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ABSTRACT 

Objective: The polo-like kinase 1 (plk1) plays important roles in the regulation of mitotic progression, including mitotic entry, spindle formation, 
chromosome segregation and cytokinesis. Thus, plk1 is considered as a good target for chemotherapeutic intervention. The main objectives of this 
research were to in silico screen the 2-amino-pyrazolopyridine derivatives as plk1 inhibitors and develop pharmacophore for enhanced activity.  

Methods: The three-dimensional quantitative structure–activity relationship (3D-QSAR), docking and pharmacophore identification studies on 2-
amino-pyrazolopyridine derivatives as plk1 inhibitors have been carried out using V Life MDS 4.3 software. The stepwise 3D-QSAR kNN-MFA 
method was applied to derive QSAR model. Also, ADMET prediction was performed using FAF Drugs 2 which runs on Linux OS. 

Results: The information rendered by 3D-QSAR models may lead to a better understanding and designing of novel plk1 inhibitor molecules. The 
molecular docking analysis was carried out to better understand the interactions between plk1 enzyme and inhibitors in this series. Hydrophobic 
and hydrogen bond interactions lead to identification of active binding sites. The results of pharmacophore studies showed that hydrogen bond 
accepters, aromatic and aliphatic centers are the important features for polo-like kinase 1 inhibitor activity. ADMET prediction of these compounds 
showed good drug like properties. 

Conclusion: The combination of the 3D-QSAR, docking, pharmacophore modeling and ADMET prediction is an important tool in understanding the 
structural requirements for design of novel, potent and selective plk1 inhibitors and can be employed to design new  drug discovery and can be used 
for derivatives of 2-amino-pyrazolopyridines with specific plk1 inhibitory activity. 
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INTRODUCTION 

Molecular modeling study is an approach that has been used to 
narrow down a library containing an extraordinarily high number of 
random molecules into a smaller list of the potentially effective 
inhibitors [1]. Quantitative-structure activity relationship (QSAR) 
studies leading to models in terms of chemical structures and their 
biological activities are a powerful tool for drug design in medicinal 
chemistry [2]. Three dimensional quantitative structure–activity 
relationships (3D-QSAR) is a widely used model for identification of 
the steric, electrostatic and hydrophobic structural requirements of 
various drugs acting via receptor modulation for exerting their 
biological activity. By the application of 3D-QSAR models, the 
number of compounds that need to be synthesized by a medicinal 
chemist can be reduced greatly. Thus, the time and cost of drug 
discovery and development can also be reduced [3]. The molecular 
docking study is used as an important tool in drug discovery to 
better understand the interactions between the ligands and 
receptors. Pharmacophore modeling is also an important model and 
widely used in drug discovery process to correlate the observed 
biological activities for a series of compounds with their chemical 
structures. Such a model could also be used as a query for screening 
chemical databases to find new chemical entities. Now a days, in 

silico ADMET prediction have become an essential requirement for 
screening the drugs before further screening for biological activities.  

Polo-like kinases (plks) are an evolutionarily conserved family of 
serine/threonine kinases characterized by an amino-terminal 
serine/threonine kinase domain and carboxy-terminal polo box 
domain(s). The plks family includes plk1, plk2 (SNK), plk3 
(PRK/FNK), plk4 (SAK) and More recently, plk5 has been identified; 
however, it lacks a kinase domain and does not seem to function in 
cell cycle regulation. The plk1 plays an important role throughout 
mitosis and is involved in the regulation of mitotic progression, 
including mitotic entry, spindle formation, chromosome segregation 
and cytokinesis [4, 5]. The plk1 is the most investigated member of 

the family and has been widely considered as an anticancer target 
[6–8]. The pharmacologic inhibition of plk1 in tumor cells results in 
defects in centrosome maturation and separation, mitotic spindle 
formation and chromosome alignment, leading to disruption of cell 
mitosis and even apoptosis [9–11]. The plk1 is over expressed in a 
broad range of human tumors and this over expression is positively 
correlated with aggressiveness and poor prognosis in many cancers. 
Thus, plk1 is considered as a good target for chemotherapeutic 
intervention [12-14]. With the above facts and in continuation of our 
research for identification of bioactive agents [15-16] in the present 
study, we reported 3D-QSAR, molecular docking, pharmacophore 
modeling and ADMET prediction of 2-aminopyrazolopyridine 
derivatives as plk1 inhibitors to provide further insight into the key 
structural features required to design potential drug candidates of 
this class. The output of present research work is interesting and can 
be further studied to develop potential plk1 inhibitors. 

