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ABSTRACT 

Withania somnifera, commonly known as Ashwagandha or winter cherry, is a principal medicinal plant that has been used in Ayurvedic and native 
medicine. In view of its varied therapeutic prospective, it has also been the subject of considerable modern scientific attention. Ashwagandha roots 
are an integral of over 200 formulations in Ayurveda, Siddha and Unani medicine, which are used in the treatment of various physiological 
disorders. The major chemical constituents of this plant, the withanolides, are a group of naturally occurring C28-steroidal lactones. It has been 
extensively investigated in terms of chemistry and bioactivity profiling. However, there exists only very little fragmentary evidence about the 
dynamics of withanolide biosynthesis. This review examines different in vitro approaches that had been carried out over past decade of years and 
newly developed omics technologies for the large scale production of withanolides as well as for the analysis of genes associated with withanolide 
biosynthesis.  
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INTRODUCTION 

Withania somnifera (L.) Dunal commonly known as Ashwagandha/ 
Indian ginseng/winter cherry, is one of the most esteemed medicinal 
plants used in Indian Ayurveda for over 3000 y [1]. It is used as 
herbal medicine in various forms (decoctions, infusions, ointments, 
powder and syrup) in different parts of the world [2, 3] for all age 
groups of patients without any side effects even during pregnancy.  

The medical importance of W. somnifera is mainly because of the 
presence of steroidal lactones namely “withanolides” [4-8]. The 
pharmaceutically important compounds are withanolide A, 
withanolide B, withaferin A, and withanone (major constituents) and 
12-deoxy withastramonolide, withanoside IV and withanoside V 
(minor constituents). Each withanolide is having a wide array of 
therapeutic values.  

The annual requirement of dried plant material for withanolide 
production in India has been estimated to about 9,127 tons as 
against the annual production of about 5,905 tons [9]. A major 
bottleneck in the biosynthesis of withanolides depends on the 
plant's tissue type and growth conditions in natural habitats as the 
commercial products are entirely derived from field-grown 
plants [10]. This ultimately leads to difficulties in the compositional 
standardization of Withania formulations and its commercial 
exploitation.  

To meet the current Ashwagandha worldwide market requirement, 
in vitro cultures could provide an alternative to field-grown plant for 
the production of therapeutically valuable compounds and thereby 
suggests that in vitro cultures can be applied for secondary 
metabolite production in cell/organ culture system [7]. As roots 
contain a number of therapeutically applicable withanolides, mass 
cultivation of roots in vitro will be an effective technique for the 
production of these secondary metabolites on a trade scale. 
Therefore, the development of a fast-growing root system would 
offer unique opportunities for producing root drugs in tissue culture 
without depending on field cultivation, which is prone to show 
variables [11].  

A few attempts have already been made for in vitro root culture of 
W. somnifera. Several authors [12-15] induced direct rooting from 
leaf explants. Even though works on producing adventitious root 
cultures of W. somnifera with higher content of withanolides using 

different strategies are available, until a date, not more than one 
report is available on its mass cultivation. Hence, it is essential to 
develop an efficient protocol for mass cultivation of adventitious 
roots in a superior variety with the potential to be utilized in the 
production of withanolides applicable for large-scale high-
throughput processing in the industry. 

The metabolic constituents, particularly secondary metabolites are 
reported to differ with the variety, tissue type and sometimes with 
growth conditions [16]. Such variations often lead to poor 
reproducibility of promoting properties of various commercial 
Withania preparations [17,18]. This causes difficulties in the 
compositional standardization of herbal formulations and the 
commercial exploitation of this plant. A recent review [19] narrates 
cases where multi-component W. somnifera extracts showed better 
medicinal efficiency than the purified compounds. Hence, a 
comprehensive phytochemical fingerprinting needs to be carried out 
on the plant material to be used for health benefits [20-22]. The 
comprehensive chemical analysis is required not only to establish a 
correlation between complex chemical mixtures and molecular 
pharmacology but also to understand complex cellular processes and 
biochemical pathways via metabolite-to-gene network [23]. 

Although this plant has been well characterized in terms of 
phytochemical profiles as well as pharmaceutical activities, only 
very little information about the genes responsible for biosynthesis 
of these compounds is available to date. Recently, various 
biochemical and molecular studies have been commenced to 
elucidate the biosynthetic pathway for various withanolides in W. 
somnifera [6]. Putatively, withanolides (C-30) are synthesized via 
both mevalonate (MVA) and non-mevalonate-1-deoxy-D-xylulose 5-
phosphate/2-Cmethyl-D-erythritol 4-phosphate (DOXP) pathways 
through cyclization of 2,3-oxidosqualene to cycloartenol; wherein 
24-methylene cholesterol is the first branching point towards the 
biosynthesis of various withanosteroids.  

Production of withanolides includes a series of desaturation, 
hydroxylation, epoxidations, cyclization, chain elongation, and 
glycosylation steps. In plants, MVA is the general precursor of 
variously identified isoprenoids, such as sterols, plant growth 
regulators, and terpenoids [24, 25]. It has been recently reported 
that, in W. somnifera, both MVA and DOXP pathway participate in the 
biosynthesis of the withanolide [26]. 
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An attempt to engineer the efficient production of secondary 
metabolites requires an understanding of their biosynthetic 
pathway(s), and our present knowledge of withanolide biosynthesis 
is limited to only a few genes involved in the pathway. Over the past 
decade, many attempts have been made in tissue culture field to 
manifest the tissue-specific accumulation of the legendary 
withanolides. Very recently, Senthil et al. [27] reported first large-
scale transcriptome profiling of in vitro tissues for W. somnifera and 
provides a comparative expression profiling of pathway genes 
involved in withanolide biosynthesis and their potential biological 
activity. This panorama propels us to write this review that presents 
a characteristic overview of studies done related to in vitro and 
molecular ideas engaged in W. somnifera to understand the 
regulation of withanolide production. 

