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ABSTRACT 

Objective: The objective of this study to investigate the effect of simvastatin on kidney fibrosis in mice with a 5/6 subtotal nephrectomy. 

Methods: Thirty adults (3 mo old) male Swiss mice were submitted to a 5/6 subtotal nephrectomy and studied after 14 d. Animals were divided into five 

groups: 5/6 subtotal nephrectomy (SN, n=6), sham operation (SH, n=6), simvastatin 5.2 mg/kg body weight (SIM-1, n=6), simvastatin 10.4 mg/kg body 

weight (SIM-2, n=6), and simvastatin 20.8 mg/kg body weight (SIM-3, n=6) groups. At sacrifice, kidneys were harvested for morphology (glomerulosclerosis 

(GS), tubular injury and interstitial fibrosis), immunostaining (α-smooth muscle actin (α-SMA)) and platelet-derived growth factor receptor beta (PDGF-Rβ) 

and reverse transcriptase-polymerase chain reaction (RT-PCR) (MCP-1, ICAM-1, nephrin, and podocin) analysis.  

Results: Glomerulosclerosis, tubular injury and interstitial fibrosis in the simvastatin group was significantly lower than SN group (p<0.05). 

Simvastatin significantly reduced α-SMA expression (3.61±1.06 vs 7.91±1.26, p<0.05, SIM-1 vs SN; 2.86±0.61 vs 7.91±1.26, p<0.05, SIM-2 vs SN; 

1.71±0.50 vs 7.91±1.26, p<0.05, SIM-3 vs SN), MCP-1 was markedly expressed in the 5/6 subtotal nephrectomy kidneys and was reduced with 

simvastatin (1.4±0.64 vs 0.57±0.23, p<0.05, SN vs SIM-1; 1.4±0.64 vs 0.6±0.26, p<0.05, SN vs SIM-2; 1.4±0.64 vs 0.52±0.21, SN vs SIM-3, p<0.05). 

Simvastatin did not increase nephrin expression, but it increased podocin expression significantly in the SIM-3 group. 

Conclusion: Simvastatin significantly attenuated GS, tubular injury and interstitial fibrosis through the downregulation of myofibroblast expansion 

and inflammatory mediators in mice with a 5/6 subtotal nephrectomy. 
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INTRODUCTION  

Chronic kidney disease (CKD) is a global health problem. The global 

increase in incidence and prevalence of CKD is associated with 

increased morbidity and mortality risks as well as a direct increase 

in the financial burden [1]. There are various factors which may lead 

to CKD such as diabetes mellitus, hypertension, infection 

(glomerulonephritis, chronic pyelonephritis), and urinary tract 

obstruction [2, 3]. These diseases have the ability to cause an 

increase in intraglomerular pressure, barrier filtration permeability, 

endothelial cell dysfunction, mesangial, podocyte, and tubular cell 

activation, extracellular matrix synthesis, proteinuria/albuminuria 

and decrease glomerular filtration rate (GFR)[2].  

Pharmacological therapy for CKD is primarily aims to address the 

underlying causes and prevent the progression of the disease. Renin 

angiotensin aldosteron system inhibitor (RAASI) has proven to be the 

most effective therapy in reducing proteinuria and slowing the 

progression of CKD [2]. Meanwhile, statins are the pharmacologic 

intervention of choice for dyslipidemia, which is the greatest risk factor 

for cardiovascular (CV) events and the progression of kidney disease [4]. 

Preclinical research in the last few decades has reported that statins 
have pleotropic effects, giving it the ability to inhibit the mevalonate 

pathway, especially the inhibition of isoprenoid metabolism [5, 6]. 
One of which are for the prevention of renal fibrosis [1]. Fibrosis 

may be inhibited through different mechanisms, including: 
inhibition of Rho family proteins (RhoA and Rac-1) and reversal of 

podocyte damage [3, 7], inhibition of the HOXA13-USAG-1 pathway 
[1], inhibition of the angiotensin II/Smad pathway [8], inhibition of 

ACE expression and aldosterone production [9], inhibition of NF-κB 
activation, IL-1β, TGF-β1 and oxidative stress expression [10, 11], as 

well as inhibition of the MAPK signaling pathway [6]. 

