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ABSTRACT

Objective: Brain tumor is a formidable challenge for drug development, and drugs derived from many advanced technologies are being tested in 
clinical trials. Synaptosomal-associated protein of 25 kDa (SNAP25) is a membrane-binding protein in neurons and it is critical in neurotransmission 
for the fusion of plasma membrane and synaptic vesicle making it a prime target to address brain tumors. The SNAP-25 gene is responsible for 
personality disorders, schizophrenia, attention deficit, and hyperactivity disorder in human beings. It is recently discovered, that this protein is 
responsible for brain cancer as well. 

Methods: In the present research, 17 investigational and experimental anticancer drugs were selected from the PubChem and DrugBank databases to 
identify potential inhibitors with high stability to treat mutated SNAP25 protein. For this purpose, we have used the structure-based virtual screening 
technique wherein, the candidate molecules are computationally docked into the 3D structure of the biological. The docking was achieved in PyRx 0.8 
software and the drugs were then ranked based on their predicted binding affinity or complementarity to the binding site. 

Results: Based on the ligand binding energy, the top six compounds having greater inhibitory effects towards SNAP25 were selected and then 
visualized with Pymol and Biovia visualizers. The compound Crenolanib has better pharmacological properties and demonstrated higher binding 
affinities with the target protein. Therefore, this Crenolanib docked confirmations were appraised for molecular dynamic simulations. 

Conclusion: The study concluded that the anticancer drug Crenolanib exerted inhibitory potential against the mutated protein SNAP-25 and therefore 
it can be exploited as a cancer modulator to address brain tumors.
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INTRODUCTION

Brain tumor, known as an intracranial tumor, is an abnormal mass 
of tissue in which cells grow and multiply uncontrollably, seemingly 
unchecked by the mechanisms that control normal cells. More than 150 
different brain tumors have been documented, but the two main groups 
of brain tumors are termed primary and metastatic. Primary brain 
tumors include tumors that originate from the tissues of the brain or 
the brain’s immediate surroundings. Primary tumors are categorized 
as glial (composed of glial cells) or non-glial (developed on or in the 
structures of the brain, including nerves, blood vessels, and glands) 
and benign or malignant. Metastatic brain tumors arise elsewhere in 
the body (such as the breast or lungs) and migrate to the brain, usually 
through the bloodstream. These tumors are considered cancer and are 
malignant. Brain tumors are thought to arise when certain genes on the 
chromosomes of a cell are damaged and no longer function properly. 
In some cases, an individual may be born with partial defects in one or 
more of these genes. Environmental factors may then lead to further 
damage. Once a cell is dividing rapidly and internal mechanisms to 
check its growth are damaged, the cell can eventually grow into a tumor. 
Tumors may produce substances that block the immune system from 
recognizing the abnormal tumor cells and eventually overpower all 
internal and external deterrents to its growth.

It is already known, that brain tumors are among the most fatal of 
all forms of cancer. More than two-thirds of adults diagnosed with 
glioblastoma, the most aggressive type of brain cancer will die within 
2 years of diagnosis [1,2]. Brain cancers are also the most common 
and most lethal of all pediatric solid tumors [3]. These tumors have 
proved challenging to treat, largely due to the biological characteristics 
of these cancers, which often conspire to limit progress. These tumors 

are located behind the blood-brain barrier (BBB) — a system of tight 
junctions and transport proteins that protect delicate neural tissues 
from exposure to factors in the general circulation, thus also impeding 
exposure to systemic chemotherapy [4,5]. Furthermore, the unique 
developmental, genetic, epigenetic, and microenvironmental features 
of the brain frequently render these cancers resistant to conventional 
and novel treatments alike [6-8].

