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ABSTRACT 

The present paper deals with common fixed point theorem in fuzzy metric space by employing the notion of occasionally weakly compatible 
mappings. Our result generalizes the recent result of Singh et. al. [16]. 
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INTRODUCTION 

In 1965, Zadeh [17] introduced the concept of Fuzzy set as a new way to 

represent vagueness in our everyday life. However, when the uncertainty 
is due to fuzziness rather than randomness, as sometimes in the 

measurement of an ordinary length, it seems that the concept of a fuzzy 
metric space is more suitable. We can divide them into following two 

groups: The first group involves those results in which a fuzzy metric on 

a set X is treated as a map where X represents the totality of all fuzzy 
points of a set and satisfy some axioms which are analogous to the 

ordinary metric axioms. Thus, in such an approach numerical distances 

are set up between fuzzy objects. On the other hand in second group, we 
keep those results in which the distance between objects is fuzzy and the 

objects themselves may or may not be fuzzy.  In this paper we deal with 

the Fuzzy metric space defined by Kramosil and Michalek [10] and 
modified by George and  Veeramani [4]. Recently, Grabiec [5] has proved 

fixed point results for Fuzzy metric space. In the sequel, Singh and 

Chauhan [13] introduced the concept of compatible mappings in Fuzzy 

metric space and proved the common fixed point theorem.  Jungck et. al. 
[8] introduced the concept of compatible maps of type (A) in metric space 

and proved fixed point theorems.  Cho [2, 3] introduced the concept of 

compatible maps of type () and compatible maps of type () in fuzzy 

metric space. In 2011, using the concept of compatible maps of type (A) 

and  type (), Singh et. al. [14, 15] proved fixed point theorems in a fuzzy 
metric space. Recently in 2012, Jain et. al. [6, 7] and Sharma et. al. [12] 

proved various fixed point theorems using the concepts of semi-

compatible mappings,  property (E.A.) and absorbing mappings. In 
this paper, a fixed point theorem for six self maps has been established 

using the concept of occasionally weak compatible maps which 

generalizes the result of Singh et. al. [16]. For the sake of completeness, 
we recall some definitions and known results in Fuzzy metric space.  

2,Preliminaries 

Definition 2.1. [11]  A binary operation * : [0, 1] × [0, 1]  [0, 1] is 
called a  

t-norm  if   ([0, 1], *) is an abelian topological monoid with unit 1 such 

that  

a * b   c *d   whenever   a   c   and   b   d   for   a, b, c, d  [0, 1]. 

Examples of  t-norms are   a * b = ab     and   a * b = min{a, b}. 

Definition 2.2. [11]  The 3-tuple (X, M, *) is said to be a Fuzzy metric 
space if X is an arbitrary set, * is a continuous t-norm and M is a Fuzzy 

set in X
2
 × [0, ) satisfying the following conditions :  

for all  x, y, z  X   and  s, t > 0. 

 (FM-1)  M(x, y, 0) = 0, 

(FM-2)  M(x, y, t) =1  for all t > 0  if and only if   x = y, 

(FM-3)  M (x, y, t) =  M (y, x, t), 

(FM-4)  M(x, y, t) * M(y, z, s)  M(x, z, t + s), 

(FM-5)  M(x, y, .) : [0, )  [0, 1] is left continuous,  

(FM-6)  
t
lim
  

M(x, y, t) =1. 

Note that M(x, y, t) can be considered as the degree of nearness between 

x and y with respect to t.  We identify x = y with M(x, y, t) = 1  for all t > 
0. The following example shows that every metric space induces a Fuzzy 

metric space. 

Example 2.1. [11] Let (X, d) be a metric space.  Define a * b = min  {a, 

b} and 

t
M(x, y, t)

t d(x, y)



  for all x, y  X  and all t > 0.  

Then (X, M, *) is a Fuzzy metric space.  It is called  the Fuzzy metric 

space induced by d. 

Definition 2.3. [11]  A sequence {xn}  in a Fuzzy metric space  (X, M, *) 

is said to be  a Cauchy sequence   if and only if for each  > 0,  t > 0, 

there exists n0  N such that   M(xn, xm, t) > 1 -    for all  n, m   n0.   

The sequence {x
n

} is  said to converge  to a point x in X  if and only if  

for each   > 0,  t > 0 there exists  n
0
  N  such that M(x

n
, x, t) > 1 -   

for all n  n
0
.  

A Fuzzy metric space (X, M, *) is said to be complete if every  Cauchy  

sequence in it converges to a point in it. 

Definition 2.4. [13]  Self mappings A and S of a Fuzzy metric space  (X, 

M, *)  are said to be compatible  if and only  if  M(ASx
n

, SAx
n

, t)  1 

for all t > 0, whenever {x
n

} is a sequence in X such that Sx
n
, Ax

n
  p  

for some  p in X as  

n . 