Why withanolides 

Much of ashwagandha's pharmacological activity has been 
attributed to two main withanolides, withaferin A and withanolide A 
[28] of which, withaferin being the dominant metabolite of leaf 
tissue and withanolide A, reported to be accumulated more in root 
tissues [29] (fig. 1). The withanolides serve as important hormone 
precursors that can convert into human physiologic hormones as 
needed. According to the literature, Ashwagandha is thought to be 
amphoteric; i.e., it can help regulate important physiologic 
processes. The principle behind this theory is that when there is an 
excess of a certain hormone, the plant-based hormone precursor 
occupies cell membrane receptor sites so the actual hormone cannot 
attach and exert its effect. If the hormone level is low, the plant-
based hormone exerts a small effect [30]. Withanolides have been 
researched in a variety of clinical examinations for their numerous 
therapeutic activities including cancer and immune functioning [31]. 
Withanolide B, withaferin A and with anyone also have remarkable 
activities in physiological and metabolic restoration, anti-arthritic, 
anti-aging, anti-cancer, cognitive function improved in geriatric 
states and recovery from neurodegenerative disorders [32]. 
Withanolide A is considered as a good candidate for 
neurodegenerative diseases and potentiating humoral and cell-
mediated Th1 immunity [33-35]. 

 

 

Fig. 1: Dominant metabolites among different organs of 
Withania somnifera 

 

Withaferin A is reported to induce apoptosis through Reactive 
Oxygen Spices (ROS) generation mediating modulation of both 
intrinsic and extrinsic apoptosis signaling cascades together with 
abrogation of NF-kB functions [34], as an anti-inflammatory agent, 
to protect cardiovascular systems, as an anti-cancer agent, 
antioxidant and antiplatelet activity [36]. 

The protective effect of W. somnifera in epilepsy is considered to be 
through GABAergic modulation. The profound anticonvulsant 
activity of W. somnifera root extract as reported in various animal 
models is hypothesized to be through GABAA receptors [37]. In 
another study, the antiparkinson effects of W. somnifera extract was 
evaluated using 6-hydroxy dopamine (6-OHDA)-induced 
Parkinson's-like effect in rats [38]. Meena and Lakshmi [39] 

demonstrated the antiepileptic activity of leaf extracts of 
Ashwagandha. Anti-aging property of W. somnifera was studied by 
[40] and [41], who proved that W. somnifera root powder at a 
dosage of 3 grams daily for one year, significantly improve 
hemoglobin, red blood cell count, hair melanin, and seated statue. In 
another study conducted by [42] provided evidence that root and 
leaf extracts of W. somnifera significantly reduces experimental and 
biochemical indicators of stress without adverse effects in humans. 
The available scientific data thus support the conclusion that 
Ashwagandha is a real potent regenerative tonic due to its multiple 
pharmacological actions like anti-stress, neuroprotective, antitumor, 
anti-arthritic, analgesic and anti-inflammatory, etc. 

Biotechnological approaches for augmentation of withanolides 
in Withania somnifera  

Inevitable In vitro cultures 

For commercial withanolide production, field grown plant material 
has generally been used but as per the literature, the quality of these 
products may be highly affected by different environmental 
conditions, pollutants, and fungi, bacteria, viruses and insects, which 
can result in a heavy loss in yield and alter the medicinal content of 
the plant. Moreover, these methods are time-consuming, laborious, 
and they are not able to encounter the current Ashwagandha global 
market requirement [8]. To try to overcome these problems, many 
attempts were made during the last decades to evaluate the 
possibility of producing withanolides by in vitro plant cell and organ 
cultures [43, 44].  

At the international level, there has been an ever-increasing demand 
for roots of W. somnifera in larger quantities [8]. Attempts to 
produce withanolides through tissue culture have been reported by 
many authors [45-50]. Rani et al. [51] were the first to report on 
somatic embryogenesis from calli obtained from axillary shoots, 
internodal segments, root and cotyledonary leaf segments. 
Sivanesan and Murugesan [52] developed an efficient protocol for 
high-frequency plant regeneration from leaf explants of W. 
somnifera on Murashige and Skoog (MS) medium supplemented 
with 6-Benzyl amino purine (BAP), Kinetin (Kn) and Naphthalene 
acetic acid (NAA). Synthetic seed production and subsequent 
conversion of encapsulated shoot tips into plantlets have been 
reported by [53]. Direct regeneration from apical bud explants [54], 
somatic embryogenesis and plantlet regeneration from leaf explants 
[55], direct shoot regeneration using petiole and leaf explants [56] 
and direct and indirect organogenesis from nodal explants [57] of 
Indian ginseng have also been reported. 

 Adventitious root cultures and production of secondary 
metabolites 

Withanolide A was reported to be de novo synthesized within root 
tissues [58], hence, studies were focused on tissue specific synthesis of 
withanolides under in vitro conditions. Compared to cell cultures, 
adventitious roots were reported to show higher stability in their 
growing environment and synthesize cosmic amounts of secondary 
metabolites into their intercellular spaces, which can be more easily 
extracted, and can be grown in a phytohormone amended medium 
with low inoculum but a high growth rate [59]. Wasnik et al., [60] 
established a protocol for large-scale cultivation of in vitro 
adventitious root (fig.2) cultures of W. somnifera in a bubble column 
bioreactor. 

