid 
gland. Having this in mind, we focused on assessing the bromine 
(Br), calcium (Ca), chlorine (Cl), I, potassium (K), magnesium (Mg), 
manganese (Mn), and sodium (Na) contents in macro-  and micro-
follicular CNG tissue using non-destructive instrumental neutron 
activation analysis with high-resolution spectrometry of short-lived 
radionuclides (INAA-SLR). A further objective was to compare the levels 
of these ChE in the macro-  and micro-follicular CNG separately with 
those in intact (normal) gland of apparently healthy persons, as well 
as to find differences between the levels of these ChE in the macro- and 
micro-follicular CNG.

All studies were approved by the Ethical Committees of the Medical 
Radiological Research Centre (MRRC), Obninsk. All the procedures 
performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research 
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committee and with the 1964 Helsinki Declaration and its later 
amendments or with comparable ethical standards.

METHODS

All patients who suffered from СNG (n=29, mean age M±SD was 
47±14  years, range 30–64) were hospitalized in the Head and Neck 
Department of the MRRC. A thick needle puncture biopsy of suspicious 
nodules of the thyroid was performed for every patient to permit 
morphological study of thyroid tissue at these sites and to estimate their 
ChE contents. The diagnosis has been confirmed for all patients by clinical 
and morphological results acquired throughout studies of biopsy and 
resected materials. The histological conclusion for all thyroidal lesions 
was the macrofollicular CNG (n=16) and microfollicular CNG (n=13).

Normal thyroids for the control group samples were drawn out at necropsy 
from 105 deceased (mean age 44±21 years, range 2–87), who had died 
suddenly. The majority of deaths were due to trauma. A  histological 
examination in the control group was used to control the age norm 
conformity, also to confirm the absence of micronodules and latent cancer.

All tissue samples were divided into two parts using a titanium 
scalpel  [48]. One was used for morphological study, while the other 
was for ChE analysis. After the samples intended for ChE analysis were 
weighed, they were freeze-dried and homogenized [49]. The pounded 
samples weighing about 10 mg (for biopsy) and 100 mg (for resected 
materials) were used for ChE measurement by INAA-SLR.

Details of sample preparation, activation by neutrons of nuclear reactor, 
gamma-spectrometry, calibration with biological synthetic standards, 
and quality insurance using certified reference material (CRM) of 
International Atomic Energy Agency IAEA H-4 (animal muscle) were 
presented in our earlier publications concerning the INAA-SLR of ChE 
contents in human thyroid, scalp hair, and prostate [18,27,28,50].

A dedicated computer program for INAA-SLR mode optimization was 
used [51]. All the thyroid samples were prepared in duplicate, and 
mean values of ChE contents were used in the final calculation. Using 
Microsoft Office Excel, a summary of the statistics, including arithmetic 
mean, standard deviation, standard error of the mean, minimum and 

maximum values, median, and percentiles with 0.025 and 0.975 levels, 
was calculated for ChE contents. The distinction in the results between 
normal thyroid and two groups of CNG (separately macro- and micro-
follicular), as well as between two groups of CNG, was evaluated by 
the parametric Student’s t-test and non-parametric Wilcoxon-Mann–
Whitney U-test.

IRESULTS

Table  1 presents certain statistical parameters (arithmetic mean, 
standard deviation, standard error of the mean, minimal and maximal 
values, median, and percentiles with 0.025 and 0.975 levels) of the Br, 
Ca, Cl, I, K, Mg, Mn, and Na mass fraction in normal thyroid (n=105), 
macrofollicular CNG (n=16), and microfollicular CNG (n=13).

The comparison of Br, Ca, Cl, I, K, Mg, Mn, and Na mass fraction in 
normal thyroid with those in macro- and micro-follicular CNG is shown 
in Tables 2 and 3, respectively.

The ratios of means and the distinction between mean values of Br, Ca, 
Cl, I, K, Mg, Mn, and Na mass fractions in macro- and micro-follicular 
CNG are presented in Table 4.

DISCUSSION

Precision and accuracy of results
Previously found good agreement of the Br, Ca, Cl, I, K, Mg, Mn, and 
Na contents analyzed by INAA-SLR with the certified data of CRM 
IAEA H-4 [18,27,28,50] indicates an acceptable accuracy of the results 
obtained in the study of ChE of the thyroid samples presented in 
Tables 1-4.

