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Objectives: The main objective of this study is to reveal new possible pharmacological effects of ferulic acid. This is achieved by network pharmacology 
by discovering potential target genes for ferulic acid, along with constructing a PPI network for those targets and performing gene enrichment analysis 
to understand possible diseases or disorders being affected due to the target genes. The study involves the molecular docking of target genes with 
ferulic acid to understand the interactions between them.

Methods: ADMETlab 2.0 was used for the pharmacokinetics study of ferulic acid. Using SwissTargetPrediction and STITCH database 79 target genes 
were retrieved which were used to construct a PPI network using the STRING database and for gene enrichment analysis using the ShinyGo tool. 
Analyzing the clusters generated by k-means clustering in the STRING database, three target gene proteins were further used to perform molecular 
docking with ferulic acid using PyRx software, and 2D and 3D visualization was done using Biovia Discovery Studio Visualizer.

Results: The ADMET analysis ferulic acid showed drug-likeliness. SwissTargetPrediction and STITCH database revealed 79 potential target genes. 
Three proteins (RELA, ALOX15, and STAT3) were selected from the PPI network analysis using the STRING database for molecular docking and 
visualization. ALOX15 showed the least binding energy among all three target proteins. Gene enrichment analysis suggests the target proteins are 
involved in cancer, neurological disorders, psychiatric disorders, Alzheimer’s disease, etc.

Conclusion: The findings of this research suggest that ferulic acid may have a wide range of pharmacological effects and gives a new perspective on 
its application in the field of drug discovery.
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INTRODUCTION

Plants produce a variety of secondary metabolites that are crucial for 
ecology, environmental adaptability, and plant defense systems but are not 
necessary for normal development and reproduction [1]. The biological 
effects of these substances include antibacterial activity, antioxidant 
effects, anticancer effects, modulation of detoxification enzymes, immune 
system activation, a reduction in platelet aggregation, and modification 
of hormone metabolism. There are many undiscovered phytocompounds 
and more than a thousand identified phytocompounds. Although it is well 
known that plants employ these compounds to protect themselves, recent 
studies have shown that they can also shield humans from disease [2].

Phenolic compounds, often known as “plant phenols,” are a group of 
plant secondary metabolites that attracted a lot of research interest 
due to their commercial relevance in textile-, food-, and health-related 
industries [1]. Plant phenolics exhibit tremendous antioxidant activity 
and other health benefits. They are regarded as an essential part of the 
human diet. The phenol moiety and resonance stabilized structure of 
phenolic acids, a subclass of plant phenolics, give up an H atom, giving 
them antioxidant properties through a radical scavenging mechanism. 
The antioxidant action of phenolic acids is also mediated through radical 
quenching through electron donation and singlet oxygen quenching. 
Moreover, research on phenolic acids, additional health-protective 
qualities such as their antibacterial, anticancer, anti-inflammatory, 
and anti-mutagenic properties is well-documented. The contribution 
focuses on the potential of phenolic acids in drug development [3].

Ferulic acid (FA), also known as 4-hydroxy-3-methoxycinnamic acid, 
is a phenolic compound that is frequently present in plant tissues and 

is mostly found in the primary cell walls of plants [4]. It is typically 
present in foods such as tomatoes, sweet corn, and rice bran [5]. In 
response to free radicals, FA demonstrates potent anti-inflammatory 
effect by donating one hydrogen atom through its phenolic hydroxyl 
group. Oxidative stress, excessive free radical generation, and 
hyperglycemia are traits of diabetes. FA exhibits anti-diabetic effects 
through scavenging the pancreatic free radicals. A  significant part of 
the etiology of cancer is played by free radicals. FA’s ability to activate 
cytoprotective enzymes and scavenge ROS is connected to its anti-
carcinogenic effect. Reduced lipid peroxidation, DNA single-strand 
breakage, inactivation of certain proteins, and disruption of biological 
membranes are the consequences of this [6]. By reversing the harm 
produced by nicotine, FA has a beneficial impact on the lungs. It also 
shields cells from oxidative damage by boosting the body’s natural 
antioxidant defenses. It exhibits antiapoptotic effect by inhibition of 
externalization of phosphatidyl serine in human peripheral blood 
mononuclear cells. It also exhibits neuroprotective, radioprotective, and 
anti-aging effects [5]. Due the numerous therapeutic effects of ferulic 
acid make it a valuable phytocompound in drug discovery process. 
Hence, the present study aims to study the molecular mechanism of 
ferulic acid using network pharmacology approach.