MATERIALS AND METHODS 

Data sets and biological activity 

All molecular modeling studies (3D-QSAR, molecular docking, and 
pharmacophore model) were performed using the molecular 
modeling software package VLife Molecular Design Suite (VLife 
MDS) version 4.3 [17] on HP-PC (HPLV1911) with a Pentium IV 
processor and Windows 7 operating system. A dataset of 2-
aminopyrazolopyridine derivatives with reported activities was 
used in present study [18]. Since some compound exhibited 
insignificant/no inhibition, such compounds were excluded from the 
present study. The structures and their inhibitory activities in IC50 

(μM) are listed in table 1. 

Ligand preparation 

2D structure of 2-aminopyrazolopyridine derivatives was drawn 
using VLife2 Draw tool. All structures were cleaned and 3D 
optimized. All the 3D structures were optimized using Merck 
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molecular force field (MMFF) [19] with distance dependent 
dielectric function and energy gradient of 0.01 kcal/mol Å with 
10000 numbers of cycles. The total energy of a conformation can be 
calculated using MMFF by the relation; 

Etotal = EB+ EA+ EBA+ EOOP+ ET+ Evdw + Eelec 

Where, 

EB = energy of bond stretching; 

EA = energy of angle bending; 

EBA = energy of bond stretching and angle bending; 

EOOP = out-of-plane bending energy; 

ET = torsion energy term; 

Evdw = van der Waals energy; 

Eelec = electrostatic energy. 

The conformers for all structures were generated and the low 
energy conformer for each compound was selected and used for 
further study. 

3D-QSAR studies 

Alignment of molecules 

The molecules of the dataset were aligned by the template based 
technique, using the common structure of 2-aminopyrazolopyridine 

derivatives with the help of VLife MDS 4.3 template based alignment 
tool. This method is based on moving the molecules in 3D space, 
which is related to the conformational flexibility of molecules. The 
goal is to obtain optimal alignment between the molecular 
structures necessary for ligand–receptor interactions [20].  

The most active molecule was selected as a template for alignment 
of the molecules. A highly bioactive energetically stable 
conformation in this class of compounds is chosen as a reference 
molecule on which other molecules in the data set are aligned, 
considering template as a basis for the alignment. 
 

 

Table 1: Structures and biological activity of 2-amino-pyrazolopyridine derivatives 

Code R1 R2 R3 R4 R5 IC50 (μM) 

1 H H H H H 1.301 
2 H CH3 H H H 7.685 
3 H H CH3 H H 0.474 
4 H H H CH3 H 4.528 
5 OCH3 H H H H 14.451 
6 H H H H OCH3 5.928 
7 H H H OCH3 H 0.703 
8 H F H H H 4.516 
9 H H F H H 0.464 
10 H H H F H 3.241 
11 H H Cl H H 0.121 
12 H H CH3CHCH3 H H 1.476 
13 H H CN H H 0.412 
14 H H N(CH3)2 H H 0.977 
15 H H SO2CH3 H H 0.225 
16 H H CH3 H CH3 0.149 
17 H H Cl H Cl 0.641 
18 H H Cl H Br 0.274 
19 CH3 H CH2CH2COOH H H 0.021 
20 CH3 H CH2CH2CONH2 H H 0.032 
21 CH3 H CH2CH2CH2NH2 H H 0.059 
22 CH3 H 2-PhCH2CONH2 H H 0.207 
23 CH3 H 2-PhCONH2 H H 0.042 

 

3D-QSAR kNN-MFA model 

Like many 3D-QSAR methods, k-nearest neighbor molecular field 
analysis (kNN-MFA) requires suitable alignment of given set of 
molecules [21]. This is followed by generation of a common 
rectangular grid around the molecules.  

The steric and electrostatic interaction energies are computed at the 
lattice points of the grid using a methyl probe of charge +1. These 
interaction energy values are considered for the relationship 
generation and utilized as descriptors to decide nearness between 
molecules. The term descriptor is utilized in the following discussion 
to indicate field values at the lattice points. The optimal training and 
test sets were generated using the sphere exclusion algorithm. This 
algorithm allows the construction of training sets covering 
descriptor space occupied by representative points. Once the 
training and test sets were generated, kNN methodology was 
applied to the descriptors generated over the grid. The standard 
kNN method is implemented simply as follows:  

• Calculate distances between an unknown object and all the 
objects in the training set, 

• Select k objects from the training set most similar to object u, 
according to the calculated distances, and 

• Classify object u with the group to which the majority of the k 
objects belong. 

