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ABSTRACT 

Immune surveillance is a mechanism where cells and tissues are watched constantly by ever alerted immune system. Most incipient cancer cells are 

recognized and eliminated by the immune surveillance mechanism, but still tumors have the ability to evade immune surveillance and 

immunological killing. One greater arm that tumor use to evade immune surveillance, is by expressing anti-phagocytic signal (CD47). Here we 

present a provocative hypothesis where cancer cells are removed alive by phagocytic cell (DC). That in turn will elicit effective and higher 

immunogenic condition. All this could be possible by addition pro-phagocytic signal (PtdSer) over cancer cell surface (Breast Cancer), that mask the 

presence of anti-phagocytic signal (CD47). In other words, adding eat me signal (PtdSer) over the breast cancer cell surface that mask the presence 

of don’t eat me signal or anti-phagocytic signal present in breast cancer cell surface. This could be possible by using bi-specific antibody, conjugated 

to PEG-modified liposomes, which carry (PtdSer) pro-phagocytic signal (or) eat me signal, which target both CD47 and EGFRVIII on breast 

carcinoma. The simultaneous masking of anti-phagocytic signal, and adding of pro–phagocytic signal over cancer cell, will enhance the phagocytic 

clearance of live tumor cell and elicit immunological killing. 

Keywords: Phagocytosis, CD47, EGFRVIII, Phagocytic cells, PtdSer, Immunological killing 

© 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) 

DOI: http://dx.doi.org/10.22159/ijpps.2016v8i9.12990 

 

INTRODUCTION 

Tumor immune surveillance is the leading mechanism, for defense 

against cancer. The ever alerted immune system recognizes 

cancerous and/or precancerous cells on the basis of expression of 

tumor specific antigens (or) molecules, induced by cellular stress. To 

a large extent, nascent tumors are identified and eliminated by the 

immune system via phagocytosis, before they cause harm [1]. 

Despite tumor immune surveillance, solid tumors do grow and avoid 

recognition, and complete clearance from alerted immune system, 

via macrophage-mediated phagocytosis thereby evades immune-

mediated eradication. One of the important mechanism, by which 

cancer cells evade immune destruction (macrophage-mediated 

phagocytosis) is by enhancing increased expression of CD47 (don’t 

eat me signal or antiphagocytic signal) [2]. 

CD47 is a cell surface transmembrane glycoprotein, in the 

immunoglobulin superfamily, involved in T-cell and dendritic cell 

activation [3], cell migration [4] and axon development [5]. In 

addition, it acts as a ligand for a signal regulatory protein–α (SIRP-α) 

expressed on macrophages and dendritic cells [6]. The interaction 

between CD47 and SIRPα initiates signaling events which lead to 

inhibition of phagocytosis of the viable host cells [7, 21]. Normal 

cells by the expression of CD47 protect themselves from 

phagocytosis and also avert phagocytic mediated cell death. [8, 9]. 

For example, CD47 is highly expressed on tumor cells, such as AML 

(Acute myeloid leukemia) [10], CML (Chronic myeloid leukemia) [2], 

NHL (Non-Hodgkins lymphoma) [11], bladder cancer and various 

solid tumors [12, 13] compared with its low expression in normal cells 

[7]. In spite of the expression of CD47 in tumor and normal cells, 

immunotherapy using anti-CD47 antibody selectively eliminates the 

tumor cells and spare the normal cells [10, 11, 14]. Thus, anti-CD47 

antibody blocks a negative phagocytic signal, however a positive 

phagocytic signal is still needed for phagocytosis. The selective 

phagocytosis of tumor cell is determined by expression of a pro-

phagocytic signal(s) on tumor cells that is absent on normal cells. 

Human hematological malignancies and solid tumors express the 

pro-phagocytic signal calreticulin (CRT) on the cell surface, while 

their normal counterpart does not [15]. (fig. 1 and 2). Anti–CD47 

antibody targeting of tumor cell depends on both the blockade of 

anti-phagocytic CD47 signals and exposure of pro-phagocytic CRT 

signals. In addition to calreticulin, the dying cell possesses other 

pro–phagocytic ligand such as phosphatidylserine [14]. All these 

data present reasonable grounds to suggest that phagocytic removal 

of apoptotic cell requires ligand–receptor interaction of pro-

phagocytic signal and inhibition of anti-phagocytic signal brought 

via CD47-SIRPα.  