Alteration in the media composition enhanced the 
accumulation of withanolides 

Carbon source 

Plant cell cultures are usually grown heterotrophically using simple 
sugars as a carbon source and inorganic supply of other nutrients. The 
concentration of sucrose has been shown to affect the productivity of 
secondary metabolite-accumulating cultures. Sucrose is the most 
common choice in tissue culture media as it is reported to be the main 
sugar that can translocate in the phloem of many plants. Doma and co-
workers [61] analyzed the influence of different concentrations of 
carbon sources on hairy root cultures of W. somnifera on enhancing 
withanolide A and withaferin A accumulation. 
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Fig. 2: Induction of in vitro adventitious root cultures of W. 
somnifera and its mass cultivation [60]. (a) Leaf explants 

inoculated in rooting medium. (b) Induction of adventitious 
roots from leaf explants. (c) Multiplication of in vitro roots in 

bubble column bioreactor. (d) Mass cultivation of in vitro roots 

 

The authors concluded that 1733 µg/g dry weight of Withaferin A 
accumulated in MS basal medium supplemented with 4% sucrose 
and added that significantly higher amount of Withanolide A and 
withaferin A were accumulated (890 and 886 µg/g dry weight 
respectively) only in medium supplemented with 3% sucrose. 
Similarly, Murthy et al. [62] reported that only low amounts of 
Withanolide A (157.4 µg/g dry weight) were accumulated in hairy 
root cultures in MS basal medium supplemented with 4% sucrose 
concentration. Sivanandhan et al. [8] reported that the hairy roots of 
W. somnifera grown in half MS liquid medium supplemented with 
sucrose (4%) stimulated higher production of withaferin A (2.21 
mg/g DW) and withanone (2.41 mg/g DW) on the 40th day of 
culture, followed by a combination of sucrose and glucose enriched 
medium.  

Nitrate levels 

Nitrogen concentration was reported to affect the level of 
proteinaceous or amino acid products in cell suspension cultures. 
The plant tissue culture medium such as MS, LS or B5 has both 
nitrate and ammonium as sources of nitrogen. However, the ratio of 
the ammonium/nitrate–nitrogen and overall concentration of total 
nitrogen have been shown markedly to influence the production of 
secondary plant products. Nagella and Murthy [63] observed that 
the nitrate and ammonium ions have different effects on primary 
and secondary metabolism in plant cell and tissue cultures and 
concluded that cell suspensions of W. somnifera have shown that 
both the biomass and secondary metabolite accumulation were 
influenced by the concentration and composition of macro elements 
and the ammonia–nitrate ratio. In their experiment, maximum 
biomass growth (110.45 g l-1 FW and 9.29 g l-1 DW) was achieved at 
in cell suspension medium supplemented with an NH4+/NO3-in the 
concentration of 7.19/18.80, while withanolide A production was 
greatest (3.96 mg g-1 DW) in medium supplemented with an 
NH4+/NO3-in the concentration of 14.38/37.60 mM. 

Growth regulators 

The concentration of growth regulator is often a crucial factor in 
secondary product accumulation [64, 65]. The type and 
concentration of auxin or cytokinin or the auxin/cytokinin ratio alter 
both the growth and the product formation in cultured plant cells 
[66] dramatically. Phytohormones, specifically auxin plays an 
essential role in regulating root development, and it has been shown 
to be intimately involved in the process of adventitious rooting. 
Auxin, Indoleacetic acid (IAA) was shown to be involved in the 
rooting process by Thimann and Went as far back as 1934 [67], and 
a second ‘synthetic’ auxin indole-3-butyric acid (IBA) also promoted 

rooting [68]. Adventitious root formation has many practical 
implications in horticulture and agronomy and there is a lot of 
commercial interest because of the many plant species that are 
difficult to root [69, 70]. 

Ray and Jha [50] showed the accumulation of withanolides such as 
withaferin A and withanolide D in micro shorts in MS liquid medium 
supplemented with BAP and coconut water. Ahuja et al. [71] studied 
the accumulation of glycol withanolides. Mir et al. [72] reported that 
Withaferin A was produced in relatively high amounts (1.30 % and 
1.10 % DW) in shoots of W. somnifera cultured in half and full 
strength MS liquid media respectively enriched with 0.5 µM BAP as 
compared to natural field grown plants (0.85 % DW). 

Sivanandhan et al. [7] recorded that the polyamines along with plant 
growth regulators enhanced the withanolides production in in vitro-
raised plants when compared to field grown parent plants. Shukla 
and co-workers [73] concluded that half strength liquid MS medium 
enriched with IAA in both 100 and 200 ppm concentration 
significantly elevated total alkaloid and withanolide content in hairy 
root cultures of W. somnifera when compared with control untreated 
root cultures. Thirugnanasambantham and co-workers [74] 
reported that IBA is an effective inducer of lateral root formation 
when compared to IAA. Accumulation of withanolide A and the 
biomass increases as the concentration of IBA increased to 1 mg/l 
(2576±0.37 μg/g DW and 12.89±0.25 g/dL respectively) and added 
that IAA at lower concentration favors relatively high accumulation 
of withanolide A (1147±0.77 μg/g DW) in 30 d old in vitro 
adventitious root cultures of W. somnifera. 