An optimal k value is selected by optimization through the 
classification of a test set of samples or by leave-one out cross-
validation. kNN-MFA with stepwise (SW) variable selection method 
was used to generate 3D-QSAR equations. This method employs a 
stepwise variable selection procedure combined with kNN to 
optimize (i) the number of nearest neighbors (k) and (ii) the 
selection of variables from the original pool. The step by-step search 
procedure begins by developing a trial model with a single 
independent variable and adds independent variables, one step at a 
time, examining the fit of the model at each step. The method 
continues until there are no more significant variables remaining 
outside the model. 
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Molecular docking study 

The VLifeMDS 4.3 BioPredicta tool was used to evaluate the binding 
free energy of the inhibitors against the plk1 receptor to gain insight 
into the binding modes of 2-aminopyrazolopyridines. 

Selection and preparation of ligands and target protein crystal 

structures 

The ligands (2-aminopyrazolopyridine) were studied for their 
binding activities into plk1 enzyme. The 2D structures of plk1 
inhibitors were drawn using VLife2Draw 1.0 and converted to 3D 
conformations. The conformers thus obtained, were optimized 
(MMFF) till they reached a rms gradient energy of 0.001 kcal/mol. Å. 
The crystal structure of plk1 in complex with wortmannin (3D5X; 
resolution: 2.80 Å) was extracted from the RCSB Protein Data Bank 
[22]. All bound water molecules and ligands were removed from the 
proteins and polar hydrogens were added. The protein structure 
was energy minimized using Merck molecular force field (MMFF)] 
with distance dependent dielectric function and energy gradient of 
0.01 kcal/mol Å with 10000 numbers of cycles [19].  

Identification of cavities 

The cavities in the receptor were mapped to assign an appropriate 
active site. The basic features used to map the cavities were the 
surface mapping of the receptor and identifying the geometric voids 
as well as scaling the void for its hydrophobic characteristics using V 
Life MDS analyze tool. Hence all the cavities that are present in plk1 
receptor are identified and ranked based on their size and 
hydrophobic surface area. Considering the dimensions and 
hydrophobic surface area, cavity-1 was found to be the best void as 
an active site residues (ILE26, ARG43, PHE44A, LEU45, GLY46, 
LYS47, GLY48, GLY49, PHE50A, ALA51, LYS52, CYS53, TYR54, 
GLU55, ILE56, PHE65, ALA66, GLY67, LYS68, VAL69, VAL70, PRO71, 
LYS72, MET74, LEU75, GLN80, LYS83, MET84, GLU87, ILE88, ILE90, 
HIS91, LEU94, VAL100, GLY101, PHE102, HIS103, GLY104, PHE105, 
ASP108, ASP110, PHE111, VAL112, TYR113, VAL114, VAL115, 
LEU116, GLU117, ILE118, CYS119, ARG120, ARG121, ARG122, 
SER123, LEU124, LEU125, GLU126, LEU153, VAL158, HIS160A, 
LYS164, LEU165, GLY166, ASN167, LEU168, PHE169, LEU170, 
LYS177, ILE178, GLY179, ASP180, PHE181, GLY182, and ALA184).  

Run of docking study 

The genetic algorithm (GA) docking of the conformers of each plk1 
inhibitors into the plk1 protein was done by positioning with the 
active site of cavity-1 using V Life MDS 4.3 package following the 
standard operating procedures [17]. The complexes were energy 
minimized using the MMFF method, till they reached an rms 
gradient of 0.1 kcal/mol/. Å. The binding energy in kcal/mol or the 
ligand–receptor interaction energy obtained after docking the 
ligands into the enzyme active site can be defined as: 

E = InterEq + InterEvdW + IntraEq + IntravdW + IntraEtor 

Where, 

InterEq= Intermolecular electrostatic energy of complex; 

InterEvdW= Intermolecular vdW energy of complex; 

IntraEq= Intramolecular electrostatic energy of ligand; 

IntraEvdW= Intramolecular vdW energy of ligand and 

IntraEtor= Intramolecular torsion energy of ligand. 

Pharmacophore modeling 

Pharmacophore is defined as the minimum functionality that a 
molecule has to contain in order to exhibit activity. Pharmacophore 
mapping was carried out by means of the MolSign Module of VLife 
MDS 4.3. All aligned molecules were taken for pharmacophore 
development. The most active molecule 19 was selected to set it as 
the reference. The reference molecule is the molecule on which the 
other molecules of the align dataset get aligned. All spheres in the 
snapshot indicate all possible pharmacophoric centers and their 
color codes are as follows: blue color, hydrogen bond acceptor; 

golden color, aromatic feature; and brown color, aliphatic group. 
This pharmacophore model can serve as an effective search filter for 
virtual screening. 