Hypothesis  

Here, we present a provocative hypothesis to phagocytose live 

whole breast cancer cell. According to our model, scavenger cell can 

effectively and specifically remove live immunogenic breast cancer 

cell, provided addition of pro-phagocytic signal (PtdSer) on to the 

surface of breast cancer cell. In other words, labeling PtdSer over the 

anti-phagocytic signal would mask the anti-phagocytic signal in 

tumor cell and simultaneously add weightage to pro-phagocytic 

signal on the cancer cell. This could be a novel approach to 

immurement of the whole breast cancer cell by phagocytosis and in 

turn lead to induction of effective anti-tumor T cell response. 

Evaluation of hypothesis 

Evasion of immune destruction 

Highly immunogenic tumor evades immune destruction by diverse 

mechanisms. One such key mechanism is immune tolerance which is 

avoiding induction of effector cells and avoiding the encounter with 

host effector cells by secreting anti-inflammatory and immune-

suppressive factors. The tolerance that naturally exists to prevent 

autoimmune disease also participates in favor of the cancer cell to 

avoid rising of the immune response against their antigen. In 

general, tolerance to any given antigen is possible by two broad 

mechanisms, i.e. deletion mechanism and the non-deletion 

mechanism [16]. 

Deletion mechanism involves complete removal of antigen-reactive 

cells. One such antigen reactive cell is T-cell clone, which is 

generated against a tumor antigen. Genetic and epigenetic changes 

in the genome of normal tissue, give rise to tumor and tumor antigen 

i. e the antigen expressed is its own origin-normal self-antigen. To 

this antigen, a deletional tolerance of T-cell clone exists either 
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centrally or peripherally [16]. This tumor antigen-specific reactive 

T-cell is killed or inhibited by immune suppressive cytokines such as 

interleukin (IL-10) and transforming growth factor beta (TGF-β) 

secreted by a tumor cell, and expression of apoptotic inducing factor 

fas ligand, resulting in immune evasion [20, 21]. Furthermore, T-

cells and NK cells that express receptors for ligand RCAS1 (tumor 

associated antigen) expressed by tumor are eliminated by apoptosis 

[22, 23]. 

Non deletion mechanism involves failure in recognition of antigen 

specific T-cell, due to insufficient activation stimuli of T-cell and 

dysfunction of TCR signaling pathway. This is brought by decreased 

expression of TCR zeta chain and loss of Syk tyrosine kinase in T-cell 

infiltrating tumors [24, 25]. Localization of tumor is also an 

important factor for immunological tolerance as certain tumors are 

not accessible to circulating T cells, by which it hides its presence 

[26]. The availability of regulatory T cell CD4+ CD25+ within the 

tumor plays a key role in tumor escape by suppressing T-cell 

response against tumor [27-29]. Antibody dependent cell mediated 

cytotoxicity (ADCC) is evaded by cancer cells by expressing self MHC 

class I molecule, which interacts with killer cell inhibitory receptors 

(KIRs) expressed on NK cells. The interaction between Class I MHC 

in tumor and KIRs in NK cell, leads to activating NK cell’s KIRs. The 

activated KIRs recruit and activates SHP-1 (Src-homology-2-domain-

containing protein tyrosine phosphatase 1) and or SHP-2 (Src-

homology-2-domain-containing protein tyrosine phosphatase 2) 

that down regulate FC receptor signaling i.e. CD16, a membrane 

receptor for the carboxyl–terminal end of the IgG molecule, known 

as FC region. As a result, NK cell unable to attach to the antibody 

generated against the antigen expressed by the tumor cells, which 

make NK cells not to secrete substances such as lytic enzyme, TNF, 

perforin and granzyme, which are involved in target cell destruction. 

There exists another prominent inhibitory membrane receptor 

SIRPα [30] in phagocytic cell such as dendritic cell, macrophages and 

granulocytes. SIRPα works in similar fashion that of the KIRs to 

avoid antibody mediated tumor cell destruction [8, 83]. Upon 

engagement of SIRPα with CD47 (anti-phagocytic signal) in tumor, 

results in intercellular signaling in bi-directional manner by forming 

homo-dimer [31, 32] of CD47 and SIRPα. The intercellular signaling 

generated in macrophages that contain SIRPα, leads to phosphorylation 

of the tyrosine residues on SIRPα’s immune receptor tyrosine based 

inhibitory motif (ITIM) in macrophages. This in turn activates, Src 

homology domain containing protein, tyrosine phosphatases SHP-1 and 

SHP-2. Activation of SHP-1 and SHP-2 in macrophage can in turn 

dephosphorylate specific protein substrates and thereby regulate 

cellular function in a negative fashion. One such example is the 

deactivation of myosin–II and the contractile cytoskeletal activity, which 

is involved in pulling a target into macrophage [33] thus phagocytosis 

process is hindered. In contrast, the SIRPα act as a ligand to CD47 in 

tumor cell and or normal cell (neurons) and promote activation of CDC4, 

a member of Rho family of small GTP binding protein [34]. However, it is 

unclear with the molecular components that generate downstream 

signaling and its outcome. 