Elicitation 

It is well established in recent years that application of elicitors in 
root cultures can upgrade the secondary metabolite production in 
plant cell/organ culture. Secondary pathways are triggered in 
response to stress. Elicitors can be abiotic or biotic and act 
individually or in combination to turn on the biosynthesis of 
molecules that may only be produced in small amounts or may even 
produce new compounds [75]. Abiotic elicitors such as methyl 
jasmonate (MJ) and salicylic acid (SA) are used in combination with 
the culture for the highest level of secondary metabolite production. 

Recently, Sivanandhan et al. [76] reported that when hairy roots of 
W. somnifera with an initial inoculum mass of 5 g fresh weight 
elicited separately with methyl jasmonate (MJ) and salicylic acid 
(SA) at various concentrations for different exposure times after 30 
d of culture lead to an enhanced production of biomass (32.68 g FW 
and 5.54 g DW; 1.23-fold higher), withanolide A (132.44 mg/g DW; 
58-fold higher), withanone (84.35 mg/g DW; 46-fold higher), and 
withaferin A (70.72 mg/g DW; 42-fold higher) from 40 d-old culture. 
Production of secondary metabolites in plant tissue, cell cultures, 
and adventitious root cultures was reported to be enhanced through 
elicitation with SA as in Glycyrrhiza glabra and W. somnifera, 
respectively [77,8]. Ciddi [78] reported 50-fold enhancement of 
withaferin A production (25 mg/l) using salacin as an elicitor in cell 
suspension culture of W. somnifera. 

In a study conducted by Sivanandhan et al. [8], exposure to 30-day-
old adventitious root cultures to 150 μM SA for 4 h as elicitor 
resulted in the production of 64.65 mg g−l dry weight (DW) 
withanolide A (48-fold), 33.74 mg g−l DW withanolide B (29-fold), 
17.47 mg g−l DW withaferin A (20-fold), 42.88 mg g−l DW withanone 
(37-fold), 5.34 mg g−l DW 12-deoxy withastramonolide (nine fold), 
7.23 mg g−l DW withanoside V (sevenfold), and 9.45 mg g−l DW 
withanoside IV (nine-fold) after 10 d of elicitation (40th day of 
culture) when compared to untreated cultures [8]. 

UV-B irradiation 

Kalidhasan et al. [79] reported that Ultraviolet (UV-B) enhanced 
radiation have triggered higher level of withaferin A synthesis than 
that of control root sample and suggested a possible enhancement of 
the enzymes necessary for the biosynthesis of withaferin A. Same team 
workers have concluded that along with withaferin A, some other UV 
absorbing compounds have also accumulated in higher concentration 
in the field grown root samples. These results suggested that W. 
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somnifera could possess possibly more precursors for the formation of 
phenolic compounds or UV absorbing compounds.  

Thus, the above-mentioned techniques and approaches carried out 
in in vitro cultures enhances the tissue-specific accumulation of 
therapeutically significant withanolides in W. somnifera.  

Understanding withanolide biosynthetic pathway  

Understanding the steps involved in withanolide biosynthesis is 
essential for metabolic engineering of this plant to increase 
withanolide production. Withanolides are biosynthesized through 
the isoprenoid pathway, probably via both the mevalonate and 
nonmevalonate pathways [80] (fig. 3). The head-to-tail condensation 
of isopentenyl pyrophosphate (IPP) leads to the formation of 

farnesyl diphosphate (FPP) which is the main precursor for 
triterpenoids [81]. A key intermediate compound, 24-
methylenecholesterol is an immediate precursor for biosynthesis of 
different withanolides, 24-methylene cholesterol is the first 
branching point towards the biosynthesis of different withanolides 
through a series of desaturation, hydroxylation, epoxidation, 
cyclization, chain elongation, and glycosylation steps [82, 83]. 

In plants, MVA is the general precursor of variously identified 
isoprenoids, such as sterols, plant growth regulators, and terpenoids 
[24, 25]. It has been recently reported that, in W. somnifera, both 
MVA and DOXP pathway participate in the biosynthesis of the 
withanolide and plastidic activity regulate this cross-talk to a 
varying level [83]. 

  

 

Fig. 3: Putative biosynthetic pathway of withanolide. 1-Deoxy-D-xylulose-5-phosphate synthase DXPS; 1-Deoxy-D-xylulose-5-phosphate 
reductoisomerase DXPR; 2-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase MEP-CT; 4-(Cytidine 5′-diphospho)-2-C-methyl-D-erythritol 

kinase CDP-MEK; 2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase MECDPS; (E)-4-Hydroxy-3-methylbut-2-enyl-diphosphate synthase 
HMBPPS; 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase HMBPPR; Isopentenyl-diphosphate delta-isomerase IDI; Acetyl-CoA C-

acetyltransferase ACAT; Hydroxymethylglutaryl-CoA synthase HMGCS; Hydroxymethylglutaryl-CoA reductase HMGR; Hydroxymethylglutaryl-
CoA reductase HMGR; Mevalonate kinase MK; Phosphomevalonate kinase PVMK; Diphosphomevalonate decarboxylase MVD; Geranyl 

diphosphate synthase GPPS; Farnesyl diphosphate synthase FPPS; Squalene synthase SS; Squalene monooxygenase SE; Cycloartenol synthase 
CAS; Sterol 24-C-methyltransferase SMT1; Methyl sterol monooxygenase/Sterol-4a-methyl oxidase 2 SMO1/SMO2; Cycloeucalenol 

cycloisomerase CEC1; Obtusifoliol 14-demethylase CPY51G; Delta 14-sterol reductase FK; C-7,8 Sterol isomerase HYD1; C-5 Sterol desaturase 
STE1; 7-Dehydro cholesterol reductase DWF5; Sterol glycosyltransferases SGT; Methyltransferases MT 
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Elucidation of genes involved in withanolide biosynthetic pathway 