The one-drug/one-target/one-disease approach to drug discovery, 
which is currently dealing with many issues of safety, efficacy, and 
sustainability, has recently lost popularity in favor of network biology 
and polypharmacology approaches for omics data integration and 
multitarget drug development, respectively. A new paradigm known as 
network pharmacology (NP), which examines the effects of medications 
at the interactome and diseasome levels simultaneously, was created 
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as a result of the fusion of network biology and polypharmacology. To 
attempt to comprehend the activities and interactions of the drug with 
multiple targets, this new field has emerged. Using computing power, 
a systematic catalogue of a drug molecule’s molecular interactions in 
a living cell is produced. In addition to improving both the safety and 
effectiveness of currently available drugs, NP analysis also enables new 
therapeutic options [7].

METHODS

PubChem database screening and ADMET analysis
One of the richest libraries of information on chemical compounds and 
their biological activity is PubChem (https://pubchem.ncbi.nlm.nih.
gov) [8]. The chemical formula, 3D structure, and canonical SMILES of 
ferulic acid were retrieved using this database. ADMET analysis was 
performed using the canonical SMILES in ADMETlab 2.0. The widely 
used AMDETlab web server has undergone a thorough redesign to 
become ADMETlab 2.0, which predicts the pharmacokinetics and 
toxicity of substances [9].

Target gene prediction using SwissTargetPrediction and STITCH
SwissTargetPrediction and STITCH database was used to retrieve 
predicted target genes for ferulic acid in Homo sapiens. In STITCH, 
the filters were set to not more than 50 interactors in the first shell 
and targets with minimum required interaction score of more than 
0.400 were taken into account. SwissTargetPrediction is a free online 
service that accurately predicts the targets of bioactive chemicals 
using a combination of 2D and 3D similarity measures with known 
ligands (http://www.swisstargetprediction.ch) [10]. You can access 
STITCH (a “search tool for chemical interactions”) at http://stitch.
embl.de/. It incorporates data on interactions from binding tests, 
metabolic pathways, crystal structures, and drug-target relationships. 
The chemical relationship networks can be explored using STITCH, 
including in the context of associated binding proteins [11]. The 
target genes obtained from SwissTargetPrediction and STITCH 
were then used as input in Gene List Venn Diagram (https://www.
bioinformatics.org/gvenn/) to check for duplicate target genes and 
eliminate them.

Protein-protein network construction and analysis using STRING 
database
You can access the STRING database online at https://string-db.org/. 
It seeks to include both known and predicted functional and physical 
interactions between proteins. To do this, the STRING database gathers 
and evaluates data from a variety of sources, including: The systematic 
transfer of interaction evidence from one organism to another, 
databases of interaction experiments and annotated complexes or 
pathways, and automated text mining from scientific literature and 
computational interaction predictions based on conserved and co-
expression genomic context [12]. The list of 79 target genes obtained 
using SwissTargetPrediction and STITCH were used here to create a 
protein-protein interaction network in Homo sapiens and the minimum 
interaction score of 0.900 was used. Further, k-means clustering was 
also performed.

Gene enrichment analysis using ShinyGO
The list of 79 target genes obtained using SwissTargetPrediction and 
STITCH was used in the ShinyGO tool the for KEGG pathway, GO Molecular 
function, GO biological processes, and disease alliance enrichment 
analysis to understand the roles of target proteins interacting with 
ferulic acid. An easy-to-use and graphical tool for enrichment analysis 
is ShinyGO. With graphical visualization of enrichment, protein 
interactions, pathway, and gene properties, ShinyGO is used for in-
depth analysis of gene list lists. A sizable annotation database generated 
from the STRING and Ensembl databases serves as the foundation for 
ShinyGO. One of ShinyGO’s distinctive features is its application program 
interface, which provides access to STRING and KEGG databases for 
the retrieval of protein-protein interaction networks and pathway 
diagrams. Another feature is the graphical visualization of enrichment 
results and gene characteristics [13].

Molecular docking
Ligand preparation
The 3D structure of Ferulic acid downloaded in.sdf format from 
PubChem Database was converted to.pdb format using Online SMILES 
Translator and Structure File Generator (https://cactus.nci.nih.gov/
translate/).