CD47 and EGFRVIII–A good scaffold for PtdSer 

It is well proposed that CD47 expressed by the tumor cell act as a 
protective mechanism against phagocytosis and other immune 
effector functions. CD47 not only helps the tumor to prevent 
phagocytosis but also aid the tumor in its growth, dissemination, 
metastasis and poor clinical outcome [14, 35]. 

It has been shown that the expression level of CD47 progressively 

increases with tumor progression. The cancer genome anatomy 

project has shown that CD47 expression in renal and breast cancer 

is considerably increased. Unfortunately, the CD47 is not tumor 

specific, it is mild and ubiquitously expressed in a majority of normal 

tissues [2, 36] to protect the normal cell from phagocytosis. 

Thus, modulating the CD47 and or its interaction with SIRPα, not 

only helps in destruction of tumor by phagocytosis mediated cell 

death, but also enhances the clinical outcome. The very common 

strategy that widely exists in cancer immunotherapy is to generate 

monoclonal antibody against CD47 [37] and or recombinant SIRPα 

[38] to block “don’t eat me” signal. As CD47 is expressed in normal 

cell, the blocking might possibly generate an adverse effect. In the 

case of erythrocytes, which require CD47 expression for its survival, 

[39] but the blocking of CD47 might cause severe side effect, 

including anemia. But, fortuitously it has been shown that blocking 

[10, 14, 15] the interaction of CD47 with SIRPα, with the help of 

anti–CD47 antibody, rules out tumor cells but not the normal cells. 

The possible explanation is the presence of pro-phagocytic signal 

calreticulin (CRT) in tumor cell and not in normal cell [15] shown in 

fig. 1 and 2. The positive phagocytic signal dominates the negative 

phagocytic signal, when CD47 is blocked by anti CD47 antibody. 

Moreover, it was found that anti CD47 antibody is large in size, 

which can impede their penetration into tumor [40] i.e. they can be 

poorly internalized. This drawback of low penetration favors the 

CD47 as a scaffold for bispecific antibody (bsAbs). Bispecific 

antibodies (bsAbs) have the ability to bind simultaneously to two 

different targets. 

In our hypothesis, CD47 act as a target along with tumor specific 

mutant variant epidermal growth factor receptor (EGFRVIII) as a co-

target. EGFR lacks extracellular domain, as a result the ligand EGF 

(Epidermal growth factor) binding is averted. In spite of lacking of 

EGF binding, the EGF receptor variant 3 constitutively activates 

downstream signaling, by undergoing auto phosphorylation in a 

ligand independent manner [41-43]. The internalization and 

degradation of EGFRVIII are slower than EGFR that add advantage to 

retain the bispecific antibody on cell surface. Moreover breast 

cancer cell expresses EGFRVIII and helps in initiation, promotion 

and progression of breast cancer and also it brings resistance to 

chemotherapy, radiotherapy and EGFR targeting drug like 

cetuximab [21, 49]. Thus, EGFRVIII and CD47 of breast tumor that 

lacks receptor internalization, pave way to use CD47 and EGFRVIII 

as a good scaffold for the binding of bispecific antibody. One arm of 

bispecific antibody block CD47 and the other arm block tumor 

specific antigen EGFRVIII in breast cancer. The use of single 

antibody molecule in bispecific format could reduce the potential off 

target toxicity [44] generated by CD47, as they are expressed in both 

normal and tumor cells. Moreover, it leads to specific killing of 

tumor cell. The usage of bispecific antibody further prevents the 

internalization property of CD47, through binding to EGFRVIII in 

breast cancer and makes CD47 and EGFRVIII a good scaffold. 

Masking “don’t eat me” signal by “eat me signal” 

The mere presence of prominent eat me signal such as PtdSer 

(Phosphatidylserine) and/or CRT (Calreticulin) on the surface of 

tumor cell and the normal cell is not sufficient for engulfment by a 

phagocytic cell. Their existence is dominated by the presence of 

don’t eat me signal (CD47) [45, 46]. Moreover the natural existence 

of PtdSer ((Phosphatidylserine) on the live cell is very low<0.9 

picomoles/million cells [46], which is not sufficient to engulf a non-

apoptotic cell. 