Treatment options depend on several factors, such as the size, type, and 
grade of the tumor; if the tumor has spread to other parts of the CNS or 
body; possible side effects; the patient’s preferences and overall health. 
It also includes surgery, radiation therapy, chemotherapy, and targeted 
therapy [7]. For low-grade brain tumors, surgery may be the only 
treatment needed, especially if all of the tumors can be removed. If visible 
tumors are remaining after surgery, radiation therapy and chemotherapy 
may be used. For higher-grade tumors, treatment usually begins with 
surgery, followed by radiation therapy and chemotherapy. Treatments 
using medication are used to destroy cancer cells. Medication may be given 
through the bloodstream to reach cancer cells throughout the body. When 
a drug is given this way, it is called systemic therapy. Medication may also 
be given locally, which is when the medication is applied directly to cancer 
or kept in a single part of the body. Therefore, types of medications used 
for brain tumors include chemotherapy and targeted therapy.

Some of the drugs frequently used for the treatment of brain tumors 
are better at going through the BBB: Carmustine, Citicoline, Belzutifan, 
Etoposide, Lomustine, Methotrexate, Temozolomide, etc. There have 
been different treatment procedures for every drug in combination with 
other cancer therapies, for example, gliadel wafers are a way to give the 
drug carmustine (BiCNU). These wafers are placed in the area where 
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the tumors were removed during surgery. For people with glioblastoma 
and high-grade glioma, the latest standard of care is radiation therapy 
with daily low-dose temozolomide. A combination of 3 drugs, lomustine 
(Gleostine), procarbazine (Matulane), and vincristine (Vincasar), has 
been used along with radiation therapy [8].

At present, bioinformatic analysis is being widely replicated in the 
field of cancer research, which saves the necessity of conducting 
experiments [9,10]. Accordingly, the process of identification of new 
cancer-treating drugs is very complex, expensive, and time-consuming, 
thus, computer-aided drug design approaches have been recognized 
as an alternative to overcome this situation [11-13]. Among these 
approaches, structure-based virtual screening (SBVS) [14-17] using 
molecular docking study [18,19] has become a valuable primary step in 
the identification of novel lead molecules for anticancer drug discovery. 
The process of computational docking starts with a target of known 
structure, such as a crystallographic structure of an enzyme of medicinal 
interest. Docking is then used to predict the bound conformation and 
binding free energy of small molecules to the target. Single docking 
experiments are useful for exploring the function of the target, and 
virtual screening, where a large library of compounds are docked and 
ranked, may be used to identify new inhibitors for drug development.

The protein studied in this review is synaptosomal-associated protein 
of 25 kDa (SNAP25) is a membrane-binding protein in neurons [20], 
which is recently discovered as a tumor suppressor of glioblastoma. 
This protein contributes to the plasma membrane and synaptic vesicle. 
SNAP-25 forms complexes with synaptobrevin in synaptic vesicles 
and with syntaxin in the plasma membrane. In simple terms, SNAP-
25 protein is critical in neurotransmission for the fusion of plasma 
membrane and synaptic vesicle. Several studies investigated the 
relationship between SNAP-25 gene polymorphism and personality 
disorders, schizophrenia, attention deficit, and hyperactivity disorder.

In recent research, it was found that the SNAP25 level of expression was 
decreased in glioma tissues and cell lines, and low-level SNAP25 indicated 
an unfavorable prognosis for glioma patients. The protein inhibited cell 
proliferation, migration, and invasion and fostered glutamine metabolism 
of glioma cells, exerting a tumor suppressor role. Its overexpression exerted 
a lower expression level of MAP2, indicating poor neuronal plasticity 
and connectivity. SNAP25 could regulate glutaminase (GLS)-mediated 
glutaminolysis, and GLS knockdown could rescue the anti-tumors effect 
of this protein in glioma cells. Thus, this protein can regulate cancer 
progression [21,22]. The SBVS is applied to several drugs for brain tumors, 
that are selected from two databases, that is, PubChem and DrugBank. 
Thus, in this research, we performed a docking-based virtual screening 
approach by using PyRx 0.8 tool. The aim was to identify new SNAP25 
protein inhibitors with high binding affinity. The top-ranked compounds 
were then submitted to another screen by using AutoDock 1.5.6.