ADMET prediction 

ADMET prediction for the various physicochemical descriptors and 
pharmaceutically relevant properties was performed using 
FAFDrugs2 which runs on Linux OS [23]. This tool is freely available 
and used for in silico ADMET filtering. This approach has been 
widely used as a filter for substances that would likely be further 
developed in drug design programs. In particular, we calculated the 
compliance of compounds to the Lipinski’s rule of five [24] and 
Veber’s rule [25]. We have also assessed the parameters like number 
of rotatable bonds (>10) and number of rigid bonds which signify 
that compound may have good oral bioavailability and good 
intestinal absorption [26].  

RESULTS AND DISCUSSION 

3D-QSAR studies 

In the present study, kNN-MFA model is developed coupled with 
stepwise variable selection method to develop 3D-QSAR models of 
2-amino-pyrazolopyridines as plk1 inhibitors based on steric and 
electrostatic fields. The structure of 2-amino-pyrazolopyridine 
template is shown in figure 1. A highly bioactive energetically stable 
conformation in this class of compounds is chosen as a reference 
molecule on which other molecules in the data set are aligned, 
considering template as a basis for the alignment. The aligned view 
of 2-amino-pyrazolopyridines is presented in figure 2. The total data 
set was divided into training and test sets using the sphere exclusion 
algorithm for diversity of the sampling procedure. This approach 
resulted in selection of compounds 2, 3, 4, 10, 11, 14, and 17 as the 
test set and the remaining 16 compounds as the training set (table 
2). Selection of molecules in the training set and test is a key and 
important feature of any QSAR model. Therefore the care was taken 
in such a way that biological activities of all compounds in test lie 
within the maximum and minimum value range of biological 
activities of training set of compounds. The UniColumn statistics for 
training set and test set were generated to check correctness of 
selection criteria for trainings and test set molecules and result 
reflected the correct selection of test and training sets (table 3). 
Several statistically significant 3D-QSAR models using stepwise 
variable selection method were generated, of which the 
corresponding best model is reported herein. The best 3D-QSAR 
kNN MFA model selected based on the value of statistical 
parameters has a q2 = 0.7187 and pred_r2 = 0.2075 (table 4).  

 

Fig. 1: 2-Amino-pyrazolopyridine (template) 

 

 

Fig. 2: Alignment of the molecules



Table 2: Observed and predicted activity by QSAR equation along with residuals and docking statistics 

Code Sets pIC50 Residual Docking statistics 

Exp. Pred. Binding energy (kcal/mol) H-bonds 

1 Training -0.114 0.015 -0.129 -3.369 GLY49-NH; GLY49-N=C 
2 Test -0.885 -0.395 -0.49 -3.371 GLY49-NH; GLY49-N=C 
3 Test 0.324 -0.356 0.68 -7.937 GLY49-N=C 
4 Test -0.655 0.464 -1.119 -26.677 GLY49-NH; GLY49-N=C 
5 Training -1.159 -0.142 -1.017 4.432 PHE50-NH 
6 Training -0.772 -0.528 -0.244 -14.962 GLY49-NH; GLY49-N=C; LYS47-O-CH3 
7 Training 0.153 0.533 -0.38 -16.480 GLY49-N=C 
8 Training -0.654 -0.256 -0.398 -2.857 GLY49-N=C 
9 Training 0.333 0.358 -0.025 -26.413 GLY49-NH; GLY49-N=C 
10 Test -0.510 0.395 -0.905 -22.299 GLY49-NH; GLY49-N=C 
11 Test 0.917 0.397 0.52 -23.755 GLY49-N=C 
12 Training -0.169 -0.014 -0.155 -22.860 * 
13 Training 0.385 0.034 0.351 -3.714 GLY49-NH; PHE50-NH 
14 Test 0.010 -0.395 0.405 -21.763 LYS47-N(CH3)2; GLY49-N=C 
15 Training 0.647 0.739 -0.092 -23.524 LYS47-SO2CH3; LYS47-O=S; GLY49-N=C 
16 Training 0.826 0.353 0.473 -15.242 * 
17 Test 0.193 0.398 -0.205 -17.670 GLY49-NH; GLY49-N=C 
18 Training 0.562 0.299 0.263 -17.482 GLY49-N=C 
19 Training 1.677 1.359 0.318 -44.363 GLY49-N=C; LYS47-OH 
20 Training 1.494 1.434 0.060 -50.900 PHE50-NH; SER123-NH2; GLU126- NH2 
21 Training 1.229 1.580 -0.351 -37.191 GLY49-NH; PHE50-NH; SER123-NH2; GLU126- NH2 
22 Training 0.684 0.754 -0.070 -34.859 GLY49-NH 
23 Training 1.376 0.467 0.909 -27.655 PHE50-NH 

Exp.: Experimental activity; Pred.: Predicted; (*) denotes no hydrogen bond interaction of ligands with protein. 
 

