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ABSTRACT  

Objective: The rationale of the present research work was to get insights of galectin-3 function in modulating inflammation in macrophages and 
adipocytes culture systems.  

Methods: Recombinant galectin-3 was prepared, and anti-inflammatory effect of galectin-3 was studied in 3T3-L adipocytes and RAW264.7 
macrophages stimulated with lipopolysaccharide followed by western blot analysis. Furthermore, we determined the galectin-3 effect on LPS-mediated 
ROS and NO generation in RAW macrophage cells by using DHE and mitochondrial membrane potential was measured by JC-1 respectively.  

Results: Galectin-3 negatively regulates the exaggerated inflammatory response in the presence of lipopolysaccharide, by lowering cytokines in 
adipocytes and macrophages. Reduced oxidative stress was evident as the production of ROS and NO was diminished to a great extent by galectin-3 
in lipopolysaccharide-treated macrophages. This was also confirmed by the ability of galectin-3 in the maintenance of mitochondrial membrane 
potential against lipopolysaccharide-induced massive membrane depolarization by galectin-3. 

Conclusion: Based on the results obtained, it is rational to mention that galectin-3 exhibits significant anti-inflammatory and anti-oxidative effects 
in adipocyte and macrophage culture systems, when exposed to lipopolysaccharide.  
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INTRODUCTION  

Regardless of the broad explore in the territory of glycobiology 
concerning the structure and capacity of glycans, lectins, and 
glycosylation forms, numerous viewpoints are still left unexplored. 
Earlier studies have demonstrated that galectin family is involved in 
inflammatory activities; however, the role of galectin-3 remains to 
be elucidated that is of further interest because of its complexity. We 
investigate the hypothesis that galectin-3 induces proinflammatory 
effects, transcendently keeping a view on a diverse field of galectin 
family. Apart from responding to proinflammatory signals to exhibit 
a wide array of complement factors, growth factors, cytokines, and 
chemokines [1], adipose tissue also secretes proinflammatory 
molecules. Beutler recognized Toll-like receptor (TLR4) as the 
cellular mediator of lipopolysaccharide (LPS) response [2]. The 
discovery of tumor necrosis factor-α synthesis and secretion by 
adipocytes, as well as the description of TLR expression and LPS-
elicited responses in adipocytes has initiated this relatively new field 
of basic science research [3]. Both invading macrophages and 
adipocytes in an adipose tissue can express Galectin-3 [4]. Several 
studies have demonstrated that MAPK pathways are associated with 
triggering of NF-κB and AP-1transcription factors, which is 
investigated as signaling cascade in LPS-mediated proinflammatory 
responses [5]. Carbohydrate-recognition domains are highly 
conserved, which bind β-galactose containing glycoconjugates by 
galectins [6]. Galectin-3 promotes the respiratory burst in 
neutrophils and monocytes [7,8], and this activity is dependent on 
the galectin property of the protein as it is inhabitable by lactose; it 
induces mediator release from mast cells [9] and downregulates 
interleukin-5 production from eosinophils [10]. Galectin-3 promotes 
the survival of B cells by inhibiting the differentiation into plasma 
cells, thus allowing the rise of a memory B cell [11]. Inflammatory 
responses to LPS result in the release of proinflammatory cytokines, 
Nitric Oxide (NO), Reactive Oxygen Species (ROS), and other cell 
mediators from monocytes and macrophages, which can cause fever, 
shock, organ failure, and death [12]. Mitochondria are involved, 

partially as a result of their membrane polarization/depolarization 
state, in LPS-induced ROS production, which can contribute to local 
inflammatory response, as well as to systemic tissue damage [13]. As 
a signaling loop, an inflated level of ROS activates MAPKs and 
inflammatory transcription factors [14]. Therefore, we have checked 
the role of galectin-3 in modulating the action of LPS on 
macrophages and/or adipocytes and thereby its effects on pro and 
anti-inflammatory cytokines using in vitro culture system.  