However, the effect of statins in preventing CKD progression is still 
unclear and controversial. Statins have shown to have preventive 
effects on cardiovascular disorders, but no effect on the kidneys 
[12]. The advantages of statin use in clinical practice is also unclear, 
although it is likely to have an effect in preventing proteinuria 
depending on the dose and duration of use [13, 14]. Therefore, we 
investigated the effect of simvastatin on kidney fibrosis model in 
mice with a 5/6 subtotal nephrectomy. 

MATERIALS AND METHODS 

Thirty adult (3 mo old) male Swiss mice, weighing 30-40 g, obtained 
from Animal Care Unit, Universitas Gadjah Mada (Yogyakarta, 
Indonesia), were used in this study. The animals were randomized 
and maintained under standard laboratory conditions (at 22+2 °C; 
50±5 % humidity; 12/12 h light/dark cycle) with accessed libitum to 
an animal diet and tap water [15]. All experimental procedures were 
conducted according to the Medical and Health Research Ethics 
committee Faculty of Medicine, Universitas Gadjah Mada number 
Ref: KE/FK/234/EC. 

5/6 Subtotal nephrectomy procedure and administration of 

simvastatin 

The animals were divided into five groups: the nephrectomy (SN, 

n=6), sham operation (SH, n=6), simvastatin 5.2 mg/kg body weight 

(SIM-1, n=6), simvastatin 10.4 mg/kg body weight (SIM-2, n=6), and 

simvastatin 20.8 mg/kg body weight (SIM-3, n=6) groups. A sham 

operation procedure was performed on the SH group and a 5/6 

subtotal nephrectomy procedure was performed on the SN and 

simvastatin (SIM-1, SIM-2, SIM-3) groups and they were terminated 

after 14 d. Simvastatin (Sigma-Aldrich, Science Park Road, 

Singapore) was dissolved in a 1 % solution of carboxymethyl 

cellulose administered once a day by oral gavage (Sigma-Aldrich, St 
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Louis, MA, USA). The 5/6 subtotal nephrectomy procedure was 

performed after anaesthetized with a 0,1 ml/10g body weight i. p. 

injection of sodium pentobarbital. In this model, we performed a 

unilateral nephrectomy on the right kidney and 2/3 of the remaining 

kidney was ablated by a polar excision 1 d after the uninephrectomy. 

Biochemistry analysis 

Serum creatinine was measured with a kinetic test without 

deproteinization according to the Jaffe method (DiaSys, Holzheim 

Germany), proteinuria was measured with a dipstick (YD 

Diagnostics, Seoul, Korea), total serum cholesterol was measured 

with the enzymatic photomeric test (DiaSys, Holzheim, Germany) 

and serum triglyceride was measured with the colorimetric 

enzymatic test using GPO (DiaSys, Holzheim, Germany). 

Morphology 

At the end of the study, the mice were anaesthetized with a 0.1 ml/g 

body weight i. p. injection of sodium pentobarbital. The material was 

then embedded in paraffin for assessment of GS, tubular injury and 

for immunohistochemical studies. Paraffin-embedded renal tissue 

was dewaxed using standard sequential techniques, and 4 µm-thick 

sections were stained with periodic acid-schiff (PAS). The 

morphological measurement was performed blindly by a double-

observer. 

The extent of GS was graded from 0 to 4 with a semi quantitative score 

based on the extent of glomerular damage (sclerosis), capillary loops 

and synechia between glomerular capillaries and the Bowman’s 

capsule (0, normal; 1, mesangial expansion/sclerosis involving<25 % 

of the tuft; 2, moderate GS (25 to 50 %); 3, severe GS (50 to 75 %); and 

4, diffuse GS involving>75 % of the glomerular tuft). For each kidney, 

the sum of the results for 20 glomeruli was defined as the 

glomerulosclerosis index (GSI). The GSI of each mouse was calculated 

as a mean value of all the glomerular scores obtained [16]. 