Table 3: Uni Column statistics of the training and test sets for QSAR models 

Data set Column name Average Max. Min. Std. deviation Sum 

Training pIC50 0.4063 1.6780 -1.1600 0.8327 6.5000 
Test pIC50 -0.0870 0.9170 -0.8860 0.6333 -0.6090 

 

Table 4: Statistical results of 3D-QSAR kNN MFA model generated by stepwise variable selection method 

S. No. Statistical parameter Results 

1 n (Training/Test) 16/7 
2 k Nearest Neighbor 4 
3 N 16 
4 Degree of freedom 13 
5 q2 0.7187 
6 q2_se 0.4416 
7 Predr2 0.2075 
8 pred_r2se 0.7368 
9 Descriptors(Range) S_1021-0.0542-0.0488 

S_853 0.0400 0.2043 
 

From table 2, it is evident that predicted activities of all the 
compounds are in good agreement with their corresponding 
experimental activities. The plots of observed versus predicted 
activity of both training & test sets molecules helped in cross-
validation of kNN-MFA QSAR model and are depicted in figure 3. 

 

Fig. 3: Comparison of observed activity versus predicted 

activity for training set & test set compounds according to 3D-

QSAR model by SW-kNN MFA method 

From stepwise 3D-QSAR kNN-MFA (SW-kNN MFA) model (table 4, 
figure 4), the points generated are S_1021 (-0.0542 -0.0488) and 
S_853 (0.0400 0.2043) i.e. steric interaction at their corresponding 
spatial grid points. These points suggested the significance and 
requirement of steric properties for better biological activities. It is 
observed that negative range at grid point S_1021 on phenyl moiety 
indicating that negative steric potential is favorable for increase in 
the activity of 2-amino-pyrazolopyridine derivatives and hence less 
bulky substituents are preferred in that region.  

Therefore, less steric groups like –H and -CH3 will be preferable for 
enhancing biological activity. Positive range at S_853 grid point on 
phenyl moiety indicates that positive steric potential is favorable for 
increase in the activity and hence more bulky substituent groups are 
preferred in that region.  

Therefore bulky substituents such as -C6H5CONH2, -CH2CH2COOH, -
CH2CH2CH2NH2, and -CH2CH2CONH2 etc. were preferred at the 
position of generated data point S_853 around 2-amino-
pyrazolopyridines pharmacophore for maximum activity. These 
results are in close agreement with the experimental observations 
that compounds 12, 14, 15, 19, 20, 21, 22 and 23 with bulky 
substituent at R3 position and less steric groups at R4 of phenyl ring 
showed greater plk1 inhibitory activities (figure 5). 
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Thus, the contribution plot arising out of 3D-QSAR studies provide 
some useful insights for better understanding of the structural 
features of these compounds responsible for producing significant 
plk1 inhibitory activity, which conforms to the docking res

Molecular docking study  

The molecular docking was performed to establish the molecular 
basis of 2-amino-pyrazolopyridine derivatives as Polo
inhibitors. All the 23 reported compounds 2
pyrazolopyridines series were docked agains
docking calculation and hydrogen bond interactions are shown in 
table 2. The docking results indicated that these compounds held in 
the active pocket by combination of hydrophobic and van der Waals 
interactions with the protein. Major hydrophobic contacts occurred 
between the plk1 inhibitors with the side chain of GLY46, LYS47, 
GLY48, GLY49, PHE50, SER123, LEU125, LYS164
hydrogen bond interaction was observed with amino acids residues 
like LYS47, GLY49, PHE50, SER123 and GLU126. 
14, 15, 19, 20, 21, 22 and 23 with bulky substituent
and less steric groups at R4 position of phenyl ring
binding interactions energy and bulky substituents are held in active 
site by forming hydrophobic bonds. Thus, docking study is also 
confirming our 3D-QSAR model study. The most active 
19 and 20 (IC50= 0.032, and 0.021 μM, respectively
lowest binding energy i.e. -44.363 and -50.90 kcal/mol
(figure 6).  