The mean values and all chosen statistical parameters were calculated 
for eight ChE (Br, Ca, Cl, I, K, Mg, Mn, and Na) mass fractions (Table 1). 
The mass fraction of Br, Ca, Cl, I, K, Mg, Mn, and Na was measured in all 
or a major portion of normal thyroid and CNG samples.

Effect of goitrous transformation on ChE contents
From Table  2, it is observed that in macrofollicular CNG, the mass 
fraction of Cl and Na is 2.57 and 1.82 times, respectively, higher than 

Table 1: Some statistical parameters of Br, Ca, Cl, I, K, Mg, Mn, and Na mass fraction (mg/kg, dry mass basis) in normal thyroid and 
colloid nodular goiter of different histology (macro‑ and micro‑follicular)

Tissue Element Mean SD SEM Min Max Median P 0.025 P 0.975
Normal Br 16.3 11.6 1.3 1.90 66.9 13.6 2.57 51.0
n=105 Ca 1692 1022 109 414 6230 1451 460 3805

Cl 3400 1452 174 1030 6000 3470 1244 5869
I 1841 1027 107 114 5061 1695 230 4232
K 6071 2773 306 1740 14,300 5477 2541 13,285
Mg 285 139 16.5 66.0 930 271 81.6 541
Mn 1.35 0.58 0.07 0.510 4.18 1.32 0.537 2.23
Na 6702 1764 178 3050 13,453 6690 3855 10,709

Macro Br 42.2 23.3 10.4 12.0 65.3 40.3 13.6 65.3
n=16 Ca 1455 999 258 209 4333 1264 278 3632

Cl 8749 4089 1546 4226 16,786 8191 4487 15,880
I 1587 1087 302 300 3715 1206 322 3686
K 6254 1801 465 3801 9936 6185 3917 9641
Mg 345 158 41 13.0 531 374 30.5 531
Mn 1.35 0.68 0.18 0.370 2.70 1.20 0.432 2.63
Na 12,211 4164 1075 7229 22,381 11,056 7326 20,493

Micro Br 19.4 7.1 3.5 13.7 29.6 17.1 13.9 28.7
n=13 Ca 1152 610 249 288 2101 1092 358 2025

Cl 9977 3939 2274 5462 12,712 11,756 5777 12,664
I 762 600 173 141 1936 586 173 1929
K 6932 2783 1052 3353 10,318 6461 3423 10,193
Mg 328 134 51 122 497 371 134 486
Mn 2.40 1.70 0.69 0.450 5.50 1.93 0.619 5.16
Na 11,167 2472 1009 8065 14,584 11,518 8153 14,329

M: Arithmetic mean, SD: Standard deviation, SEM: Standard error of the mean, Min: Minimum value, Max: Maximum value, P 0.025: Percentile with 0.025 level,  
P 0.975: Percentile with 0.975 level
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Table 4: Differences between mean values (M±SEM) of Br, Ca, Cl, I, K, Mg, Mn, and Na mass fraction (mg/kg, dry mass basis) in 
macro‑ and micro‑follicular colloid nodular goiter

Element Thyroid tissue U‑test p Ratio

Macrofollicular goiter n=16 Microfollicular goiter n=13 Student’s t‑test p≤ Macro to Micro
Br 42.2±10.4 19.4±3.5 0.094 >0.05 2.18
Ca 1455±258 1152±249 0.411 >0.05 1.26
Cl 8749±1546 9977±2274 0.678 >0.05 0.88
I 1587±302 762±173 0.028 ≤0.01 2.08
K 6254±465 6932±1052 0.571 >0.05 0.90
Mg 345±41 328±51 0.801 >0.05 1.05
Mn 1.35±0.18 2.40±0.69 0.194 >0.05 0.56
Na 12,211±1075 11,167±1009 0.489 >0.05 1.09
M: Arithmetic mean, SEM: Standard error of mean, significant values are in bold

Table 2: Differences between mean values (M±SEM) of Br, Ca, Cl, I, K, Mg, Mn, and Na mass fraction (mg/kg, dry mass basis) in normal 
thyroid and macrofollicular colloid nodular goiter