Definition 2.5. [14] Two self maps A and B of a fuzzy metric 

space  
(X, M, *) are said  to be weak compatible if they commute at 

their coincidence points, i.e. Ax = Bx  implies ABx = BAx.  

Definition 2.6. Self maps A and S of a Fuzzy metric space (X, M, *) 
are said to be occasionally weakly compatible (owc) if and only if 

there is a point x in X which is coincidence point of A and S at which 

A and S commute. 
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Proposition 2.1. [15] In a fuzzy metric space (X, M, *) limit of a sequence 

is unique.  

Proposition 2.2. [13] Let S and T be compatible self maps of a Fuzzy 

metric space (X, M, *) and let {xn} be a sequence in X such that  Sxn, 

Txn  u for some u in X. Then  STxn  Tu   provided T is  continuous. 

Proposition 2.3. [13]  Let S and T be compatible self maps of a Fuzzy 

metric space (X, M, *) and  Su = Tu   for some u in X then  

STu = TSu = SSu = TTu.  

Lemma 2.1. [5] Let (X, M, *) be a fuzzy metric space. Then for all x, y  

X, M(x, y, .) is a non-decreasing function.  

Lemma 2.2. [1] Let  (X, M, *) be a fuzzy metric space.  If there exists k 

 (0, 1) such that for all x, y  X      

   M(x, y, kt)     M(x, y, t)   t > 0 

 then  x = y. 

Lemma 2.3. [15]  Let {x
n

} be a sequence in a fuzzy metric space   (X, M, 

*).  If there exists a number k  (0, 1) such that 

M(x
n+2

, x
n+1

, kt)    M(x
n+1

, x
n
, t)    t > 0   and  n  N.  

Then {x
n

} is  a Cauchy sequence in X. 

Lemma 2.4.[9] The only t-norm * satisfying r * r  r for all r  [0, 1] is 
the minimum t-norm, that is 

a * b = min {a, b} for all a, b  [0, 1]. 

3.Main Result. 

Theorem 3.1. Let (X, M, *) be a complete Fuzzy metric space with 

continuous  t-norm * and t * t   t, for all  t  [0, 1]  and let A, B, S, T, P 

and Q be mappings from X into itself such that the following conditions 
are satisfied: 

(a) P(X)   ST(X),    Q(X)    AB(X);   

(b) AB = BA,  ST = TS,  PB = BP,  QT = TQ; 
(c) either P or AB is continuous; 

(d) (P, AB) is compatible and (Q, ST) is occasionally weakly 

compatible; 

(e) There exists k  (0, 1) such that  x, y X and t > 0, 

M(Px, Qy, kt) ≥ Min {M(Qy, STy, t), M(ABx, STy, t), M(Px, ABx, 

t)}. 
Then A, B, S, T,  P and Q have a unique common fixed point in X. 

Proof.  Let x
0

  X.  From (a)  there exist  x
1

, x
2

  X  such that   

Px
0

 = STx
1

     and     Qx
1

 = ABx
2

 .   

Inductively, we can construct sequences {x
n

} and {y
n

} in X such that 

Px
2n-2 

= STx
2n-1 

= y
2n-1

 and   Qx
2n-1 

= ABx
2n 

= y
2n 

for n = 1, 2, 3, 

... . 

Step 1. Put  x = x
2n

  and  y = x
2n+1

  in (e), we get 

M (Px
2n

, Qx
2n+1

, kt) ≥ Min {M (Qx
2n+1

, STx
2n+1

, t),  

M (ABx
2n

, STx
2n+1

, t), M (Px
2n

, 

ABx
2n

, t)} 

   = Min {M (y
2n+2

, y
2n+1

, t), M (y
2n

, y
2n+1

, t), M (y
2n+1

, y
2n

, t)} 

       M(y
2n

, y
2n+1

, t). M(y
2n+1

, y
2n+2

, kt)    M(y
2n

, y
2n+1

, t). 

Similarly,  we have 

 M(y
2n+2

, y
2n+3

, kt)   M(y
2n+1

, y
2n+2

, t). 

Thus, we have  

 M(y
n+1

, y
n+2

, kt)    M(y
n

, y
n+1

, t)  for n = 1, 2, ...  

 M(y
n

, y
n+1

, t)    M(y
n

, y
n+1

, t/k) 

              M(y
n-2

, y
n-1

, t/k
2

) 

    ... ... ...

 ... 

            M(y
1

, y
2

, t/k
n

)  1 as n 

,    

and hence  M(y
n

, y
n+1

, t)   1 as n  for any t > 0.  

For each  > 0 and t > 0,  we can choose n
0

  N such that  

 M(y
n

, y
n+1

, t) > 1 -    for all n > n
0

. 