Pharmacophore modeling 

A set of pharmacophore hypothesis was generated using the MolSign 
module of VLife MDS 4.3. We generated different 
patterns based on a set of 23 aligned molecules. It starts generating 
properties of molecules and finds the common three dimensional 
map of three to maximum common properties. All the possible 
pharmacophore models are aligned automatically an
done on the basis of common properties. 
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Hydrogen bond acceptor = 4.655 Å 
Aromatic carbon centre 1 = 3.284 Å 
Aromatic carbon centre 2 = 6.284 Å 
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Aromatic carbon centre 2 = 6.699 Å 
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within the range of accepted values. None of the compounds had 
violated Veber rule (Rotatable bonds ≤ 10 and PSA ≤ 140). The 
compounds except 1, 5, 6, 7, 13, 19, 22, and 23 had violated one 
rule i.e. log p ≥ 5 of the Lipinski’s rule. A molecule likely to be 
developed as an orally active drug candidate should show no more 
than one violation of the following four criteria: logP (octanol-water 

partition coefficient) ≤5, molecular weight ≤500, number of 
hydrogen bond acceptors ≤10 and number of hydrogen bond donors 
≤5. Thus, all these compounds followed the criteria for orally active 
drug and therefore, these compounds can be further developed as 
oral drug candidates. All the compounds except 17, 18, and 21 were 
non toxic. 

 

Table 5: Prediction of ADMET properties of compounds 

Code MW log p PSA Rot. bond Rig.bond HBD HBA Lipinski violation Veber violation Toxicity 

1 328.41 4.97 42.74 4 22 1 2 0 FALSE NT 
2 342.43 5.28 42.74 4 22 1 2 1 FALSE NT 
3 342.43 5.28 42.74 4 22 1 2 1 FALSE NT 
4 342.43 5.28 42.74 4 22 1 2 1 FALSE NT 
5 358.43 4.98 51.97 5 22 1 3 0 FALSE NT 
6 358.43 4.98 51.97 5 22 1 3 0 FALSE NT 
7 358.43 4.98 51.97 5 22 1 3 0 FALSE NT 
8 346.40 5.11 42.74 4 22 1 2 1 FALSE NT 
9 346.40 5.11 42.74 4 22 1 2 1 FALSE NT 
10 346.40 5.11 42.74 4 22 1 2 1 FALSE NT 
11 362.85 5.62 42.74 4 22 1 2 1 FALSE NT 
12 370.49 6.09 42.74 5 22 1 2 1 FALSE NT 
13 353.41 4.84 66.53 4 23 1 2 0 FALSE NT 
14 371.47 5.04 45.98 5 22 1 2 1 FALSE NT 
15 406.50 5.45 85.26 5 24 1 4 1 FALSE NT 
16 356.46 5.59 42.74 4 22 1 2 1 FALSE NT 
17 397.30 6.28 42.74 4 22 1 2 1 FALSE T 
18 441.75 6.39 42.74 4 22 1 2 1 FALSE T 
19 434.91 4.64 80.04 7 23 2 4 0 FALSE NT 
20 433.93 4.74 85.83 6 24 2 3 0 FALSE NT 
21 419.94 6.22 68.76 7 22 2 2 1 FALSE T 
22 496.00 4.92 85.83 6 30 2 3 0 FALSE NT 
23 481.97 4.89 85.83 5 30 2 3 0 FALSE NT 

MW: molecular weight; log p: logarithm of partition coefficient of compound between n-octanol and water; PSA: polar surface area; Rot. bond: 
rotatable bond; Rig. bond: rigid bond; HBD: hydrogen bond donor; HBA: hydrogen bond acceptor; T: toxic; NT: non toxic.  

 

CONCLUSION 

The stepwise method is applied for optimization and selection of 
suitable descriptors for development of 3D-QSAR kNN-MFA model 
for a series of 2-amino-pyrazolopyridine derivatives as polo-like 
kinase 1 inhibitors using VLifeMDS 4.3 drug design software. The 
3D-QSAR results revealed that bulky substituent at R3 position and 
less steric groups at R4 position of phenyl ring were preferred for 
enhancing biological activity of 2-amino-pyrazolopyridine analogs. 
This finding supports the experimental observations, where 
presence of bulky groups at R3 and less steric groups at R4 position 
of phenyl ring signifies increase in activities of compounds. From the 
molecular docking studies, it is evident that bulky groups at R3 
position of phenyl ring of 2-amino-pyrazolopyridines forms strong 
hydrophobic interactions with active site of hydrophobic amino acid 
residues. The pharmacophore patterns of 2-amino-pyrazolopyridine 
derivatives were developed using MolSign Module of VLife MDS 4.3. 
The chemical feature based best common pharmacophore has two 
aromatic carbon centers, one aliphatic carbon center, one hydrogen 
bond acceptor features. The ADMET prediction revealed that 
compounds can be further developed as good oral drug candidates. 
Hence, the combination of the above studies (3D-QSAR, docking, 
pharmacophore modeling, and ADMET prediction) are useful in 
understanding the structural requirements for design of novel, 
potent and selective plk1 inhibitors and can be employed to design 
new derivatives 2-amino-pyrazolopyridines with specific plk1 
inhibitory activity. 