MATERIALS AND METHODS 

Recombinant human galectin-3 preparation 

Galectin-3 was produced via the Pichia pastoris and purified as 
previously described [15] and stored at 4 °C in phosphate buffer 
saline; pH7 containing 100 mM lactose. Before use, galectin-3 was 
further purified by nickel-based affinity chromatography to eliminate 
contaminating LPS. Western blot analysis was done to illuminate if the 
galectin-3 expression is controlled during the growth of yeast cells. 
Mass spectrometric fingerprinting was performed essentially of the 
purified p29 and identified it as galectin-3.  

Cell culture 

Adipocytes 3T3-L1 (86052701, Sigma) were coated in 48-well plates 
and cultured [16] as per manufacturer instructions. Cells were split 
at 70-80 % confluency, approx. 1:50 to 1:100 (2-4 × 104 cells/cm2) 
and trypsinized using 0.25 % solution, with or without EDTA, at 37 
°C and 5 % CO2. RAW 264.7 cells (85062803, Sigma) were seeded 
[17] in T-75C+culture flasks, suspended in DMEM+1% Non-Essential 
Amino Acids+2-5 mM Glutamine+5-10% FBS or DMEM+2-5 mM 
Glutamine+5-10% FBS as per manufacturer's instructions.  

Determination of cytokine levels in the adipocyte and 
macrophage conditioned medium by ELISA 

IL-6 levels were detected in differentiated 3T3-L1 [18], or RAW 
264.7 cells [19], amicon ultra centricon tubes were used to 
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concentrate the cell supernatant. All ELISAs were performed 
according to the protocols of the manufacturer for detection of 
cytokine levels in the conditioned medium. Protein concentration in 
3T3-L1 adipocytes or RAW 264.7 was determined by Bradford 
assay, using BSA and was expressed in pg or ng/ml.  

Binding assay in response to LPS and galectin-3 

ELISA plates (96-welled) were seeded overnight with LPS 
(100µg/ml) or with recombinant galectin-3 (10µg/ml) or PBS as a 
control in triplicates [20]. The plate was then washed and blocked 
with 10% FCS for one hour at 37 °C and different doses of 
recombinant galectin-3 were added. In some wells, the galectin-3 was 
incubated with IgG as control or with the galectin-3 antibody (Abcam) 
for 30 min before being added to the wells. Samples were then 
incubated for 2 h at 37 °C, washed thoroughly, and reinsulated with 
the biotinylated galectin-3 antibody (2-3 µg/ml). Different amounts of 
biotinylated LPS (Chondrex, Inc, USA) were added for one hour. 
ExtrAvidin peroxidase (Sigma) was then added for one hour, followed 
by TMB substrate and analyzed by the ELISA reader at 630 nm.  

Western blot analysis 

Cells (2×106)/well were seeded into a six-well plate and treated or 
not with 1 μg/ml LPS, with or without 20 μM galectin-3 for 30 min 
before performing western blotting [21]. Primary antibodies were 
used, anti-phospho-p38-MAPK, (Cell Signaling Technology, USA) 
with 1:1000 dilution and HRP-conjugated anti-rabbit secondary 
antibody (Sigma, USA) with 1:5000 dilution. Bands were visualized 
with ECL (Pierce Chemical, Rockford, IL, USA) and measured using 
Image J 1.49.  

Superoxide measurement in macrophages  

RAW 264.7 cells with 0.5 mg/ml zymosan is added to stimulate 
oxidative burst and suspended in six-well plates, and experiments 
were carried out for the cells. After serum starvation (1% FBS) for 
16h, macrophages were treated with LPS (1μg/ml) and/or galectin-
3 (20μg/ml) in 2 mL DMEM containing 1% FBS and 1% 
penicillin/streptomycin) for additional 24 hours. During the last 10 
min of treatment, cells were incubated with 10 μM DHE and kept in 
an incubator at 37 °C with 5% CO2/95% air. Cells were visualized 
under an inverted fluorescent microscope (Leica) with an excitation 
filter of 535±25 nm and an emission filter of 610±25 nm. The images 
were acquired for an average of 1s using a spot digital camera and 
software [22].  