Protein preparation
The protein structures for STAT3, ALOX15, and RELA target genes 
(PDB ID: 6TLC, 7LAF, and 1NFI) were retrieved from the Protein Data 
Bank (PDB) database is an international repository for structural 
information on biological macromolecules [14]. All the structures 
were then purified using Biovia Discovery Studio Visualizer. Water 
molecules, hetero atoms, and all chains except the A chain of all proteins 
were removed and polar hydrogen were added to the structures. The 
commercial-grade  Biovia Discovery studio visualizer is a tool for 
visualizing, analyzing, and sharing protein, and modeling data [15].

Docking and visualization
Docking of the ligand with all the three proteins was performed using 
PyRx. PyRx is a program for virtual screening in computational drug 
discovery that enables screening of libraries of compounds against 
putative therapeutic targets. It allows medicinal chemists to conduct 
virtual screening from any platform and supports users at every stage 
of the procedure, from data preparation through job submission and 
outcome analysis. PyRx is a useful tool for computer-aided drug design 
since it has a docking wizard with an intuitive UI. For structure-based 
drug creation, PyRx additionally contains a potent visualization engine 
and chemical spreadsheet-like functionality [16]. The protein structures 
were converted to.pdbqt format and energy minimization was done for 
the ligand and then converted to.pdbqt format. Docking was performed 
for ligand with each protein and the docked complex having the lowest 
binding energy was selected for visualization.

Visualization was performed using Biovia Discovery Studio Visualizer. 
The docked ligand structure along with purified protein was uploaded 

Fig. 1: The workflow of the in silico analysis of ferulic acid
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and the 2D and 3D interactions of the same were visualized after 
labeling the amino acids interacting with ligand and customizing the 
structures.

RESULTS
Ligand information retrieval and ADMET analysis
The chemical formula, canonical SMILES, and 3D structure of ferulic 
acid were retrieved from PubChem database as shown in Fig.  2 and 
Table 1. The ADMET analysis of ferulic acid performed using ADMETlab 
2.0 indicated that it falls under acceptable category and consists of all 
drug-likeness properties. The analysis results are shown in Table 2 and 
Fig. 3.

Target genes prediction of ferulic acid
SwissTargetPrediction and STITCH were used for prediction of target 
genes of ferulic acid. The results obtained were a list of 79 genes 
(Table  3) that are possible targets of ferulic acid. There targets were 
further used for protein-protein network construction.

Protein-protein interaction (PPI) network construction
The 79 target genes retrieved from SwissTargetPrediction and STITCH 
were imported into the STRING database and a protein-protein 
interaction network was constructed for Homo sapiens and minimum 
required interaction score of 0.900 was selected. The PPI obtained 
as shown in Fig.  4 consisted of 79 nodes, 54 edges, an average node 
degree of 1.37, the average local clustering coefficient of 0.393, and a 
PPI enrichment p-value of 5.2e-09. Further, after performing k-means 
clustering, the first cluster (Fig.  5) contained 33 genes, the second 
cluster (Fig. 7) contained 21 genes, and third cluster (Fig. 7) contained 
25 genes. RELA, ALOX15, and STAT3 from cluster 1, cluster 2, and 
cluster 3, respectively, were found to have maximum interactions with 
other genes in the cluster and were taken further for molecular docking 
studies.

Gene enrichment analysis
The list of 79 target genes was imported to ShinyGo tool for gene 
enrichment analysis. Enrichment carried out for KEGG pathway (Fig. 8) 
reflected that the target gene proteins are majorly involved in nitrogen 
metabolism among others. The target proteins in GO molecular function 
category are involved in carbonate dehydratase activity, hydroperoxy 
icosatetraenoate dehydratase activity, estrogen 16-alpha-hydroxylase 
activity, and more (Fig. 9). In the GO biological process category, they 
are mostly implicated in one-carbon metabolic process, bicarbonate 
transport, and response to amyloid-beta (Fig. 10). Finally, in the disease 
alliance category, they are involved in stomach carcinoma, cervix uteri 
carcinoma in situ, pulmonary emphysema, lung disease, and many more 
as shown in Fig. 11.