Element Thyroid tissue U‑test p Ratio

Normal thyroid n=105 Macrofollicular goiter n=16 Student’s t‑test p≤ Goiter to norm
Br 16.3±1.3 42.2±10.4 0.067 >0.05 2.59
Ca 1692±109 1455±258 0.371 >0.05 0.86
Cl 3400±174 8749±1546 0.013 ≤0.01 2.57
I 1841±107 1587±302 0.439 >0.05 0.86
K 6071±306 6254±465 0.745 >0.05 1.03
Mg 285±17 345±41 0.184 >0.05 1.21
Mn 1.35±0.07 1.35±0.18 0.966 >0.05 1.00
Na 6702±1785 12,211±1075 0.00015 ≤0.01 1.82
M: Arithmetic mean, SEM: Standard error of the mean, significant values are in bold

Table 3: Differences between mean values (M±SEM) of Br, Ca, Cl, I, K, Mg, Mn, and Na mass fraction (mg/kg, dry mass basis) in normal 
thyroid and microfollicular colloid nodular goiter

Element Thyroid tissue U‑test p Ratio

Normal thyroid n=105 Microfollicular goiter n=13 Student’s t‑test p≤ Goiter to norm
Br 16.3±1.3 19.4±3.5 0.464 >0.05 1.19
Ca 1692±109 1152±249 0.078 >0.05 0.68
Cl 3400±174 9977±2274 0.101 ≤0.05 2.93
I 1841±107 762±173 0.00003 ≤0.01 0.41
K 6071±306 6932±1052 0.458 >0.05 1.14
Mg 285±17 328±51 0.436 >0.05 1.15
Mn 1.35±0.07 2.40±0.69 0.192 >0.05 1.78
Na 6702±1785 11,167±1009 0.0063 ≤0.01 1.67
M: Arithmetic mean, SEM: Standard error of the mean, significant values are in bold

in tissues of the normal thyroid. From Table  3, it is observed that in 
microfollicular CNG, the mass fraction of I is 59% lower, whereas the 
mass fraction of Na is 67% higher than in tissues of the normal thyroid. 
Thus, if we accept the ChE contents in thyroid glands in the control 
group as a norm, we have to conclude that the Cl, I, and Na level in 
thyroid tissue can be notably changed with a goitrous transformation.

Association between ChE levels and relative volume of colloid and 
cells
Comparison mass fraction of Br, Ca, Cl, I, K, Mg, Mn, and Na in macro- and 
micro-follicular CNG shown that level of I in macrofollicular goiter is 
2.08 times higher than in microfollicular goiter (Table 4). Because the 
relative volume of colloid in the macrofollicular CNG is higher than in 
the microfollicular CNG, it is possible to conclude that I increasingly 
associated with colloid.

Comparison with published data
The published data on ChE contents in the CNG compared to normal 
levels are very sparse and contradictory. For example, information 
about Cl content in CNG was not found. Merely, one paper with results 

on Na level in normal thyroid and CNG was published in 1963 by 
Kamenev [52], but changes of this electrolyte level in goitrous thyroid 
were not shown. A  relative good agreement there is only for I, since 
most of the published studies showed a significant decrease of I content 
in the CNG [53-56].

Information on the ChE contents in macro- or micro-follicular CNG, also 
about the association between ChE level and relative volume of colloid 
and cells in goitrous tissue, was not found.

Limitations
This study has some limitations. First, analytical techniques used in this 
study measure merely eight ChE (Br, Ca, Cl, I, K, Mg, Mn, and Na) mass 
fractions. Future studies should be aimed toward using other analytical 
methods which will elongate the list of ChE investigated in normal 
and goitrous thyroid. Second, the sample size of macro-  or micro-
follicular CNG groups was relatively small and averted investigations 
of ChE contents in CNG group using differentials such as gender, stage 
of disease, and dietary habits of healthy persons and patients with 
CNG. Finally, the generalization of our outcomes may be bounded 
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to the Russian population. Despite these constraints, this study 
provides evidence on goiter-specific tissue Cl, I, and Na level alteration 
demonstrates associations between I and relative volume of colloid 
in CNG, and shows the necessity to continue ChE research of CNG of 
different histology.

CONCLUSION

In this work, ChE analysis was carried out in the tissue samples of normal 
and goitrous thyroid using INAA-SLR. It was shown that INAA-SLR is an 
adequate analytical tool for the non-destructive determination of Br, Ca, 
Cl, I, K, Mg, Mn, and Na content in the tissue samples of human thyroid 
in norm and pathology, including needle biopsy cores. It was perceived 
the considerable changes in ChE contents in the goitrous transformed 
tissue of thyroid, which depends on the histology of goiter. It was found 
that I predominately accumulates in colloid of CNG.
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