The tubular injury scores were determined through a 
semiquantitative scoring system. Ten fields were examined for each 
kidney, and the lesions were graded from 0 to 3 (0, no change; 1, 
changes affecting<25 % of the section; 2, changes affecting 25 to 50 
% of the section; and 3, changes affecting 50 to 100 % of the 
section), according to the area with tubulointerstitial lesions 
(tubular atrophy, tubular dilatation, loss of brush border, 
intraluminal casts, interstitial inflammation and fibrosis). The score 
index of each mouse was expressed as a mean value of all scores 
obtained. 

Immunohistochemical (IHC) staining 

The expression of α-SMA, a marker of myofibroblast expansion, and 

PDGF-Rβ, a marker of fibroblast were identified through IHC 

staining using standard techniques. Sections 4 µm-thick were 

obtained from paraffin-embedded tissue and subjected to 15 min 

microwave heating in citrate buffer for antigen retrieval. Then, 

slides were incubated with 1:500 monoclonal anti-α-SMA (Sigma-

Aldrich, St Louis, MO, USA) and 1:200 anti-PDGF-Rβ (Abcam, 

Cambridge, USA) overnight in a humidified chamber at 4 °C. The 

sections were then incubated with appropriate species-specific 

secondary antibodies (Biocare Medical, Concord, CA, USA) for 1 h at 

room temperature. The avidin-biotinylated horseradish peroxidase 

technique (Biocare Medical, Concord, CA, USA) was used to complete 

the detection of antigens. The PDGF-Rβ expression was quantified 

by counting positive cells, and α-SMA expression was expressed as 

fraction area percentage (%) using Image J software version 1.40. 

For each section at least 10 consecutive 400x magnification fields of 

the cortex were examined. 

RNA extraction, cDNA synthesis, RT-PCR 

Total RNA was extracted using RNA iso plus (Takara, Otsu, Japan) 

based on the protocol from the manufacturer, and the RNA 

concentration was quantified by spectrometry. We used 1000 ng 

RNA for the cDNA synthesis. cDNA was synthesized using Rever Tra 

Ace (Toyobo, Osaka, Japan) and random primer (Takara, Otsu, 

Japan), with the following PCR conditions: 30 °C for 10 min 

(denaturation), 42 °C for 60 min (annealing) and 99 °C for 5 min 

(extension).  

RT-PCR was carried out to amplify the following specific cDNAs. The 

primers that were used as: nephrin 5’-CCCCTCTATGATGAAGTA-

CAAATGGA-3’ (forward) and 5’-GTACGATTTCCTCAGGTCTTCT-3’ 

(reverse); podocin 5’-GAAAGGAAGAGCATTGCCCAAG-3’(forward) and 

5’-TGTGGACAGCGACTGAAGAGTGTG-3’(reverse); ICAM-1 5’-AAACGGG-

AGATGAATGGTACCTAC-3’(forward) and 5’-TGCACGTCCCTGGTGA-

TACTC-3’(reverse); MCP-1 5’ACTGAAGCTCGTACTCTC-3’(forward) and 

5’-CTTGGGTTGTGGAGTGAG-3’(reverse); GAPDH 5’-TCACCATCTTCCA-

GGAGCG-3’(forward) and 5’-CTGCTTCACCACCTTCTTGA-3’ (reverse).  

RT-PCR was performed by mixing 2 µl of cDNA, 12.5 µl of Tag 

master mix (Bioron, Ludwigshafen, Germany), 0.6 µl of forward 

primer, 0.6 µl of reverse primer and 9.3 µl of PCR water. The 

cDNAs were amplified according to the following conditions: 94 °C 

for 2 s (initial denaturation), 94 °C for 10 s (denaturation), 60 °C 

for 20 s (the annealing temperature varied for each pair of 

primers), 72 °C for 1 min (extension) and 72 °C for 10 min (last 

extension). The number of cycles was redetermined for each pair 

of primers in order to avoid the PCR plateau phase. The PCR 

products were analyzed in 2 % agarose gel along with a 100 bp 

DNA ladder (Bioron, Ludwigshafen, Germany). The expression of 

the genes was quantified with a densitometry analysis using the 

ImageJ software version 1.40. The GAPDH expression was used to 

normalized the expression. 