METHODS

Protein structure preparation
The fasta format sequence of the mutated protein, SNAP25 (ID-P60880) 
was collected from UniProtKB Database [23]. This was modeled with 
the help of the I-TASSER online server [24].

This online server helps in developing computational methods to 
predict the 3-D structure of protein molecules from the amino acid 
sequence and to deduce the biological functions based on the sequence-
to-structure-to-function paradigm. After modeling the proteins, 
PredictSNP was performed to see the percentage of amino acid 
mutations. Amino acid with maximum mutation for the brain tumors 
was selected for further analysis in this case. Therefore, the mutation 
chosen in this case is Q116A [25]. Thus, the mutation was performed 
for the protein with the help of the visualization tool PyMOL (2.5) and 
saved in PDB format for further analysis (Fig. 1) [26]. This molecular 
graphic tool has been used for 3D visualization of macromolecules. The 
utilities of the PyMOL tool have been extensively enhanced by various 

plugins, including macromolecular analysis, homology modeling, 
protein-ligand docking, and pharmacophore modeling. Furthermore, 
Ramachandran Plot was prepared for mutated SNAP25 using the 
Ramachandran Plot- ZLab tool to study the secondary structure of the 
protein (Fig. 2).

Dataset collection and preparation
To identify the potential drugs against mutated SNAP25, data regarding 
17 drugs effective in the case of brain tumors, to be used as ligands 
were collected from PubChem and DrugBank database [27,28] 
(Table 1). Following ligands were used in this computational research: 
Carmustine, Citicoline, Cyclophosphamide, Etoposide, Lomustine, 
Mannitol, Methotrexate, Temozolomide, Belzutifan, Merizomib, 
Indoximod, Galunisertib, Etanidazole, Bafetinib, Glasdegib, Crenolanib, 
and Methfuroxam.

Further, SwissADME was performed by adding the SMILES of these ligands 
to it. ADME parameters were analyzed [29] and Lipinski Rule-of-five was 
performed on these ligands to see whether they are capable of being a 
potent drug or not [30] (Table 2). The selected drugs, which in this case were 
all 17 ligands were imported into OpenBabel within the PyRx 0.8 tool [31] 
and subjected to energy minimization. These minimized compounds were 
then transformed into PDBQT format for further analysis.

SBVS
To identify new potent drugs, an SBVS using docking simulations was 
performed on all the selected 17 ligands for the protein. The mutated 
SNAP-25 modeled structure was used as a receptor for these ligands. 
The calculation of binding energies was performed using PyRx. First, a 
grid box was set to cover the active site of the crystal structure with the 
following dimensions for protein SNAP25 in ˚A: center (X, Y, Z) (95.40, 
93.92, 102.09), dimensions (X, Y, Z) (48.28, 46.51, 142.28) with an 
exhaustiveness of 8. The top-ranked compounds were then submitted 
to another screen by using AutoDock 1.5.6. After loading the PDB 
form of protein in AutoDock, editing was done by deleting the water 
molecules and adding polar hydrogen molecules and Kollman charges. 
Similarly, in the case of selected ligands, the torsion tree parameters 

Fig. 1: Mutated protein SNAP25

Fig. 2: Ramachandran plot for mutated SNAP25 protein
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were set. Then, just like PyRx, grid box dimensions were set and saved, 
and grid.gpf file was saved for each ligand. Auto grid script was run and 
grid.glg file was created. After the successful completion of the auto 
grid, the docking process was performed by saving the dock.dpf file. 
Later, the AutoDock script was run and dock.dlg file was created. The 
completion of this process led to the analysis of the result by saving the 
first model of the ligand-protein binding conformation in PDB format, 
ranked by energy. Finally, an analysis of the finding was performed 
using Discovery Studio [32] and PyMOL [33] programs.