Measurement of ΔΨm in macrophages 

ΔΨm was measured using the mitochondrial-specific dual-
fluorescence probe, JC-1 (Molecular Probes, USA). RAW 264.7 cells 
were seeded to glass coverslips, treated as indicated, washed twice 
in ice-cold PBS, and loaded with JC-1 for 15 min at 37 °C. When 
excited at 488 nm, the dye emits green fluorescence when the 
mitochondria are depolarized and red for normal ΔΨm. Images of 
the cells were taken with a Leica fluorescent microscope equipped 
with CCD camera and epifluorescent illumination. The same 
microscopic field was imaged in both the red and green channel, and 
then the images were merged. In control experiments, we did not 
observe considerable bleed-through between the red and green 
channels [23].  

Determination of nitrite concentration in macrophages 

RAW 264.7 cells were cultured in 5% CO2 at 37 °C in DMEM with 
10% FCS and L-glutamine (Sigma-Aldrich). Cells were coated at 2 × 
104 or 105 cells/well in a 96-well plate or 2 × 106 cells/well into a 
six-well plate. Nitrite concentrations were determined [24] using the 
Griess reagent-based photometric assay in 96-well plates after 24h 
incubation of 105 cells/well with the indicated concentrations of LPS 
and galectin-3.  

RESULTS 

Release of cytokines into adipocyte and macrophage medium in 
challenge to LPS with galectin-3  

ELISA was carried out to assay the release of various cytokines into 
the adipocyte and macrophage medium accordingly to LPS and 

galectin-3. IL-6 levels (fig. 1) in the adipocyte culture medium after 
24h were 8~fold higher upon LPS challenge than in the control 
group (P<0.05). Interestingly, the IL-6 concentrations were lower in 
the LPS+galectin-3 group compared with LPS (P<0.05). A similar 
trend of higher cytokine concentrations with LPS treatment was 
observed with TNF-α (fig. 2), IL-8 (fig. 3) and IL-10 (fig. 4), whereas 
galectin-3 was effective in alleviating the rise in cytokine release to a 
significant extent. Most importantly, galectin-3 per se failed to show 
any effect and was always comparable to controls. These data clearly 
suggest that cytokine secretion is enhanced in the presence of LPS, 
and this increase is alleviated by galectin-3 pretreatment of 
adipocytes, suggesting an anti-inflammatory effect. Similar 
experiments were conducted to assess the production of TNF-α, IL-6 
and IL-1β in response to LPS and galectin-3 in RAW264.7 
macrophage cells. Incubation of RAW 264.7 cells with 1.0 µg/ml LPS 
caused a marked increase in TNF-α (fig. 5), IL-6 (fig. 6) and IL-1β 
(fig. 7) secretion, where simultaneous incubation of cells with 
increasing concentrations of galectin-3 (5, 10 and 20 μg/ml) dose 
dependently decreased the release of these cytokines triggered by 
LPS into the incubation medium. The role of the p38 MAPK pathway 
in modulating the secretion of TNF-α in response to LPS and 
galectin-3 has been determined by western blotting (fig. 8). 
Interestingly, galectin-3 treatment along with LPS significantly 
attenuated the phosphorylation evoked by LPS. We also determined 
galectin-3’s effect on LPS-induced ROS and NO production in RAW 
macrophage cells by using DHE and a Griess reagent based assay 
respectively. We followed the ROS and NO production in RAW cells 
after LPS challenge for 24 h, which was found not to have a 
considerable cytotoxic effect. LPS significantly increased the 
formation of ROS (fig. 9 and 10) and NO (fig. 11) that was reduced by 
galectin-3. This finding is consistent with the notion that inhibiting 
the production of the highly reactive radicals during the early phase 
of the inflammatory response attenuates inflammatory damage. At 
20 μg/ml concentration, galectin-3 diminished LPS-induced ROS and 
nitrite accumulation in the cells to below and close to the control 
levels respectively. Excessive intracellular ROS can be generated by 
mitochondria, and mitochondrial oxidative stress and dysfunction 
result in the collapse of mitochondrial membrane potential (∆ψm). 
We investigated the mitochondrial membrane potential using a cell-
permeable, voltage-sensitive fluorescent mitochondrial dye, JC-1, 
which emits green fluorescence when the mitochondria are 
depolarized and red for normal ∆ψm when excited at 488 nm. 
Microscopic analysis and monitoring of the red/green ratio revealed 
that LPS induced substantial mitochondrial depolarization. Galectin-
3 diminished this effect of LPS on ∆ψm. Massive depolarization of 
mitochondria by LPS was indicated by faint green fluorescence. 
However, ∆ψm was preserved by 20 μg/ml galectin-3, as indicated 
by the appearance of red fluorescence emitted by JC-1 aggregates in 
the mitochondria (fig. 12). Protection of mitochondria against LPS-
induced massive membrane depolarization by galectin-3 indicates 
the importance of mitochondrial integrity in an inflammatory 
response of macrophages.  