Molecular docking and visualization
Molecular docking was performed using PyRx for the three target gene 
proteins selected after PPI network analysis. RELA (PDB ID: 1NFI), 
ALOX15 (PDB ID: 7LAF), and STAT3 (PDB ID: 6TLC) were docked with 
Ferulic acid (PubChem ID: 445858). The docked complex having lowest 
binding energy as shown in Table 4 was taken further for visualization 
using Biovia Discovery Studio Visualizer. The results visualization of the 
2D and 3D interactions is shown in Figs. 12 and 13, respectively. The 
non-bond information is shown in Table 5.

DISCUSSION

Over the past 10  years, the rate of drug failure in late-stage clinical 
development has increased in tandem with the preponderance of the 
idea that the goal of drug discovery is to create ligands that are as highly 
selective as possible to work solely on specific therapeutic targets. 
A congruence between genetic reductionism and emerging molecular 
biology methods that allowed for the isolation and characterization 
of specific “disease-causing” genes gave rise to the concept of “one 
gene, one drug, one disease” or rational drug design. On the other 
hand, network biology proposes that the approach to drug discovery 
should be to find the changes in the network that causes the disease. 
According to network biology study, perturbing robust phenotypes 
may involve manipulating many proteins as in most situations; there is 
little impact on illness networks when a single node is deleted. In place 
of the prevalent presumption of single target drug discovery, a new 
method to drug discovery known as polypharmacology is emerging 
with an expanded knowledge of the role of networks in the redundancy 
and robustness of biological systems issues. This novel method has 
important effects on the toxicity and efficacy of the drug development 
process. Network pharmacology thereby expands the existing window 

Table 2: Absorption, distribution, metabolism, excretion, and toxicity analysis of ferulic acid

Molecular weight Absorption Distribution Metabolism Excretion Toxicity

WS SP BBB CYP3A4‑sub CYP2C19‑inh TC ORAT HT AMES
194.06 −1.761 0.329 0.075 0.026 7.48 0.733 0.345 0.114
WS=Water solubility (log mol/L), SP=Skin permeability (log Kp), BBB=Blood brain barrier permeability, TC=Total clearance (log mol/min/kg), HT=Human 
hepatotoxicity, ORAT=Oral rat acute toxicity

Table 1: Ligand name, PubChem ID, molecular formula, and 
canonical SMILES of ferulic acid

Ligand 
name

PubChem 
ID

Chemical 
formula

Canonical SMILES

Ferulic 
acid

445,858 C10H10O4 COC1=C (C=CC (=C1) 
C=CC (=O) O) O

Fig. 2: 3D structure of ferulic acid

Fig. 3: Bioavailability radar for ferulic acid
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of opportunity for druggable targets [17]. The present study was done 
using this concept of network pharmacology.

The chemical absorption, distribution, metabolism, excretion, and 
toxicity (ADMET) plays important roles in drug discovery and 
development together with network pharmacology. A  drug candidate 
should have adequate ADMET qualities at a specific therapeutic dose 
in addition to sufficient efficacy against the therapeutic target. The 
“Rule of Five,” which was developed by Lipinski and his colleagues, is a 
well-known rule-based drug-likeness filter that determines whether a 
molecule is effectively absorbed orally or not. Molecular weight (MW) 
≤ 500, octanol/water partition coefficient (A log P) ≤ 5, the quantity of 
hydrogen bond donors (HBDs) ≤ 5, and the quantity of hydrogen bond 
acceptors (HBAs) ≤ 10, are the five rules. If a molecule breaks two or 
more of the four requirements, it would not be considered orally active, 
according to this criterion [18]. Based on these rules, ferulic acid is orally 
active. Along with Lipinski rule of five, in the present study, the drug-
likeliness of ferulic acid is supported by the forementioned results. In 
the absorption studies, logS that is the logarithm of aqueous solubility 
value was studied and ferulic acid showed optimal absorption. The 
blood-brain barrier (BBB) penetration was taken into account, which is 
essential for medications that act on the CNS and need to cross the BBB 
to reach their molecular target. Ferulic acid demonstrated adequate 
BBB penetration. Almost two-thirds of known medicines in humans are 
metabolized by the 57 isozymes that make up the human cytochrome 
P450 family (phase I enzymes), with five isozymes accounting for 
the majority of this activity (A2, 3A4, 2C9, 2C19, and 2D6). In the 
metabolic study of ferulic acid, CYP3A4 and CYP2C19 isoforms were 
taken into account and results showed probability of being substrate 
and inhibitor, respectively. Clearance (CL), a crucial pharmacokinetic 
parameter that determines, along with the volume of distribution, the 
half-life and, consequently, how frequently the medication should be 
provided, was investigated in the excretion investigations. Ferulic acid 