Molecular dynamic simulation
The best-hit compound was subjected to dynamic studies to monitor the 
stability of the compound followed by the root mean square deviation 
(RMSD) and root mean square fluctuation (RMSF) graphs [34]. We have 
used the GROMOS96 54a7 force field through the GROMACS package for 
molecular dynamic simulation in Linux operating system with GUI. A prodrug 
server was used to prepare the protein topologies and GROMOS96 54a7 
force field with respect to simulation files using the standard parameters. 
The simulation run was for 100 ns to prepare the graph ratio followed by 
MMPBSA for the last 50 ns for the accuracy of the results.

RESULTS AND DISCUSSION

Ramachandran plot
To study the secondary structure of our protein, we performed the 
Ramachandran Plot to know the highly preferable areas covering the 

proteins with the help of the Ramachandran Plot-Zlab tool. In the plots, 
we can predict the distribution of amino acid backbone conformations 
in peptide and protein structures. Every amino acid residue in a 
polypeptide can have a specific set of φ and ψ angles, therefore, each 
residue can be represented as a point on this plot with corresponding 
φ and ψ angles as x and y coordinates, respectively. Polypeptides, when 
adopting secondary structures, rotate at specific torsional angles each 
time to form regular repetitive structures such as α-helix and β-sheet. 
Therefore, on plotting these torsional angles to the Ramachandran 
plot, we obtain, a very restricted area on the plot which can be used to 
identify and check the secondary structure in a given polypeptide. The 
backbone torsion angles for right-handed α-helix are approximately 
φ = –57° and ψ = –47° and therefore, occupy the small area on the 
lower-left quadrant. β-the sheet is made up of almost fully extended 
strands, with φ and ψ angles falling in the upper-left quadrant of the 
Ramachandran plot.

Amino acids mentioned with the green color are used to make the 
majority of the protein and black and grey colors are predicting ones 
that make the best structure of the protein. The fourth quadrant is the 
non-allowed region and if amino acids are found in this part, then, it will 
be either orange or red, as mentioned in the graphs below. These amino 
acids falling in the fourth quadrant are not used to make any major part 
of the protein (Fig. 2) [35]. As shown in the figure, the protein has a 
maximum number of amino acids falling under the preferable zone. The 
protein is mainly made of alpha-helical and beta sheets. As predicted by 

Table 1: List of ligands and their structures

PubChem Acc. ID Ligand name Molecular 
formula

Molecular 
weight

Molecular 
refrectivity

No. of H bond 
acceptor

No. of H 
bond donor

CID 2578 Carmustine C5H9Cl2N3O2 214.05g/mol 46.77 3 1
CID 13804 Citicoline C14H26N4O11P2 488.32 g/mol 102.47 12 4
CID 2907 Cyclophosphamide C7H15Cl2N2O2P 261.09 g/mol 62.6 4 1
CID 36462 Etoposide C29H32O13 588.56 g/mol 139.11 13 3
CID 3950 Lomustine C9H16ClN3O2 233.70 g/mol 59.08 3 1
CID 6251 Mannitol C6H14O6 182.17 g/mol 37.93 6 6
CID 126941 Methotrexate C20H22N8O5 454.44 g/mol 118.4 9 5
CID 5394 Temozolomide C6H6N6O2 194.15 g/mol 44.4 5 1
CID 117947097 Belzutifan C17H12F3NO4S 383.34 g/mol 84.61 8 1
CID 11347535 Marizomib C15H20ClNO4 313.78 g/mol 81.64 4 2
CID 405012 Indoximod C12H14N2O2 218.25 g/mol 62.26 3 2
CID 10090485 Galunisertib C22H19N5O 369.42 g/mol 108.18 4 1
CID 3276 Etanidazole C7H10N4O4 214.18 g/mol 50.9 5 2
CID 11387605 Bafetinib C30H31F3N8O 576.62 g/mol 158.18 10 2
CID 25166913 Glasdegib C21H22N6O 374.44 g/mol 111.53 4 3
CID 10366136 Crenolanib C26H29N5O2 443.54 g/mol 132.96 5 1
CID 34313 Methfuroxam C14H15NO2 229.27 g/mol 67.82 2 1