 

 

Fig. 1: Adipocytes treated with LPS (1μg/ml), LPS+galectin-3 
(20μg/ml), galectin-3. n = 6 for all groups and the release of IL-6 

in the culture medium is analyzed. *p<0.05 in relation to 
control, **p<0.05 in relation to LPS 
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Fig. 2: Adipocytes treated with LPS (1μg/ml), LPS+galectin-3 
(20μg/ml), galectin-3. n = 6 for all groups and the release of 
TNF-α release in the culture medium is analyzed. *p<0.05 in 

relation to control, **p<0.05 in relation to LPS 

 

 

Fig. 3: Adipocytes treated with LPS (1μg/ml), LPS+galectin-3 
(20μg/ml), galectin-3. n = 6 for all groups and the release of IL-8 

in the culture medium is analyzed. *p<0.05 in relation to 
control, **p<0.05 in relation to LPS 

 

 

Fig. 4: Adipocytes treated with LPS (1μg/ml), LPS+galectin-3 
(20μg/ml), galectin-3. n = 6 for all groups and the release of IL-

10 in the culture medium is analyzed. *p<0.05 in relation to 
control, **p<0.05 in relation to LPS 

 

 

Fig. 5: Dose-dependent decrease in LPS-induced TNF-α 
production from macrophages by addition of galectin-3 

 

Fig. 6: Dose-dependent decrease in LPS-induced IL-6 production 
from macrophages by addition of galectin-3 

 

 

Fig. 7: Dose-dependent decrease in LPS-induced IL-1β 
production from macrophages by addition of galectin-3 

 

 

Fig. 8: Galectin-3 significantly attenuates p38 MAPK 
phosphorylation induced by LPS in adipocytes. Proteins (50 μg 

per lane) were separated by SDS-PAGE and analyzed by Western 
blotting using an anti-phospho-p38 MAP Kinase protein antibody 

(Thr180/Tyr182). Loading equality was controlled using an 
antibody against the unphosphorylated isoform of p38. The data 
represent a typical result from three independent experiments 

 

 

Fig. 9: Detection of superoxide production in macrophages by 
microscopy using Di hydroethidium (DHE) dye. Macrophage 

cells were treated or not for 30 min with 1μg/ml LPS together 
with or without 20 μg/ml galectin-3, stained with 10 μg/ml DHE 

and then assayed by fluorescent microscopy 

Phospho-p38 MAPK

p38 MAPK
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Fig. 10: Quantitative analysis of DHE fluorescence in 
macrophages upon treatment with LPS and/or galectin-3 

 

 

Fig. 11: Detection of mitochondrial membrane potential by 
microscopy using JC-1 dye: RAW 264.7 cells were treated or not 
for 30 min with 1 μg/ml LPS together with or without 20 μg/ml. 

Galectin-3, stained with JC-1 and then assayed by fluorescent 
microscopy. Fluorescence emission shift from red ( ≈590 nm) to 

green (≈529 nm), representing mitochondrial membrane 
depolarization, was monitored at 488 nm excitation. 