3-Hydroxy-3-methylgutary coenzyme A reductase (HMGR) 

In MVA pathway, 3-Hydroxy-3-methylgutary coenzyme A reductase 
(HMGR, EC 1.1.1.34) catalyzes the NAD (P) H-dependent reduction 
of HMG-CoA to mevalonate, the first committed step in the 
isoprenoid pathway, which produces the largest group of 
contemporary natural products [84]. This enzyme is located in the 
endoplasmic reticulum. According to Hemmerlin et al. [84], plant 
HMGR is known to be controlled by a number of developmental and 
environmental signals like phytohormones, calcium, calmodulin, 
light, wounding, elicitor treatment and pathogen attack. Akhtar et al. 
[85] reported that the expression level of WsHMGR (WsHMGR1) is 
the maximum in the flower followed by root tissue in W. somnifera. 
Recently, Senthil et al. [27] analyzed the expression pattern of HMGR 
in in vitro root and leaf cultures of W. somnifera. The authors 
observed that HMGR expression was higher in 30-day-old in vitro 
adventitious root cultures, whereas, in leaf tissue, the expression of 
HMGR was observed to be much lower. 

Farnesyl diphosphate synthase (FPPS) 

In these pathways, farnesyl diphosphate (FPP), which is synthesized 
by catalytic action of the enzyme farnesyl diphosphate synthase 
(FPPS), serves as a substrate for first committed reaction of several 
branched pathways [86] leading to the synthesis of compounds that 
are essential for plant growth and development as well as of 
pharmaceutical interest [87]. FPPS is one of the key enzymes [86] 
for isoprenoid biosynthesis which synthesizes sesquiterpene 
precursors for several classes of essential metabolites, including 
sterols, dolichols, ubiquinones and carotenoids as well as substrates 
for farnesylation and geranylgeranylation of proteins. This also plays 
an important role in commencing steps of triterpenoid precursor 
synthesis catering to withanolide biosynthesis. 

FPPS catalyzed reaction occurs in two consecutive steps; condensation 
of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate 
(DMAPP) to form 10-C intermediate geranyl diphosphate (GPP) and 
condensation of GPP with another molecule of IPP which results into 
15-C FPP [87]. This gene has been characterized from variety of plant 
species including Arabidopsis [88], Artemisia [89], Hevea [90], maize 
[91], rice [92] and Taxus media [93].  

Gupta et al. [6] isolated and characterized the gene encoding FPPS 
from W. somnifera. The authors also analyzed the expression 
pattern of FPPS in field grown young leaf, mature leaf, flower, fruit 
(green berry), stem and root tissues of W. somnifera and concluded 
that WsFPPS transcripts levels were significantly higher in young 
leaf than in mature. The same team reported that higher level of 
WsFPPS in flowers. On the contrary, lower expression of WsFPPS 
was reported to be recorded in roots. Recently, 
Thirugnanasambantham et al. [74] analyzes the expression of FPPS 
in field grown root and leaf tissues at different developmental stages 
of W. somnifera and concluded that WsFPPS expression levels were 
higher in leaves than the root tissues.  

Sabir et al. [80] compared the expression levels of FPPS between in 
vitro and field grown tissues and observed that WsFPPS slightly 
upregulated in in vitro shoots in comparison to in vitro roots. 

Squalene synthase (SQS) 

Squalene synthase (SQS: EC 2.5.1.21) is an important regulatory 
enzyme of cholesterol biosynthetic pathway. It is a bifunctional 
enzyme which catalyzes the condensation of two molecules of 
farnesyl pyrophosphate (FPP) in a head-to-head manner to form 
pre-squalene diphosphate (PSPP) and then converts the PSPP to 
squalene in the presence of NADPH and Mg2+. As studied in 
engineered yeasts [94, 95] down-regulation of the squalene synthase 
in the sterol biosynthetic pathway leads to the accumulation of FPP, 
which is redirected away from this pathway and toward the 
synthesis of other commercially important isoprenoids. Gupta et al. 
[6] analyzed the expression levels of WsSQS using Quantitative real 
time–polymerase chain reaction (qRT-PCR) and demonstrated that 
WsSQS has a tissue-specific expression with highest expression in 
leaves and lowest in roots. The similar results were found with the 

expression of some other genes of the same pathway [96, 6]. On the 
contrary, Bhat et al. [97] reported that expression of squalene 
synthase (WsSQS) was seen in all tested tissues, including roots, 
stem and leaves with the highest level of expression in leaves. 

Squalene epoxidase (SE) 

The biosynthesis of the withanolide pathway up to squalene 
(catalyzed by SS) is an anaerobic process [98]. Squalene epoxidase 
(SE) catalyzes first step of oxygenation in this pathway and steps 
after squalene epoxidation are shared by sterol/brassinosteroids 
biosynthetic pathway [58]. SE (EC. 1.14.99.7) is one of the rate-
limiting enzymes in the biosynthesis of triterpenoids, catalyzing the 
stereospecific epoxidation of squalene to 2,3-oxidosqualene. It 
requires the participation of flavoprotein NADPH-cytochrome P-450 
reductase (E. C. 1.6.2.4) [98] and functions as a rate-limiting step in 
the sterol and triterpenoids biosynthesis [99]. A perusal of literature 
reveals that SE is a microsomal protein and also present in lipid 
droplets, but only ER-associated protein has been found to be active 
[100]. In addition to 2, 3-oxidosqualene, SE activity can result in the 
formation of 6, 7-oxidosqualene, 10, 11-oxidosqualene and dioxide 
squalene [101]. Being a rate limiting enzyme [99], overexpression of 
SE may have an important role in the regulation of phytosterols and 
steroidal lactones in W. somnifera. 