Table 3: (Continued)

Serial 
number

Gene Uniprot 
ID

Description

54 CCND1 
CDK4

P24385 
P11802

Cyclin‑dependent  
kinase 4/cyclin D1

55 TUBB3 Q13509 Tubulin beta‑3 chain
56 ABCB1 P08183 P‑glycoprotein 1
57 FBP1 P09467 Fructose‑1, 6‑bisphosphatase
58 TOP2A P11388 DNA topoisomerase II alpha
59 GLO1 Q04760 Glyoxalase I
60 BACE1 P56817 Beta‑secretase 1
61 ACE P12821 Angiotensin‑converting  

enzyme (by homology)
62 REN P00797 Renin
63 PARP1 P09874 Poly (ADP‑ribose) polymerase‑1
64 MAOA P21397 Monoamine oxidase A
65 AHR P35869 Aryl hydrocarbon receptor
66 KDM2A Q9Y2K7 Lysine‑specific demethylase 2A
67 TPMT P51580 Thiopurine S‑methyltransferase
68 CTNNB1 P35222 Axin1/beta‑catenin
69 F2 P00734 Thrombin
70 SLC13A5 Q86YT5 Solute carrier family  

13 member 5
71 CYCS P99999 Cytochrome c, somatic
72 ERVFRD‑1 P60508 Endogenous retrovirus group 

FRD, member 1
73 CXCL2 P19875 Chemokine (C‑X‑C motif) ligand 2
74 CXCL3 P19876 Chemokine (C‑X‑C motif) ligand 3
75 CXCL1 P09341 Chemokine (C‑X‑C motif) ligand 1
76 TMEM30B Q3MIR4 Transmembrane protein 30B
77 TMEM30A Q9NV96 Transmembrane protein 30A
78 ERVW‑1 Q9UQF0 Endogenous retrovirus  

group W, member 1
79 TMEM30C A0ZSE6 Transmembrane protein 30C
TLR: Toll‑like receptor

Table 3: Predicted target genes of ferulic acid

Serial 
number

Gene Uniprot 
ID

Description

1 CA2 P00918 Carbonic anhydrase II
2 CA7 P43166 Carbonic anhydrase VII
3 CA1 P00915 Carbonic anhydrase I
4 CA6 P23280 Carbonic anhydrase VI
5 CA12 O43570 Carbonic anhydrase XII
6 CA14 Q9ULX7 Carbonic anhydrase XIV
7 CA9 Q16790 Carbonic anhydrase IX
8 CA5A P35218 Carbonic anhydrase VA
9 CA5B Q9Y2D0 Carbonic anhydrase VB
10 MAOB P27338 Monoamine oxidase B
11 AKR1B1 P15121 Aldose reductase
12 ALOX5 P09917 Arachidonate 5‑lipoxygenase
13 MMP9 P14780 Matrix metalloproteinase 9
14 MMP1 P03956 Matrix metalloproteinase 1
15 MMP2 P08253 Matrix metalloproteinase 2
16 PTPN1 P18031 Protein‑tyrosine phosphatase 1B
17 CA13 Q8N1Q1 Carbonic anhydrase  

XIII (by homology)
18 CA3 P07451 Carbonic anhydrase III
19 APP P05067 Beta amyloid A4 protein
20 NFE2L2 Q16236 Nuclear factor erythroid 

2‑related factor 2
21 STAT3 P40763 Signal transducer  

and activator of transcription 3
22 HSD11B1 P28845 11‑beta‑hydroxysteroid 

dehydrogenase 1
23 ESR2 Q92731 Estrogen receptor beta
24 CA4 P22748 Carbonic anhydrase IV
25 TLR4 O00206 Toll‑like receptor 4  