In contrast, upon induction by apoptosis by anti-fas or campto-

thecin, the PtdSer on the outer leaflet of membrane goes up to>240 

picomoles/million cells [46]. These differences in the amount of eat 

me signal between live and apoptotic cell make the phagocyte to 

recognize the apoptotic cell. Earlier study elucidated that PtdSer 

containing liposomes can be used to add sufficient signal on the cell 

to elicit phagocytic recognition [47]. It has been proven that PtdSer 

externalization is essential for phagocytosis, but the PtdSer alone is 

not enough to engulf PtdSer externalized apoptotic cell/viable cell 

under normal condition [64-66] as well as in oxidative condition 

[70]. Some chemotherapeutic drugs like doxorubicin, cisplatin fails 

to induce apoptotic cell death and phagocytosis in oxidative stress 

condition [71] primarily by inducing the expression of phagocytosis 

inhibiting factor (anti-phagocytic signal) [70]. Therefore, it is 

important to make a tumor cell to get engulfed in oxidative as well 

as non-oxidative environment. This could be possible by bringing 

additional changes to cell surface that could promote phagocytosis 

in both oxidative as well as non-oxidative environment. One such 

additional changes on the cell surface along with adding of pro-

phagocytic signal is masking the presence of CD47 (don’t eat me) on 

the tumor cell surface. This dual change of tumor cell surface can be 

brought simultaneous for efficient and complete clearance of live 

tumor cell by using bispecific antibody conjugated with PtdSer 
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containing PEG-modified liposomes, targeting CD47 and tumor 

specific EGFRVIII [48, 49]. Both CD47 and EGFRVIII are non-

internalized receptor [50]. Moreover, the internalization of PtdSer 

on tumor cell surface is impeded, as tumor cell that rely on 

glycolysis rather than mitochondrial respiration [51] As a result low 

ATP is generated in tumor cells compared to the normal cells. 

Increased ATP level is much essential for internalization of exogenously 
added PtdSer. Once PtdSer are labeled over the tumor cell surface by 
encapsulated PEG liposomes, the well protected PtdSer liposomes 
surface must transform to one that is reactive. This transformation can 
be controlled by selecting PEG modified lipids that desorb from the 
liposome, thus exposing PtdSer on membrane surface [52, 53]. The dual 
modification i.e. adding of pro phagocytic signal PtdSer and masking 
don’t eat me by adding eat me signal PtdSer, will allow efficient tumor 
specific phagocytosis. As don’t eat me signal (CD47) that act as 
phagocytic inhibitory signal is blocked by eat me signal (/PtdSer) and 
also the eat me signal is enriched on tumor cell surface shown in fig. 1. 
Meanwhile, the natural existence of another pro-phagocytic signal like 
calreticulin only in tumor cell surface [15] might add advantage to a 
selective and enhanced uptake of surface altered tumor cell by 
phagocytic cell shown in fig. 1. 

 

Fig. 1: Phagocytosis of breast cancer cell-masking of anti-

phagocytic signal (CD47), and adding of pro-phagocytic signal 

(PtdSer) over breast cancer cell  

(a). CD47 (antiphagocytic signal), and Calreticulin (CRT-pro phagocytic 

signal) both present on tumor cell surface, (b). bispecific antibody 

conjugated with PEG liposomes are targeting CD47 and EGFR VIII, (c). 

Desorbing PEG liposomes lead to adding of pro-phagocytic signal 

(PtdSer) over CD47, which masks CD47 presence in tumor cell surface, 

(d). Phagocytic cell undergoes cytoskeletal rearrangement after binding 

with PtdSer and CRT to engulf CD47 masked tumor cell 

 

 

Fig. 2: Normal cell having only anti-phagocytic signal (CD47) 

and devoid of pro-phagocytic signal (CRT) and mutant 

epidermal growth factor receptor (EGFRVIII) are failed to 

recognize and engulfed by phagocytic cell 

Immurement of immunogenic cancer 

Once the PtdSer (Phosphatidylserine) is displayed on cell surface, it 

gets directly bound by any of the phagocytic cell surface receptor 

such as PSR (Phosphatidylserine receptor), BAI1 (Brain specific 

angiogenesis inhibitor 1), Stabilin-2 (also known as hyaluronic acid 

receptor for endocytosis or HARE), RAGE (receptor for advanced 

glycation end product) [54, 55]. The bonding between the/PtdSer and 

its cognate receptor activates signaling cascade employing CRKIII-

DOCK180–ELMO. CRKIII-DOCK180–ELMO activates Arp2/3 complex; 

which in-turn activates RAC1 (Small GTPase protein) leading to re-

organization of the cytoskeleton [56] and actin polymerization, neurite 

growth, membrane ruffling (macropinocytes) which are essential for 

engulfment [57-59]. This cytoskeletal rearrangement is necessary for 

internalization of apoptotic bodies, corpse [60] and also whole live 

tumor cell [61-63] fig. 1. 