Representative images acquired 30 min after the LPS challenge, 
are presented. Green and red fluorescent images were taken of 

the same microscopic field and merged images of three 
independent experiments are presented 

 

 

Fig. 12: NO levels in macrophages measured as nitrite after 
treatment with LPS and/or galectin-3 

 

DISCUSSION 

Obesity is associated with a state of chronic and low-grade 
inflammation. Various studies have provided clear evidence that 
obese adipose tissue is characterized by increased infiltration of 
macrophages [25], suggesting that there is crosstalk between 
macrophages and adipocytes [26]. It was, therefore, important to 
elucidate the changes in proinflammatory signals during crosstalk 

and to evaluate natural endogenous compounds that can lower the 
proinflammatory signals and understand the signaling mechanisms 
associated with the changes. 

In this direction, using isolated cultures of adipocytes and 
macrophages, we present the comprehensive description of changes 
in LPS-induced inflammatory cytokine production and consequent 
anti-inflammatory effects of Galectin-3 in 3T3-L1 adipocytes and 
RAW264.7 macrophages stimulated with LPS [27]. The adipocytes 
treated with LPS showed an enormous response in the production of 
inflammatory cytokines that included IL-6, TNF-α, IL-8 and IL-10 
[28], which was prevented to a significant extent by 20 μM Galectin-
3. Adipose tissue has been postulated to be a primary tissue 
producing TNF-α and IL-6 in obese subjects, although the exact cell 
types responsible for the production of each cytokine remain 
unknown. In the present study, LPS acting through TLR-4 
dramatically changed the expression profile of cytokines in 3T3-L1 
adipocytes. The LPS-activated macrophages are known to interact 
with mature adipocyte, resulting in further exacerbation of the 
inflammatory cascade. The anti-inflammatory effect of Galectin-3 
was also evidenced as a decrease in Socs-3 expression (not shown 
here), which is inducible by IL-6. Down-regulation of IL-6 by 
Galectin-3 has a direct effect on the suppression of cytokine 
signaling. This clearly suggests that the bioavailability of LPS is 
regulated by co-incubation of cells with Galectin-3, which thus 
negatively affects the TLR4 expression. Marked increase in phospho-
p38, MAPK, JNK and ERK often reported to increase with LPS was 
confirmed in the present study and Galectin-3 was able to repress 
efficiently the activation of these signaling pathways, thereby 
rendering the cells to produce lower levels of inflammatory 
cytokines [29]. Reduced levels of inflammatory cytokines were also 
confirmed as levels of NO were found to decrease with Galectin-3, 
indicating lowered oxidative burden in adipocytes. Taken together, 
Galectin-3 exhibited potential anti-inflammatory effects both in 
adipocytes and macrophages, when treated with LPS.  

CONCLUSION 

The conclusion of this research work is to characterize the 
functional capacity of galectin-3 to modulate the LPS signaling in 
adipocytes, to investigate the mechanisms of LPS-induced cytokine 
and chemokine release, and to detect potential differences in 
response to LPS in the presence of galectin-3. It’s significant where, 
galectin-3 secreted in situ by macrophages or adipocytes, may 
render inflammation particularly sensitive to LPS. LPS 
concentrations as low as 1 µg/ml, galectin-3 had no effect on LPS-
pretreated macrophages. However, galectin-3 pre-incubated with 
LPS enhanced the ability of these low LPS concentrations to activate 
immature, unprimed macrophages. Based on the results obtained, it 
is logical to mention that galectin-3 exhibits significant anti-
inflammatory and anti-oxidative effects in adipocyte and 
macrophage culture systems, when exposed to LPS. These results 
provide convincing evidence in favor of the effective function of 
galectin-3 in modulating sepsis and endotoxic activity. Prospective 
work might include expanding our in vivo studies depleting various 
macrophage populations in the wild type mouse and reconstituting 
them with wild-type or galectin-3-/-macrophages. 
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