(by homology)
26 PTGS1 P23219 Cyclooxygenase‑1
27 MET P08581 Hepatocyte  

growth factor receptor
28 CYP1A1 P04798 Cytochrome P450 1A1
29 CYP1A2 P05177 Cytochrome P450 1A2
30 NQO2 P16083 Quinone reductase 2
31 CYP1B1 Q16678 Cytochrome P450 1B1
32 CPA1 P15085 Carboxypeptidase A1
33 EGFR P00533 Epidermal growth factor 

receptor erbB1
34 PTGS2 P35354 Cyclooxygenase‑2
35 TTR P02766 Transthyretin
36 KDM4E B2RXH2 Lysine‑specific  

demethylase 4D‑like
37 KDM3A Q9Y4C1 Lysine‑specific demethylase 3A
38 KDM6B O15054 Lysine‑specific demethylase 6B
39 FTO Q9C0B1 Alpha‑ketoglutarate‑  

dependent dioxygenase FTO
40 KDM4A O75164 Lysine‑specific demethylase 4A
41 KDM4C Q9H3R0 Lysine‑specific demethylase 4C
42 TUBB1 Q9H4B7 Tubulin beta‑1 chain
43 RELA Q04206 Nuclear factor  

NF‑kappa‑B p65 subunit
44 FYN P06241 Tyrosine‑protein kinase FYN
45 LCK P06239 Tyrosine‑protein kinase LCK
46 SLC16A1 P53985 Monocarboxylate  

transporter 1 (by homology)
47 TLR9 Q9NR96 TLR7/TLR9
48 AKR1B10 O60218 Aldo‑keto reductase  

family 1 member B10
49 ALOX15 P16050 Arachidonate 15‑lipoxygenase
50 PRKCE Q02156 Protein kinase C epsilon
51 F3 P13726 Coagulation  

factor VII/tissue factor
52 NOS2 P35228 Nitric oxide synthase, inducible
53 NGFR P08138 Low affinity neurotrophin 

receptor p75NTR

(Contd...)
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showed a moderate clearance value. In the toxicity studies, the human 
hepatotoxicity (HT), the AMES test for mutagenicity and Rat Oral Acute 
Toxicity (ORAT) which is determination of acute toxicity in mammals 
were studied. Ferulic acid showed no toxicity in the HT and AMES 
test [19].

One of the important aspects of drug discovery using network 
pharmacology is identification of multiple target genes for the drug 
candidate. In this study, the target genes for ferulic acid were identified 
using SwissTargetPrediction and STITCH database which resulted 
in 79 possible target genes (Table 3). There genes were then used to 

construct PPI network using STRING database followed by k-means 
clustering which generated three clusters. On the analysis of the 
clusters generated, one gene having maximum number of interactors 

Fig. 4: PPI network obtained with minimum required interaction score of 0.900

Fig. 5: Cluster 1 after performing k-means clustering

Fig. 7: Cluster 3 after performing k-means clustering

Fig. 6: Cluster 2 after performing k-means clustering
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was selected from each cluster (RELA, ALOX15, and STAT3). These 
were further taken up for molecular docking with Ferulic acid to study 
the ligand-protein interaction. All three docked structures showed 
low binding energy which suggests that ferulic acid may interact with 
these targets. Among the three targets, ALOX15 required least binding 
energy suggesting significant interacting with ferulic acid. These results 

suggest that ferulic acid may show pharmacological activity against 
these possible targets.

The list of target genes obtained from SwissTargetPrediction 
and STITCH database were to perform gene enrichment analysis 
using ShinyGo tool. The KEGG pathway analysis showed that the 

Fig. 10: GO biological process enrichment

Fig. 8: KEGG pathway enrichment

Fig. 9: GO Molecular function enrichment
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possible target genes of ferulic acid are majorly involved in nitrogen 
metabolism. The metabolism of nitrogen affects how malignancies 
form. According to one study, a malfunction in nitrogen metabolism 
may use the Wnt signaling pathway to hasten the development of lung 
adenocarcinoma [20]. Target genes may also be involved in tryptophan 
metabolism, according to the pathway analysis. Several neurological 
illnesses (Alzheimer’s disease, autism, Parkinson’s disease, Huntington’s 
disease, epilepsy, amyotrophic lateral sclerosis, and multiple sclerosis) 
and psychiatric problems (Depression, Anxiety, Schizophrenia, and 
Bipolar disorder) are very strongly tied to different enzymes or 
products of the tryptophan metabolic process [21]. This suggests that 
ferulic acid may be a candidate drug of cancer, neurological disorders 
and psychiatric disorders. The GO molecular function analysis results 
implicated the involvement of target genes in Carbonate dehydratase 
activity, hydroperoxy icosatetraenoate dehydratase activity, Estrogen 
16-alpha-hydroxylase activity, and Histone H3-methyl-lysine-36 
demethylase activity. There are studies that suggest association of 
Carbonate dehydratase activity with sleep apnea severity and related 
Hypoxemia [22]. Estrogen metabolites created by Estrogen 16-alpha-
hydroxylase activity, biologically strong estrogens, are associated with 
breast cancer risk [23]. The Go biological process analysis showed 
involvement of target genes in mainly in One-carbon metabolic process, 
bicarbonate transport, and response to amyloid-beta. One carbon 