Tumor cells by itself have poor antigen presentation, which is not 

sufficient to elicit immune response. Tumor antigens captured via 

phagocytosis are processed and presented by professional antigen 

presenting cells, especially dendritic cells [67] to activate naive T-

cells and initiate primary immune response [68, 69]. Cross 

presentation is crucial for stimulation of CD8+T-lymphocytes. 

Among cellular antigens, apoptotic cells are commonly considered as 

the best for cross presentation by dendritic cells (DCs) [72]. 

Surprisingly, this notion was altered, when HIV infected live CD4+T 

lymphocytes are engulfed by human monocyte derived DCs, which 

elicit effective cross-presentation of HIV antigen from live infected 

CD4+ T lymphocytes. This is as effective as cross presentation from 

apoptotic cells [73]. Immature pDCs capture the live influenza-

exposed cells and subsequently gets matured and cross present the 

viral antigen very efficiently to specific CD8+ T cells [74]. Then, 

whole killed tumor cell is used as a source of tumor antigen for 

treating tumors, by pulsing killed tumor cell with mature dendritic 

cell in vitro. The killed tumor cell is efficiently processed and cross 

present the tumor antigen by dendritic cell and activate tumor 

specific CTLs as well as CD4 T-helper cells [75-77]. 

The usage of killed tumor cell sets a drawback, where the dendritic 
cell generated in vitro fails to migrate to the lymph nodes from the 
tissue of vaccinated site. This could be averted, when the live whole 
tumor cells are brought into usage as an alternative approach to the 
usage of killed tumor cell, as the live whole tumor cells are highly 
immunogenic. In vivo DCs induces CD8+T cell priming by cross-
presentation of antigen from live tumor cells [78], which are 20 fold 
more immunogenic than apoptotic cells [79]. Cell to cell contact 
which is similar to the nibbling process is mediated by dendritic cell 
with its scavenger receptor (SR-A) as an essential mechanism to give 
rise to tumor antigen cross-presentation [80]. Endogenous spleen 
DCs fails to internalize and cross-present the cellular material from 
live normal B lymphocytes or splenocytes, but it readily uptake the 
material from apoptotic cells. DCs take up live tumor cells, but not 
the live normal cells. This difference could be due to the presence of 
eat me signal such as calreticulin (CRT) or oxidized low density 
lipoprotein in tumor cell, that could overpass don’t eat me signal 
(CD47) normally expressed by steady state cells [81]. 

CONCLUSION 

Commonly used treatment modalities in cancer are Surgery, 

chemotherapy and radiation therapy, which significantly reduce the 

tumor mass and improve the prognosis of patients. In spite of these 

effective treatments, small population of precursor tumor cells 

and/or cancer stem cells still resistant to chemo/radiation. They 

often survive and give rise to new population of tumor cells, which 

are much more aggressive and highly resistant to existing standard 

treatment and consequently lead to tumor relapse, thereby increase 

the cancer mortality. To overcome this problem and destroy the 

residual tumor cells that exist after therapy, a novel immunotherapy 

approach can be used along with the conventional treatment. One 

such strategy is to modulate the tumor cell and weakening them by 

masking anti phagocytic signal (CD47) in tumor cell with a pro 

phagocytic signal (PtdSer) with the aid of bispecific antibody 

conjugated with liposomes targeting the tumor cell surface protein 

CD47 and EGFRVIII. Thereby the residual tumor cells will be 

encountered and immured by antigen presenting cells such as 
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dendritic cells and elicit T-cell mediated immunity that could 

completely remove every tumor cell from the host. This strategy will 

be mimicking the way of removing the naturally arising incipient 

cancer cell from the host, to an immunogenic tumor cells. Thus 

masking anti phagocytic signal CD47 in tumor by pro-phagocytic 

signal will be a strong key to immurement of immunogenic tumor cell. 
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