ACKNOWLEDGMENTS 

The authors are thankful to Mrs. Fatima Rafiq Zakaria, Chairman, 
Maulana Azad Educational Trust and Principal, Y.B. Chavan College 
of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad 431 001 (M.S.), 
India for providing the facility. 

CONFLICT OF INTERESTS 

The authors confirm that this article content has no conflicts of 
interest. 

REFERENCES 

1. Jain SV, Bhadoriya KS, Bari SB, Sahu NK, Ghate M. Discovery of 
Potent Anticonvulsant Ligands as Dual NMDA and AMPA 
Receptors Antagonists by Molecular Modeling Studies. Med 
Chem Res 2012;21 (11):3465-84. 

2. Hadjipavlou-Litina D. Review, Reevaluation, and New Results in 
Quantitative Structure-Activity Studies of Anticonvulsants. Med 
Res Rev 1998;18 (2):91-119. 

3. Bhadoriya KS, Jain SV, Bari SB, Chavhan ML, Vispute KR. 3D-
QSAR Study of Indol-2-yl Ethanones Derivatives as Novel 
Indoleamine 2,3-Dioxygenase (IDO) Inhibitors. J Chem 2012;9 
(4):1753-59. 

4. Barr FA, Sillje HHW, Nigg EA. Polo-Like Kinases and the 
Orchestration of Cell Division. J Nat Rev Mol Cell Biol 2004;5 
(6):429-41. (b) Glover DM, Hagan IM, Tavares AAM. Polo-Like 
Kinases:A Team that Plays Throughout Mitosis. Genes Dev 
1998;12 (24):3777-87. 

5. De Carcer G, Escobar B, Higuero AM, Garcia L, Anson A, Perez G, 
et al. Plk5, A Polo Box Domain-Only Protein with Specific Roles 
in Neuron Differentiation and Glioblastoma Suppression. Mol 
Cell Biol 2011;31 (6):1225-39. 

6. Degenhardt Y, Lampkin T. Targeting Polo-like Kinase in Cancer 
Therapy. Clin Cancer Res 2010;16 (2):384-89. 

7. Strebhardt K, Ullrich A. Targeting Polo-Like Kinase 1 for Cancer 
Therapy. Nat Rev Cancer 2006;6 (4):321-30. 

8. Strebhardt K. Multifaceted Polo-Like Kinases:Drug Targets and 
Antitargets for Cancer Therapy. Nat Rev Drug Discov 2010;9 
(8):643-60. 

9. Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, 
Krssak M, et al. BI 2536, a Potent and Selective Inhibitor of 
Polo-Like Kinase 1, Inhibits Tumor Growth in Vivo.  Curr Biol 
2007;17 (4):316-22. 

10. Elez R, Piiper A, Kronenberger B, Kock M, Brendel M, Hermann 
E, et al. Tumor Regression by Combination Antisense Therapy 
Against Plk1 And Bcl-2. Oncogene 2003;22 (1):69–80. 



Sangshetti et al. 

Int J Pharm Pharm Sci, Vol 6, Issue 8, 217-223 

223 

11. Spankuch-Schmitt B, Wolf G, Solbach C, Loibl S, Knecht R, 
Stegmuller M, et al. Downregulation of Human Polo-Like Kinase 
Activity by Antisense Oligonucleotides Induces Growth 
Inhibition in Cancer Cells. Oncogene 2002;21 (20):3162-71. 