Table 2: ADME parameters for ligands

Ligand name Log Po/w 
(iLOGP)

Log Po/w 
(WLOGP3)

Log Po/w 
(WLOGP)

Log Po/w 
(MLOGP)

Log Po/w 
(SILICOS‑IT)

LIPINSKI‑likeness

Carmustine 1.72 1.53 1.16 0.99 0.66 Yes; 0 violation
Citicoline −4.09 −3.93 −1.48 −6.78 −4.06 Yes ; 1 Violation : Nor 0>10
Cyclophosphamide 1.92 0.63 1.5 0.97 1.13 Yes; 0 violation
Etoposide 3.31 0.6 1.01 −0.14 0.95 No; 2 violations: MW>500, Nor O>10
Lomustine 2.36 2.83 2.25 1.55 1.04 Yes; 0 violation
Mannitol 0.34 −3.1 −3.59 −2.77 −1.91 Yes; 1 violation: NH or OH>5
Methotrexate 1.01 −1.85 0.13 −1.13 −0.66 Yes; 1 violation: Nor O>10
Temozolomide 1.29 −1.06 −2.08 −0.98 −1.78 Yes; 0 violation
Belzutifan 2.15 2.02 4.98 2.21 3.04 Yes; 0 violation
Marizomib 2.1 1.81 0.75 1.44 2.33 Yes; 0 violation
Indoximod 1.56 −1.33 1.13 −1.38 0.98 Yes; 0 violation
Galunisertib 2.75 2.39 3.51 1.84 3.69 Yes; 0 violation
Etanidazole 0.61 −1.34 −1.1 −1.7 −2.58 Yes; 0 violation
Bafetinib 4.16 4.18 5.82 2.52 4.28 Yes; 1 violation: MW>500
Glasdegib 2.41 2.37 2.5 1.64 2.07 Yes; 0 violation
Crenolanib 3.49 3.69 3.54 2.24 3.21 Yes; 0 violation
Methfuroxam 2.55 2.99 3.27 2.04 3.46 Yes; 0 violation
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the plots, SNAP25 protein has 88.889% of amino acids are in the highly 
preferable zone, 9.524% in the preferred area, and the rest 1.587% in 
a non-preferred zone.

SBVS
To find new potentially approved drugs for treating brain tumors, 
SBVS was performed for all 17 ligands for both proteins. PyRx tool 
generated nine different conformations for each ligand which are 
classified by binding affinity (kcal/mol). The first model of the ligand-
protein binding conformation was saved in PDB format and studied 
in PyMOL. The 17 compounds for the mutated protein, displaying the 
free energy of binding are presented in the table below. Only, the top-
ranked compounds with a binding affinity ranging between −7.0 and 
−9.8 kcal/mol were selected for further process.

The top hit selected six ligands including etoposide, methotrexate, 
galunisertib, bafetinib, glasdegib, and crenolanib has shown binding 
energy >−7.0 kcal/mol and <−9.8 kcal.mol for mutated SNAP25 were 
selected for autodocking (Table 3, Figs. 3 and 4).

Thus, these ligands have been submitted to AutoDock 1.5.6 tool, 
separately, for both the proteins and the binding energies were 
calculated again to know the best results for these mutated proteins. 
The results were saved in PDB format and analysis was done with the 
help of PyMOL and the Discovery studio online server. As shown in the 
above table, ligand crenolanib and etoposide have the best binding 
energy results to form a ligand-receptor bond.

Molecular dynamic simulation
The calculated molecular docking results were subjected to the 
molecular dynamic simulation using GPU enabled GROMACS 
package. Ligand topology was generated using the Prodrug server 
followed by adding the default parameters. Initially, GROMACS was 
used to set the system preparation for 1500 steps using the steepest 
descent algorithm and put it into the cubic periodic box with an 
SPCE water model. The dynamic system was complementarily 
maintained with a standard salt concentration of 0.15 M by adding 
Na+ and Cl- counter ions. In terms of NPT equilibration, the phase 
was subjected to a final production run for 100 ns simulation time 
and RMSF and RMSD graph was generated using trajectory files and 
standard parameters.