Senthil et al. [27] very recently analyzed the expression of important 
pathway genes involved in withanolide biosynthesis. The authors 
reported that among the selected pathway genes, an expression level 
of SE was significantly higher in in vitro root tissues of Withania 
somnifera. Sabir et al. [80] also reported that higher expression of SE 
transcripts in field grown root than shoot tissues of W. somnifera. 
Gupta et al. [102] made the first attempt of cloning and 
characterization of this gene from W. somnifera. 
Thirugnanasambantham et al. [74] also analyzed expression levels of 
SE in field grown leaf and root tissues at different developmental 
stages of W. somnifera and concluded that expression levels of SE 
were significantly higher in field grown root tissue at yellow berry 
stage than leaf tissue and concluded that expression levels of WsSE 
exhibit a direct correlation with that of withanolide biosynthesis.  

Cycloartenol synthase (CAS) 

Cycloartenol and lanosterol are important membrane constituents 
that can serve as precursors to steroid hormones. It is formed from 
(S)-squalene-2, 3-epoxide by a cyclization reaction catalyzed by 
cycloartenol synthase (EC 5.4.99.8.). CAS performs the important 
function of breaking 11 bonds and forming 11 new ones to 
transform 2, 3-epoxysqualene to the plant sterol precursor 
cycloartenol [103]. 

It is presumed that cycloartenol bifurcation takes place for the 
biogenesis of sterol and withanolides in W. somnifera. Probably 
because of this division of cycloartenol, Dhar et al. [104] 
reported that WsCAS expression was the maximum and on the 
rise with each advancing phenol phase to generate a reservoir of 
cycloartenol which may get channelized towards the two routes 
leading to the biosynthesis of phytosterols and withanolides. The 
same team of workers identified that WsCAS exist in a copy 
number of two, thereby indicating the separate role of each copy 
of WsCAS in sterol and withanolide biosynthesis. The duplicate 
copy number of WsCAS is reported to be plausibly a trigger for 
higher expression. 

It has been well documented that CAS plays an essential role in the plant 
cell viability and in the regulation of triterpenoid biosynthesis [105]. The 
differences in the biosynthesis of sterols between higher plants and 
yeast/mammals are generally accepted to begin at the cyclization 
step of 2, 3-oxidosqualene, a common precursor. Phytosterols, such 
as campesterol and sitosterol, are biosynthesized via cycloartenol 
and catalyzed by cycloartenol synthase (CAS) in higher plants [106]. 
Senthil et al. [27] reported that CAS genes exhibited higher 
expression at 45 d of growth in both leaf and root tissue under in 
vitro condition. Thirugnanasambantham et al. [74] expression of 
gene encoding cycloartenol synthase exhibited higher levels in both 
field grown leaf and root tissues, throughout the different 
developmental stages of W. somnifera.  
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Glucosyltransferase (GT) 

Glycosylation of secondary plant products, such as flavonoids, 
coumarins, terpenoids, and cyanohydrins, is generally catalyzed by 
Plant secondary product glycosyltransferase (PSPGs) [107], which 
belong to family-1 glycosyltransferases, catalyzing glycosyl transfer 
(GT) from nucleoside diphosphate-activated sugars (donor) to 
aglycon substrate (acceptor) molecules. The activated sugar form is 
typically uridine diphosphate (UDP)-glucose, but UDP-galactose, 
UDP-glucuronide, UDP-xylulose, and UDP-rhamnose are also 
reported. Glycosylation not only stabilizes the products but also 
modulates their physiological activities and governs intracellular 
distribution [108].  

In plants, sterols are biosynthesized by mevalonate and non-
mevalonate pathways. They occur in highly diversified skeletal and 
structural forms that are finally glycosylated. Some of these (e. g. 
sitosterol, stigmasterol, brassinosteroids) are ubiquitous in plants 
whilst others (e. g. withanolides, limonoids) are highly restricted in 
occurrence. Earlier reports from Myxoamoeba and human 
fibroblastoma cell lines showed the activation of glucosyltransferase 
and the production of sterol glucoside following heat stress. The 
glucosides have been reported to induce the signal transduction 
pathway, leading to the synthesis of heat shock proteins during heat 
stress [109,110] in animal cells. 

Madina et al. [82] discussed that expression of sterol 
glucosyltransferases was enhanced in leaves of W. somnifera 
following the application of salicylic acid. GTs that use UDPactivated 
sugars as donors and various types of small molecules as acceptors 
are called UDP-glycosyltransferases (UGTs) and represent family 
1GTs. Such UGTs are present commonly in plants and animals but 
have been reported in a few cases only in microorganisms. In higher 
plants, UGT catalyzed glycosylation constitutes a prominent terminal 
modification in the biosynthesis of secondary metabolites and 
generates diverse natural glycosides [111] 

In higher plants, secondary metabolites are often converted to their 
glycoconjugates, which are then accumulated and 
compartmentalized in vacuoles. These glycosylation reactions are 
catalyzed by glycosyltransferases (GTases) [112]. In general, 
glycosylation is the last step in the biosynthesis of secondary 
metabolites [113]. A vast variety of glycosyltransferase genes have 
been identified thus far, which are currently classified on the basis of 
their phylogenetics into 70 families [111]. 