For  m, n  N, we suppose m  n.  Then we have 

M(y
n

, y
m

, t)    M(y
n

, y
n+1

, t/m-n) * M(y
n+1

, y
n+2

, t/m-n)  

* ... * M(y
m-1

, y
m

, t/m-n) 

       (1 - ) * (1 - ) * ... * (1 - ) (m - n) times 

       (1 - ) 
and hence {y

n
} is a Cauchy sequence in X. 

 Since (X, M, *) is complete, {y
n

} converges to some point z 

 X. Also its subsequences converges to the same point i.e. z  X 

i.e., {Qx
2n+1

}   z      and  {STx
2n+1

}   z 

                       (1) 

 {Px
2n

}   z  and    {ABx
2n

}   z 

                            (2) 

Case I.  Suppose AB is continuous. 

 Since AB is continuous, we have  

   (AB)
2

x
2n

   ABz   and  

   ABPx
2n

    ABz. 

As (P,AB) is compatible, so by Proposition 2.2, P(AB)x2n  ABz. 

Step 2.    Put  x = ABx
2n

 and  y = x
2n+1

 in (e), we get 

M(PABx
2n

, Qx
2n+1

, kt) ≥ Min {M(Qx
2n+1

, ST x
2n+1

, t),  

M(ABABx
2n

, ST x
2n+1

, t),  

M(PABx
2n

, ABABx
2n

, t)}. 

Taking n  , we get 

M(ABz, z, kt) ≥ Min{M(z, z, t), M(ABz, z, t), M(ABz, ABz, t)} 

M(ABz, z, kt) ≥ M(ABz, z, t) 

Therefore, by using lemma 2.2, we get 

 ABz = z.     
                         (3) 

 

Step 3.    Put x = z
 
 and y = x

2n+1
 in (e), we have 

M(Pz, Qx
2n+1

, kt) ≥ Min {M(Qx
2n+1

, STx
2n+1

, t), M(ABz, STx
2n+1

, t),  

M(Pz, ABz, t)}. 

Taking n   and using equation (1), we get 

M(Pz, z, kt) ≥ Min {M(z,  z, t), M(z, z, t), M(Pz, z, t)}. 

i.e.       M(Pz, z, kt)      M(Pz, z, t). 
Therefore, by using lemma 2.2, we get 

  Pz = z. 

Therefore, ABz = Pz = z.  
Step 4.   Putting   x = Bz and  y = x

2n+1
  in condition  (e), we get 

M(PBz, Qx
2n+1

, kt) ≥ Min {M(Qx
2n+1

, STx
2n+1

, t), M(ABBz, STx
2n+1

, 

t), 

   M(PBz, ABBz, t)}. 

As BP = PB, AB = BA,  so we have 
 P(Bz) = B(Pz) = Bz   and   (AB)(Bz) = (BA)(Bz) = 

B(ABz) = Bz. 

Taking n  and using (1), we get 

  M(Bz, z, kt) ≥ Min {M(z, z, t), M(Bz, z, t), M(Bz, Bz, t)} 

i.e.          M(Bz, z, kt)     M(Bz, z, t). 

Therefore, by using lemma 2.2, we get 
  Bz = z 

and also we have 
 ABz = z 

 Az = z.  
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Therefore,  Az = Bz = Pz = z.     

      (4) 

Step 5.  As P(X)  ST(X),  there exists u  X such that   

  z = Pz = STu.       

     
 Putting   x = x

2n 
and y = u  in (e),  we get 

M(Px
2n

, Qu, kt) ≥ Min {M(Qu, STu, t), M(ABx
2n

, STu, t), M(Px
2n

, ABx
2n

, 

t)} 

Taking n  and using (1)  and (2), we get 

   M(z, Qu, kt) ≥ Min {M(Qu, z, t), M(z, z, t), M(z, z, t)} 

i.e.            M(z, Qu, kt)    M(z, Qu, t). 

Therefore, by using lemma 2.2, we get 

 Qu = z. 
Hence   STu = z = Qu.   

Since (Q, ST) is occasionally weakly compatible, so we have 

 QSTu = STQu. 
Thus, Qz = STz.   

Step 6.  Putting   x = x
2n

 and y = z in (e), we get 

    M(Px
2n

, Qz, kt) ≥ Min {M(Qz, STz, t), M(ABx
2n

, STz, t), M(Px
2n

, 

ABx
2n

, t)} 

Taking n  and using (2) and step 5, we get  

    M(z, Qz, kt) ≥ Min {M(Qz, Qz, t), M(z, Qz, t), M(z, z, t)}  

i.e.           M(z, Qz, kt)    M(z, Qz, t). 

Therefore, by using lemma 2.2, we get 

 Qz = z. 
Step 7. Putting   x = x

2n
 and y = Tz in (e), we get 

M(Px
2n

, QTz, kt) ≥ Min {M(QTz, STTz, t), M(ABx
2n

, STTz, t),  

  M(Px
2n

, ABx
2n

, t)}. 