metabolism and bicarbonate transport are known to be associated 
with cancer [24,25]. Other illnesses include brain dysfunction; kidney 
stones, systemic acidosis, and hypertension are brought on by defective 
bicarbonate transport. Bicarbonate transporter expression levels 
have been found to be altered in patients with lung, breast, and colon 
cancer [25]. In case of response to amyloid-beta, genetic variation in 
the response to amyloid beta-  deposition is observed to influence 

Table 4: Binding affinity of target gene protein with ferulic acid

Ligand Binding affinity

RELA (1NFI) ALOX15 (7LAF) STAT3 (6TLC)
Ferulic acid −5.8 −6.5 −6.0

Table 5: Nonbond information

Name Bonds From To
1nfi‑Ferulic 
acid

Hydrogen bond A: ASN115:HD21 N: UNK0:O
Hydrogen bond N: UNK0:H A: GLY44:O
Hydrogen bond N: UNK0:H A: TYR36:O
Hydrogen bond A: GLY92:CA N: UNK0:O
Hydrogen bond A: VAL91:CG2 N: UNK0
Hydrogen bond A: SER42:C, O; 

ALA43:N
N: UNK0

Hydrogen bond N: UNK0 A: ARG35
Hydrogen bond N: UNK0 A: ALA43

6tlc‑Ferulic 
acid

Hydrogen bond N: UNK0:H A: ASP237:OD1
Hydrogen bond N: UNK0:C A: SER319:OG
Hydrophobic bond N: UNK0 A: LYS233

7laf‑Ferulic 
acid

Hydrogen bond A: GLU12:HN N: UNK0:O
Hydrogen bond A: ALA13:HN N: UNK0:O
Hydrogen bond N: UNK0:H A: LYS175:O
Hydrogen bond A: TRP109:HE1 N: UNK0
Hydrophobic A: TRP109 N: UNK0
Hydrophobic N: UNK0:C A: ARG407
Hydrophobic A: TYR408 N: UNK0:C
Hydrophobic N: UNK0 A: ALA13

Fig. 11: GO disease alliance enrichment

Fig. 12: 2D interaction visualisation of gene target proteins with Ferulic acid. (a) RELA, (b) ALOX15, (c) STAT3

cba
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the risk of Alzheimer’s disease [26]. The disease alliance analysis 
revealed stomach carcinoma, cervix uteri carcinoma in situ, pulmonary 
emphysema, lung disease, and arteriosclerosis as major diseases 
associated with the target genes. These findings suggest that ferulic 
acid may have a broad range of pharmacological effects and may be a 
possible drug candidate against these diseases or disorders.

ALOX15 gene encodes an enzyme that is a member of the lipoxygenase 
family of proteins. This enzyme acts on various polyunsaturated fatty 
acid substrates generating many bioactive lipid mediators such as 
lipoxins, eicosanoids, hepoxilins, and other molecules. The encoded 
enzyme and its reaction products have been associated with regulating 
immunity and inflammation [27]. This gene has been implicated 
with most diseases mentioned earlier such as inflammation, vascular 
diseases such as hypertension, atherosclerosis, neurological diseases 
such as Alzheimer’s disease, Parkinson’s disease, and also other 
diseases such as diabetes and obesity [28]. The PPI network analysis 

showed that ALOX15 was one of the gene with maximum number of 
interactors and molecular docking studies showed that it required least 
binding to interact with ferulic acid, these results also strongly support 
that ferulic acid may be a candidate drug against these diseases.

CONCLUSION

Ferulic acid may have a variety of pharmacological effects, according 
to the results of this research study based on network pharmacology 
and molecular docking. The information from the gene enrichment 
analysis can be utilized to develop ferulic acid as a drug that is effective 
in treating a variety of conditions, including cancer, neurological 
disorders, psychiatric disorders, Alzheimer’s disease, pulmonary 
emphysema, arteriosclerosis, and many more. This study offers a fresh 
viewpoint on the use of ferulic acid as a treatment for the conditions 
indicated above.
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