Cytochrome P450 reductase (CPR) 

CPRs (EC 1.6.2.4) are membrane-bound proteins localized to the ER, 
contain an N-terminal positioned Flavin mononucleotide (FMN) 
binding domain linked to NADPH binding domain via Flavine 
Adenine Dinucleotide (FAD) domain [114]. CPR shuttles electrons 
derived from NADPH through FAD and FMN domains into the heme 
iron centre of the various P450 enzymes and thus confront the high 
demand of electron supply during biotic and abiotic stress or 
differential expression at various stages of plant development [114]. 
It has been earlier demonstrated that CPR1 and CPR2 from different 
plant species have different specific activities and most of them have 
been assayed using a microsomal fraction or truncated polypeptide 
(without membrane anchor) [115]. Rana et al. [116] suggested that 
Cytochrome P450 reductase is the most imperative redox partner of 
multiple P450s involved in primary and secondary metabolite 
biosynthesis. Dhar and co-workers [104] cloned and functionally 
characterized two paralogs of NADPH-cytochrome P450 reductase 
(WsCPR1 and WsCPR2) and studied the expression pattern of the 
same in tissues of W. somnifera cultures in the field during different 
developmental stages.  

The authors concluded that WsCPR2 showed a slight increase along 
the developmental phases and added that this expression level 
might be possibly implicating its role in the biosynthesis of 
withanolides. Rana et al. [116] conducted Quantitative real-time PCR 
to analyze the expression of WsCPR1 and WsCPR2 in various tissues 
of W. somnifera and concluded that both genes were widely 
expressed in leaves, stalks, roots, flowers and berries with the 
relatively higher expression level of WsCPR2 in comparison 
to WsCPR1.  

Transcriptome analysis 

Next-generation sequencing (NGS) technology for transcriptome 
(RNA-seq) dispenses a new resolution for both obtaining gene 
sequences and quantifying transcriptome of any organism. In recent 
years, the RNA-seq has been an influential method for distinguishing 
genes involved in important secondary metabolite pathways such as 
biosynthesis of ginsenosides in Panax ginseng [117,118], 
carotenoids in Momordica cochinchinensis [119], flavonoids, 
theanine and caffeine in tea (Camellia sinensis), Initial efforts have 
been made to generate expressed sequence tags (ESTs) from in vitro 
tissues of W. somnifera [120]. 

Complete transcriptome analysis of W. somnifera leaf and root tissue 
was performed using next-generation sequencing in order to gain 
insights into withanolide biosynthesis pathways and their 
regulations [102]. A total number of 47,885 and 54,123 unigenes 
generated from leaf and root tissues, respectively, have been 
annotated using TAIR10 protein database (http://www. arabidopsis. 
org; Tair10), NCBI protein database NR (http://www. ncbi. nlm. nih. 
gov). Based on the sequence homology, the unigenes were 
categorized into 45 functional groups. On the basis of the annotation, 
the genes encoding enzymes involved in the biosynthesis of 
triterpenoid backbone (including MVA and MEP pathways) were 
identified from both leaf and root libraries. Apart from these, a 
number of methyltransferases, cytochrome P450s, 
glycosyltransferase, and transcription factors have also been 
identified and reported by [102]  

Dasgupta et al. [121] analyze the salicylic acid induced leaf 
transcriptome of W. somnifera using Illumina Genome Analyzer. A 
total of 45.6 million reads was generated, and the de novo assembly 
yielded 73,523 transcript contig with average transcript contig 
length of 1620 bp were reported. A total of 71,062 transcripts was 
annotated and 53,424 of them were assigned GO terms. Mapping of 
transcript contigs to biological pathways revealed the presence of 
182 pathways. Seventeen genes representing 12 pathogenesis-
related (PR) families were mined from the transcriptome data and 
their pattern of expression post 17 and 36 h of salicylic acid 
treatment were documented. The authors reported that significant 
up-regulation of all families of PR genes by 36 h post-treatment.  

Very recently, Senthil et al. [27] had used RNA-seq for large-scale 
transcriptome profiling and generated a comprehensive 
Transcriptome for W. somnifera by assembling the transcriptomes 
of in vitro adventitious root and leaf tissues from the millions of 
short sequence reads generated by Illumina. The authors obtained a 
total of 177,156 assembled transcripts with an average unigene 
length of 1,033 bp. About 13% of the transcripts were reported to be 
unique to in vitro adventitious roots, but no such transcripts were 
observed in in vitro-grown leaves. Annotations including functional 
annotation, Gene encoding enzymes involved in withanolide 
biosynthesis were identified using Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways. 

In silico analysis 

Application of in silico tools can significantly improve the detection 
of genes and variation. In silico drug design or the computer-aided 
drug design (CADD) play a significant role in all stages of drug 
development from the preclinical discovery stage to late stage of 
clinical development. Recently, few in silico studies were carried out 
demonstrating the role of withanolides as a potent drug. High-
throughput docking has become increasingly important in the 
context of compound drug identification [122-124]. 