As  QT = TQ   and  ST = TS,   we have  

 QTz = TQz = Tz   and   ST(Tz) = T(STz) = TQz = Tz. 

Taking n , we get  
M(z, Tz, kt)  ≥   Min {M(Tz, Tz, t), M(z, Tz, t), M(z, z, t)} 

i.e.      M(z, Tz, kt)     M(z, Tz, t). 

Therefore, by using lemma 2.2, we get 
 Tz = z. 

Now  STz = Tz = z  implies  Sz = z.   

Hence Sz = Tz = Qz = z.      
               (5) 

Combining (4)  and (5), we get  

  Az = Bz = Pz = Qz = Tz = Sz  =  z. 
Hence, z is the common fixed point of A, B, S, T, P and Q. 

Case II.  Suppose P is continuous. 

As P is continuous,   P
2

x
2n

   Pz  and   P(AB)x
2n

   Pz. 

As (P, AB) is compatible, so by proposition 2.2, (AB)Px2n Pz 
Step 8.  Putting   x = Px

2n
 and y = x

2n+1
  in condition  (e), we have 

M(PPx2n, Qx
2n+1

, kt) ≥ Min {M(Qx
2n+1

 , STx
2n+1

 , t), M(ABPx2n, 

STx
2n+1

  , t),  

M(PPx2n, ABPx2n, 

t)}. 

Taking  n , we get 
    M(Pz, z, kt)  ≥   Min {M(z , z , t), M(Pz, z, t), M(Pz, Pz, t)} 

i.e.            M(Pz, z, kt)    M(Pz, z, t). 

Therefore by using lemma 2.2, we have 
  Pz = z. 

Further, using steps 5, 6, 7, we get  

  z = Qz = STz = Sz = Tz. 

Step 9. As Q(X) AB(X),  there exists u  X such that   

  z = Qz = ABu.       

     
 Putting   x = u and y = x

2n+1
 in (e),  we get 

M(Pu, Qx
2n+1

, kt) ≥ Min {M(Qx
2n+1

, STx
2n+1

, t), M(ABu, STx
2n+1

, t),  

M(Pu, ABu, t)} 

Taking n , we get 

M(Pu, z, kt)   ≥   Min {M(z, z, t), M(z, z, t),  M(Pu, z, t)} 

i.e.        M(Pu, z, kt)     M(Pu, z, t). 

Therefore, by using lemma 2.2, we get 

 Pu = z. 

Since z = Qz = ABu, so Pu = ABu. 

Since (P, AB) is compatible, so by proposition 2.3, we have 

 PABu = ABPu 

Or, Pz = ABz. 
Also, z = Bz follows from step 4. Thus, z = Az = Bz = Pz. 

Therefore, z = Az = Bz = Pz = Qz = Sz = Tz,  i.e. z is the common fixed 

point of the six maps A, B, S, T, P and Q in this case also.  
Uniqueness :  Let u be another common fixed point  of A, B, S, T, P and 

Q.  

 Then  Au =  Bu = Pu = Qu = Su = Tu = u. 
 Put  x = z and  y = u  in (e), we get 

M(Pz, Qu, kt) ≥ Min {M(Qu, STu, t), M(ABz, STu, t), M(Pz, 

ABz, t)}. 

Taking n ,   we get  

      M(z, u, kt) ≥ Min {M(u, u, t), M(z, u, t), M(z, z, t)}. 

i.e.      M(z, u, kt)     M(z, u, t). 
Therefore by using lemma 2.2, we get 

  z = u. 

Therefore,  z is the unique common fixed point of self maps A, B, S, T, P 
and Q. 

Remark 3.1. If we take B = T = I in theorem 3.1, then the condition (b) 

is satisfied trivially and we get 

Corollary 3.1. Let (X, M, *) be a complete Fuzzy metric space with 

continuous t-norm * and t * t   t, for all  t  [0, 1]  and let A, S, P and Q 

be mappings from X into itself such that the following conditions are 
satisfied: 

(a) P(X)   S(X),    Q(X)    A(X);   

(b) either P or A is continuous; 

(d) (P, A) is compatible and (Q, S) is occasionally weakly 

compatible; 

(e) There exists k  (0, 1) such that  x, y X and t > 0, 
M(Px, Qy, kt) ≥ Min {M(Qy, Sy, t), M(Ax, Sy, t), M(Px, Ax, t)}. 

Then A, S, P and Q have a unique common fixed point in X. 

Remark 3.2. In view of remark 3.1, corollary 3.1 is a generalization of 
the result of Singh et. al. [16] in the sense that condition of compatibility 

of the pairs of self maps has been restricted to compatible and 
occasionally weakly compatible self maps and only one of the mappings 

of the first pair is needed to be continuous. 
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