Statistical analysis 

The results are expressed as mean±SEM. multiple comparisons 

among the groups were done by one-way analysis of variance 

(ANOVA) and followed by the post hoc Tukey’s test. The level of 

statistical significance was p<0.05. 

RESULTS 

There was a significant difference in body weight between the SH 

group (36.51±1.11 g) and SN group (30.51±3.24 g) at the end of the 

study. The serum creatinine levels of the SN group (1.89±0.32 

mg/dl) were significantly higher than the SH group (0.43±0.04 

mg/dl) 2 w after the operation. There was an increase in plasma 

creatinine levels and proteinuria in the mice with 5/6 subtotal 

nephrectomy. However, differences among the level of total 

cholesterol and triglyceride were not found among the five groups 

(fig.1). Treatment with simvastatin decreased plasma creatinine 

levels and attenuated proteinuria, but did not affect the lipid 

profiles. The following data indicates the pleiotropic effects of 

statins in mice with nephrectomies.  

Glomerulosclerosis, tubular injury score and interstitial 

fibrosis 

The mice kidneys with 5/6 subtotal nephrectomy developed 
conspicuous GS and tubular injury consisting of tubular dilatation 
and atrophy, intraluminal casts, interstitial inflammation and a 
marked interstitial fibrosis as shown by quantification of GSI and 
tubular injury score in SN group compared to SH group. 
Glomerulosclerosis index and tubular injury score on PAS staining 
showed that simvastatin significantly attenuated GS (2.39±0.34 vs 
3.95±0.06, p<0.05, SIM-1 vs SN; 2.23±0.49 vs 3.95±0.06, p<0.05, 
SIM-2 vs SN; 1.98±0.23 vs 3.95±0.06, p<0.05, SIM-3 vs SN) and 
tubular injury (2.19±0.32 vs 3.97±0.04, p<0.05, SIM-1 vs SN; 
1.78±0.36 vs 3.97±0.04, p<0.05, SIM-2 vs SN; 1.63±0.67 vs 
3.97±0.04, p<0.05, SIM-3 vs SN) (fig. 2). 

Myofibroblast and fibroblast expansion 

In the kidneys of the SH group, α-SMA was expressed in the smooth 

muscle cells of renal arterioles, whereas 5/6 subtotal nephrectomy 

caused an increase in the expression of α-SMA positive cells in the 

interstitium compartment known as myofibroblast. Meanwhile, 

simvastatin treatment significantly reduced myofibroblast fraction 

area (3.61±1.06 vs 7.91±1.26, p<0.05, SIM-1 vs SN; 2.86±0.61 vs 

7.91±1.26, p<0.05, SIM-2 vs SN; 1.71±0.50 vs 7.91±1.26, p<0.05, 

SIM-3 vs SN) (fig.3). 
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Fig. 1: Effect of simvastatin on creatinine serum, proteinuria, total cholesterol, and triglyceride. □ = p<0.05 vs SN, Δ = p<0.05 vs SH, SH 

(sham operation), SN (5/6 subtotal nephrectomy), SIM (5/6 subtotal nephrectomy+simvastatin) 
 

 

Fig. 2: (A) Renal histological changes evaluated with PAS staining and interstitial fibrosis evaluated with Picrosirus Red. (B) The bar 

graph summarizes the number of GS, tubular injury score and interstitial fibrosis. □ = p<0.05 vs SN, Δ = p<0.05 vs SH, SH (sham operation), 