Aishwarya and Santhi [125] described the docking of 26 withaferins 
and 14 withanolides from W. somnifera into the three-dimensional 
structure of PknG of M. tuberculosis using GLIDE. The authors 
concluded that among the withanolides, withanolide E, F and D and 
Withaferin-diacetate 2 phenoxy ethyl carbonate was identified as 
potential inhibitors of PknG. This data provides the molecular 
insights to the consideration of Withanolides as potential candidates 
against the PknG target in M. tuberculosis. In another study 
conducted by Santhi and Aishwarya [126] alkaloids namely 
withasomine, cuseohygrine and ana hygrine from W. somnifera were 
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docked deeply within the binding pocket region forming interaction 
with binding site residues of both 5-LOX and COX (anti-
inflammatory drug target proteins) of humans. The authors 
concluded among the alkaloids: withasomine, cuseohygrine and 
anahygrine showed better inhibitory activity to both 5-LOX and COX, 
whereas, the other three alkaloids showing anti-inflammatory 
activity are anahygrine, 3-tropyltgloate and tropinine.  

Vaishnavi et al. [127] examined the docking efficacy of Withaferin A 
(WA) and Withanone against four target proteins, namely, mortalin, 
p53, p21 and Nrf2.  The authors demonstrated that Withaferin A that 
binds strongly to the selected targets acts as a strong cytotoxic agent 
both in normal and cancer cells. Withanone, on the other hand, has a 
weak binding to the targets; it showed milder cytotoxicity towards 
cancer cells and was safe for normal cells. This study revealed an 
important insight to the use of Withaferin A and Withanone for 
cancer treatment and development of new anti-cancer 
phytochemical cocktails. 

Prabhakaran et al. [128] extensively used graphical software 
(MOLSOFT) for the identification of the binding energy of selected 
Withanolides like Withaferin-A, Withanolide-D from W. somnifera 
and to screen the phytoconstituents that will dock/bind to the active 
sites of COX-2 enzyme. The authors concluded that among the two 
constituents, withaferin A possesses great activity on COX-2 
followed by withanolide-D. Also added that Withanolides may have a 
direct action on cox-2 enzyme by binding to the Cys-907, Cys-910, 
Cys-962 and Cys-964 residue. 

Recently, Saha et al. [129] carried out molecular docking studies to 
find the potentiality of Withaferin A, a key metabolite of W. 
somnifera, as an inhibitor of vascular endothelial growth factor 
(VEGF). Molecular Docking calculations were carried out on 
Withaferin A/Bevacizumab-VEGF protein model. The authors 
concluded that Withaferin A showed favorable binding with VEGF, 
and the results were highly comparable with the commercially 
available drug Bevacizumab. Bikadi et al. [130] demonstrated direct 
covalent binding of Withaferin A to Cys303 of tubulin in MCF-7 cells. 
Further added that WA-binding pocket is located on the surface of 
tubulin and characterized by a hydrophobic floor, a hydrophobic 
wall, and a charge-balanced hydrophilic entrance.  

Proteomics 

To have a better understanding of the processes that occur in W. 
somnifera, proteome analyses were initiated on seeds and leaf 
tissues by Gupta and Co-workers [6], From these analyses, 70 
individual proteins from seeds and 74 from leaves were identified 
by protein sequence database interrogation and were cataloged 
accordingly to different protein functions. Senthil and co-workers 
[131] investigated comparative protein changes between the root 
tissues cultivated in vitro and from the field. The authors recorded a 
similarity in protein spots in both in vitro and in vivo root samples 
and concluded that in vitro roots that are developed independently 
of shoot organs appear to have a similar developmental process as 
that of in vivo roots. 

Metabolomics 

The comprehensive chemical analysis is required not only to 
establish a correlation between complex chemical mixtures and 
molecular pharmacology but also to understand complex cellular 
processes and biochemical pathways via metabolite-to-gene 
network [23]. Chatterjee et al. [132] carried out metabolic profiling 
of crude extracts of leaf and root of Withania somnifera using 
Nuclear Magnetic Resonance (NMR) and chromatographic (High-
Performance Liquid Chromatography (HPLC) and Gas 
Chromatography–Mass Spectrometry GC–MS)) techniques. A total of 
62 major and minor primary and secondary metabolites from leaves 
and 48 from roots were unambiguously identified. Senthil et al. 
[133] compared the total metabolome profiling between in vitro and 
field grown root tissues of Withania somnifera using GC-MS 
technique. The authors reported that total of 29 metabolites was 
identified in in vitro cultured and field-grown roots by GC-MS 
analysis. The metabolites included alcohols, organic acids, purine, 
pyrimidine, sugars, and putrescine. In their study, vanillic acid was 
only observed in the in vitro cultured root samples. Very recently, 

Thirugnanasambantham et al. [134] compared the metabolite 
profiles between leaf tissues of W. somnifera cultured in in vitro and 
field grown conditions. The authors highlighted that in vitro leaf 
cultures able to accumulate metabolites in a similar fashion as that 
of field grown tissues and can be utilized as alternative resources to 
field-grown leaves for the production of useful metabolites such as 
γ-aminobutyric acid and putrescine. These results highlighted the 
potentiality of in vitro roots as an alternative to field-grown roots. 

CONCLUSION 

Until date only very less information is available on structural and 
functional aspects of enzymes involved in withanolide biosynthetic 
pathway of Withania somnifera. This review gives a clear 
understanding of various technical approaches carried out in W. 
somnifera and emphasized the worldwide achievements associated 
with understanding the synthesis and regulation of 
pharmaceutically important secondary metabolites. These new 
technologies will serve to extend and enhance the continued 
usefulness of in vitro cultured plants as renewable sources of 
medicinal compounds. 
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