To formulate new drugs, molecular dynamics studies are mostly 
carried out to evaluate complexation. The RMSD graph defines the 
positional divergence of one or more atoms (Fig. 5) and depicts the 
average deviation as noticed between the corresponding atoms of the 

proteins, whereas the RMSF plot represents the extent of the positional 
variance of a specific atom over time (Fig. 6). The alteration in 
structural compression is reflected by the radius of the gyration graph 
(Fig. 7). As observed in Fig. 7, the protein maintains its compression 
all across the simulation time, and no pronounced peaks or declines 

Table 3: Binding energy (kcal, mol) for ligands in PyRx and 
AutoDock tool

Anticancer drugs Binding affinity towards SNAP‑25
Carmustine −4.2
Citicoline −5.9
Cyclophosphamide −4.4
Etoposide −7.7
Lomustine −5.3
Mannitol −4.4
Methotrexate −7.4
Temozolomide −5.6
Belzutifan −6.6
Marizomib −6.3
Indoximod −6
Galunisertib 7.5
Etanidazole −4.9
Bafetinib −8.1
Glasdegib −7.5
Crenolanib −7.7
Methfuroxam −6.5

Fig. 4: Etoposide interaction with SNAP25 amino acids  
(LEU11, SER99, TYR103, SER106, GLY108, ARG110)

Fig. 3: Crenolanib interaction with SNAP25 amino acids  
(THR 46, ALA42, ARG 45, ILE 44, ASP41, ARG30)

Fig. 5: Root mean square deviation
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were seen, suggesting that the structures did not experience any 
significant structural changes. The solvent accessible surface area 
plots indicate the entire region of the protein that is accessible to the 
ligand molecule (Fig. 8). The primary driver behind the drug’s action 
is the ligand’s binding to the protein’s active or allosteric region. In 
addition, hydrogen bonds are frequently used to stabilize the binding 
modes (Fig. 9).

CONCLUSION AND INTERPRETATION

In this study, initially, the mutated protein, selected from UniProtKB, and 
all 17 ligands were prepared for the SBVS process. Modeling of protein 
was done to delete all the extra molecules attached to it and to make 
it accessible for the autodocking process. With the help of PredictSNP, 
the protein was analyzed for the maximum mutations responsible for 
the disease, and only one, highly mutated amino acid was selected to 
proceed further with our research. PyMOL was used to mutate the 
protein and then, it was used for preparing the Ramachandran Plot. 
Maximum amino acid residues fall under the allowed area making it 
preferable to use i.e. 97% for SNAP25. Similarly, these 17 ligands, which 
were selected with the help of PubChem and DrugBank databases, were 
used to perform SwissADME to create their structures and to study their 
properties with ADME parameters. Furthermore, the LIPINSKI Rule of 
Five was applied to them to check whether they could make a potent 
drug to use. The results were favorable for all these ligands. Thus, a 
SBVS was applied on 17 ligands using PyRx 0.8 software and binding 
affinity for each one of these compounds was calculated for the mutated 
protein. The first model of the protein-ligand conformations was saved 
in PDB format to check the results in PyMOL. Based on the highest 
binding free energy (>−7.0kcal/mol to <−9.8kcal/mol), six ligands, 
that is, etoposide, methotrexate, galunisertib, bafetinib, glasdegib, and 
crenolanib were then verified by using AutoDock (1.5.6) tools for their 
binding efficacy towards the mutated SNAP-25 protein. Among these, 
Crenolanib exhibited the highest binding affinity along with strong and 
stable interactions for SNAP25 (Fig. 3) as validated by the molecular 
dynamic simulation studies (Figs. 5-9). From the findings of the current 
study, it can be hypothesized that the investigational drug Crenolanib 
is a potent inhibitor for the mutated SNAP25 protein and exerts cancer 
modulatory potential.
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