SN (5/6 subtotal nephrectomy), SIM (5/6 subtotal nephrectomy+simvastatin) 
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Fig. 3: (A) Immuno-histochemical analysis of α-SMA and PDGF-Rβ. (B) Bar graph summarizes a number of α-SMA and PDGF-Rβ. □ = p<0.05 

vs SN, Δ = p<0.05 vs SH, SH (sham operatian), SN (5/6 subtotal nephrectomy), SIM (5/6 subtotal nephrectomy+simvastatin) 

 

 

Fig. 4: (A) Representative gels of MCP-1, ICAM-1, nephrin and podocin expressions. (B) Densitometric analysis of MCP-1, ICAM-1, nephrin 

and podocin protein expressions. □ = p<0.05 vs SN, Δ = p<0.05 vs SH, SH (sham operatian), SN (5/6 subtotal nephrectomy), SIM (5/6 

subtotal nephrectomy+simvastatin) 
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MCP-1, ICAM-1, nephrin and podocine expression 

In order to investigate the status of podocyte integrity and 

inflammatory markers in mice with 5/6 subtotal nephrectomy, we 

studied the expressions of nephrin, podocin, MCP-1, and ICAM-1. In 

this study, the MCP-1 and ICAM-1 expressions of the SN group were 

significantly higher than the SH group. Treatment with simvastatin 

reduced this expression significantly. The nephrin expression in the 

SN group was lower than the SH group, though this was not 

statistically significant. Treatment with simvastatin was able to 

improve this expression, but this was also not statistically 

significant. Amelioration of podocyte integrity was shown by higher 

expression of podocin in simvastatin treatment groups compare to 

SN group. Contrast to the nephrin expressions, podocin expression 

in the SN group was significantly lower than the SH group 

(0.32±0.12 vs 0.53±0.09, p<0.05, SN vs SH). Simvastatin treatment in 

the SIM-3 group also appeared to attenuate podocin expression 

significantly than in the SN group (0.52±0.1 vs 0.32±0.12, p<0.05, 

SIM-3 vs SN) (fig. 4). 

DISCUSSION 

Two weeks of 5/6 subtotal nephrectomy was associated with loss of 

functional nephrons which induced glomerular hyperfiltration, 

compensatory renal hypertrophy, systemic hypertension, and 

functional and morphological damage of the remaining kidney [15-

17]. As expected, in this study the 5/6 subtotal nephrectomy mice 

showed impaired renal function and proteinuria, accompanied by 

severe GS, tubular injury and interstitial fibrosis, as well as 

myofibroblast expansion. 

Renal function impairment is characterized by increased levels of 

serum creatinine and proteinuria in the SN group compared with the 

SH group. Statins have been reported to reduced the levels of serum 

creatinine [18-20], C-reactive protein, BUN, eGFR and proteinuria 

[14, 18, 20, 21], which is consistent with the results of this study. 

The duration and dose of the therapy appears to have affected these 

renoprotective effects [13, 14]. However, a study on an NO deficiency 

model reported no difference in the levels of serum creatinine after 

administration of statins among the groups [22]. Proteinuria may 

occur as a result of glomerular filtration and tubular reabsorption 

dysfunction [20]. Statins may moderately reduce pathologic excretion 

of urine albumin and proteinuria within a period of 6 mo after 

initiation of the therapy and may reduce the rate of kidney disease 

progression when combined with RAASI [22, 23]. 

Dyslipidemia is a major problem in CKD, which lead to higher risk of 

CV disease and renal function deterioration [4, 25]. The results of 

previous studies suggest that statins have pleiotropic effects in a 

cholesterol-independent reduction manner [19, 22, 26-30], though 

the mechanisms have not been sufficiently revealed yet. The total 

cholesterol and triglyceride levels between treatment groups in this 

study showed no significant differences (p<0.05). These results 

indicate that simvastatin can improve kidney function, but have no 

effect on cholesterol levels and triglyceride. However, other studies 

have reported that administration of atorvastatin 100 mg/kg/d 

significantly lowers total cholesterol, LDL, VLDL, and improves HDL 

[30], reduces TC concentrations by 13 % in patients with CKD, have 

protective effects on CV events and mortality in patients with or 

without established CV diseases [4]. The decrease in LDL levels was 

parallel to the increasing doses of statins and significantly different 

between the statin types used, however this had no significant 

implications on clinical practice [31]. 