12. Eckerdt F, Yuan J, Strebhardt K. Polo-Like Kinases and 
Oncogenesis. J Oncogene 2005;24 (2):267-76. 

13. Takai N, Hamanaka R, Yoshimatsu, Miyakawa I. Polo-Like 
Kinases (Plks) and Cancer. Oncogene 2005;24 (2):287-91.  

14. Strebhardt K, Ullrich A. Targeting Polo-Like Kinase 1 for Cancer 
Therapy. Nat Rev Cancer 2006;6 (4):321-30. 

15. Sangshetti JN, Shinde DB. Synthesis of Some Novel 3-(1-(1-
Substitutedpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)-5-substituted 
phenyl-1,2,4-oxadiazoles as Antifungal Agents. Eur J Med Chem 
2011;46 (4):1040-44. (b) Sangshetti JN, Nagawade RR, Shinde 
DB. Synthesis of Novel 3-(1-(1-Substitutedpiperidin-4-yl)-1H-
1,2,3-triazol-4-yl)-1,2,4-oxadiazol-5(4H)-one as Antifungal 
Agents. Bioorg Med Chem Lett 2009;19 (13):3564-67. (c) 
Sangshetti JN, Shinde DB. One Pot Synthesis and SAR of Some 
Novel 3-Substituted-5,6-diphenyl-1,2,4-triazines as Antifungal 
Agents. Bioorg Med Chem Lett 2010;20 (2):742-45. (d) 
Sangshetti JN, Dharmadhikari PP, Chouthe RS, Fatema B, Lad V, 
Karande V, Darandale SN, Shinde DB. Microwave Assisted Nano 
(ZnO–TiO2) Catalyzed Synthesis of Some New 4,5,6,7-
Tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-
yl)methyl)thieno[2,3-c]pyridine as Antimicrobial Agents. J 
Bioorg Med Chem Lett 2013;23 (7):2250-53. (e) Sangshetti JN, 
Lokwani DK, Sarkate AP, Shinde DB. Synthesis, Antifungal 
Activity, and Docking Study of Some New 1,2,4-Triazole 
Analogs. J Chem Biol Drug Des 2011;78 (5):800-09. 

16. Sangshetti JN, Chabukswar AR, Shinde DB. Microwave Assisted 
One Pot Synthesis of Some Novel 2,5-Disubstituted-1,3,4-
oxadiazoles as Antifungal Agents. Bioorg Med Chem Lett 2011;21 
(1):444-48. (b) Sangshetti JN, Shaikh RI, Khan FAK, Patil RH, 
Marathe SD, Gade WN, Shinde DB. Synthesis, Antileishmanial 
Activity and Docking Study of N′-Substitutedbenzylidene-2-(6,7-
dihydrothieno[3,2-C]pyridin-5(4H)-yl)acetohydrazides. Bioorg 
Med Chem Lett 2014;24 (6):1605–10. (c) Sangshetti JN, Khan 
FAK, Chouthe RS, Damale MG, Shinde DB. Synthesis, Docking and 

ADMET Prediction of Novel 5-((5-Substituted-1-H-1,2,4-triazol-
3-yl)methyl)-4,5,6,7-tetrahydrothieno[3,2-C]pyridine as 
Antifungal Agents. Chinese Chem Lett 2014;25 (7):1033-38. 

17. VLife Molecular Design Suite 4.3, VLife Sciences Technologies 
Pvt. Ltd;www.Vlifesciences.com. 

18. Fucini RV, Hanan EJ, Romanowski MJ, Elling RA, Lew W, Barr 
KJ, et al. Design and Synthesis of 2-Amino-pyrazolopyridines as 
Polo-Like Kinase 1 Inhibitors. Bioorg Med Chem Lett 2008;18 
(20):5648-52. 

19. Halgren TA. Molecular Geometries and Vibrational Frequencies 
for MMFF94. J Comput Chem 1996;17 (5-6):553–86. 

20. Cramer RD, Patterson DE, Bunce JD. Comparative Molecular 
Field Analysis (CoMFA). 1. Effect of Shape on Binding of 
Steroids to Carrier Proteins. Am Chem Soc 1988;110 
(18):5959–67. 

21. Sharaf MA, Illman DL, Kowalski BR. Chemometrics. Wiley 
(NY);1986. 

22. Elling RA, Fucini RV, Romanowski MJ. Structures of the Wild-
Type and Activated Catalytic Domains of Brachydanio Rerio 
Polo-Like Kinase 1 (Plk1):Changes in the Active-Site 
Conformation and Interactions with Ligands. Acta Crystallogr 
Sect D 2008;64 (9):909-18. 

23. Lagorce D, Sperandio H, Miteva MA, Villoutreix BO. FAF-
Drugs2:Free ADME/Tox Filtering Tool to Assist Drug Discovery 
and Chemical Biology Projects. BMC Bioinformatics 
2008;9:396. 

24. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental 
and Computational Approaches to Estimate Solubility and 
Permeability in Drug Discovery and Development Settings. Adv 
Drug Deliv Rev 2001;46 (1-3):3-26. 

25. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple 
KD. Molecular Properties That Influence the Oral 
Bioavailability of Drug Candidates. J Med Chem 2002;45 
(12):2615-23. 

26. Ertl P, Rohde B, Selzer P. Fast Calculation of Molecular Polar 
Surface Area as a Sum of Fragment-Based Contributions and Its 
Application to the Prediction of Drug Transport Properties. J 
Med Chem 2000;43 (20):3714-17. 

 