In this study, treatment with simvastatin reduced the GS, tubular 

injury score and interstitial fibrosis. The results of the semi 

quantitative analysis on GS and tubular injury score in the 

simvastatin groups (SIM-1, SIM-2, SIM-3) were significantly lower 

than SN group (p<0.05). Glomerulosclerosis is associated with 

extracellular matrix deposition, abnormal mesangial cell expansion 

and increased kidney inflammation [11]. Simvastatin prevents GS 

through anti-inflammatory effects such as decreased pro-

inflammatory cytokines (IL-6, IL-1β, TGF-β and TNF-α) [10, 22], 

decreased NF-κB expression [10], and increased hepatocyte growth 

factor, BMP-7 and Smad 7 expressions which improves renal blood 

flow [28]. Simvastatin is also known to improve 24 h urine albumin 

excretion ratio and increase nephrin expression [7]. In this study we 

found that there was no significant difference in nephrin expression 

between the groups (p>0.05). However, in the SIM-3 group, 

treatment with simvastatin appeared to reduce podocin expression 

significantly. 

In contrast to the glomerular lesion, the tubular injury was 

predominantly caused by an increase in total interstitial cell volume 

(which may represent increased cell size and/or number), preceding 

the accumulation of interstitial collagen. These interstitial cells include 

myofibroblast cells, which have pivotal roles as a major source of 

collagen synthesis in interstitial fibrosis and increased expression of α-

SMA [32, 33]. Previous studies have reported that simvastatin can 

slow fibrosis by decreasing CTGF and α-SMA expressions in a diabetic 

nephropathy model [34], preventing the activation and trans 

differentiation of tubular cells (decreasing type 1 collagen, fibronectin, 

α-SMA, and vimentin expressions) [25], as well as reducing MCP-1 and 

p21 expresions [27]. In this study, we also found that simvastatin 

reduced MCP-1 expression at 3 different doses and reduced ICAM-1 at 

the highest dose (20.8 mg/kg body weight). 

Alpha-SMA is an intermediate filament used as a marker for 

myofibroblast. In normal mice kidneys, α-SMA expression is limited 

to the vascular smooth muscle artery [35, 36]. Based on data from 

this study, we found that treatment with simvastatin reduced the 

expansion of myofibroblast at each of the given doses. Decreased α-

SMA was also reported through treatment with 2 mg/kg simvastatin 

on a UUO model [25]. These results are similar with other in vitro 

studies in which simvastatin inhibits the production of α-SMA in 

keloid fibroblasts [37], blocks calcific nodule formation in valvular 

interstitial cells by inhibiting α-SMA expression [38]. Here we 

revealed simvastatin effect on attenuating kidney injury 

independent to its lowering lipid effect. lipid lowering-independent 

effect of simvastatin is also known into decreasing human atrial 

myofibroblast proliferation regardless of cholesterol decrease via 

inhibition of RhoA [39]. Furthermore, simvastatin-induced cardiac 

fibroblast cytoskleton, adhesion, migration and viability [40]. 

Meanwhile, other study also revealed nephrotoxicity effect of high 

dose atorvastatin independent to oxidative stress but may be due to 

rhabdomyolisis [41]. For future studies, it is needed to consider the 

dose-dependent effect of statin in renal patology. 

CONCLUSION 

In conclusion, in this model, simvastatin significantly attenuated 

kidney fibrosis. These effects can be seen through the decrease in GS, 
tubular injury and interstitial fibrosis which appear to result from 

the reduction of myofibroblast expansion and inflammatory 
mediators. Beyond its effect, statins might prove to be an effective 

adjunctive treatment in renal disease. 
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