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ABSTRACT 

Objective: Drug half-life (t1/2) is one of the key pharmacokinetic parameters for establishment of dosing regimen. Surprisingly, the relationship 
between the chemical structure and t1/2 is still poorly explored. The aim of the present study is to derive quantitative structure – pharmacokinetic 
relationships (QSPkRs) for t1/2 of acidic drugs.  

Methods: The dataset consisted of 142 molecules which were described with 187 structural and physicochemical descriptors. A three step variable 
selection procedure was applied to identify the most reliable descriptors. QSPkR modeling was performed using multivariate regression analysis (MLR).  

Results: A number of sound and robust QSPkR models were derived. The predictive ability of the models was tested by internal and external 
validation procedure. The most frequently emerged descriptors were used for construction of a consensus model for t1/2 prediction. The model is 
statistically significant (explained variance 0.688) and predictive (cross validation correlation coefficient 0.600, mean fold error of prediction 2.06, 
accuracy 61%). It reveals the main structural features affecting t1/2. A short check list was proposed determining the cutoff between short half life 
(t1/2 < 1 h) and long half life (t1/2 > 24 h) drugs.  

Conclusion: The presence of a sulfonyl or phosphonate groups, non-polar substituents at aromatic carbon, 9- or 10-member ring system and 
donor-acceptor pair separated by 9 skeletal bonds contribute to prolongation of t1/2, while the presence of methane group, polar substituents at 
aromatic carbon and 7-member ring system affect negatively t1/2.  

Keywords: Computational ADME, Half-life prediction, In silico modeling, QSPkR, MLR, Acidic drugs. 

 

INTRODUCTION 

The development of a new drug is a long and expensive process. 
Unfortunately a sizable number of new drug candidates successfully 
passed the early preclinical trials do not reach the market due to 
undesirable pharmacokinetic behavior [1]. Hence, in order to be 
efficient in vivo, the drug requires a suitable ADME (absorption, 
distribution, metabolism and excretion) profile. The recognition of 
this fact inspired an extensive research aiming to predict the ADME 
properties in the earliest stages of drug development and to 
minimize the risk of late stage failures. As a result for the period 
from 1991 to 2000 years in the late stage candidate attrition due to 
pharmacokinetics reasons was reduced by approximately 30% [2].  

The earliest predictive methods are based on in vivo animal 
pharmacokinetic studies or in vitro metabolism data. More recently 
in silico modeling gained increasingly popularity and utility owing to 
its ability to predict the ADME properties of new drug candidates 
solely by means of computational techniques, avoiding the need of 
the time consuming and expensive animal experiments. Besides, in 
silico techniques allow a prediction to be made even for virtual 
compounds and may provide guidance for targeted synthesis of 
molecules with desired ADME profile thus accelerating the 
identification of new drugs and reducing their development costs. 
One of the most widely used in silico approaches is the development 
of quantitative structure – pharmacokinetics relationships (QSPkR). 
QSPkR methodology focuses on the development of a mathematical 
relationship (model) relating the endpoint (pharmacokinetics 
parameter) to the chemical structure (encoded in structural 
descriptors) within a group of compounds. The number of reports 
on successful application of in silico methodology for ADME 
prediction increases, and is a subject of several reviews [3-9]. 

One of the most important pharmacokinetic parameters is the half-
life t1/2 as it, together with the therapeutic index, dictates the 
frequency of dosing.  

The maximal dosing interval τmax in which the concentration is 
maintained within the therapeutic range (between the accepted 
values of Cmin and Cmax) is calculated according to the equation:  

min

max
2/1max C

Cln*t*44.1=τ
 

Usually the term half-life refers to the elimination half-life and is 
determined following iv administration in order to avoid the 
influence of the absorption. Elimination half-life represents the time 
required for the plasma concentration to reduce by a half after 
pseudo-equilibrium of distribution is reached between plasma and 
tissues and the further decrease in plasma concentration is due 
solely to elimination [10]. For a drug with linear elimination t1/2 is 
calculated from the slope of the terminal linear part of the lnC/t 
curve, corresponding to the rate constant of elimination λz:  

z
2/1

2lnt
λ
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Despite the general agreement on the key importance of t1/2 for 
dosing regimen design, there are surprisingly few attempts for its 
prediction. The early studies are based on in vivo animal 
experiments – allometric scaling or animal versus human cross-drug 
correlations [11]. The values for the human t1/2 are calculated 
combining the individual predictions of the clearance CL and the 
steady state volume of distribution Vss assuming the following simple 
relation:  

CL
V*2ln

t
ss

2/1 =
 

It is considered that as t1/2 is a composite and dependent parameter, 
it is more appropriate to use individual models for prediction of CL 
and Vss, and then consider how these factors, acting in a concert, 
influence t1/2 value [12]. However, this simple approach has certain 
drawbacks. The accuracy of the prediction of t1/2 is a function of the 
accuracy of the prediction of the independent parameters VDss and 
CL[13]. Another shortcoming is the use of Vss. While perfectly 
suitable for drugs with one-phase distribution, for drugs with 
multiphase kinetics the upper relation can result in an under-
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prediction of t1/2 [11]. For these drugs, the terminal t1/2 is related to 
the terminal volume of distribution Vβ which may be much greater 
than Vss [14]. Both Vβ and the slope of the terminal lnC/t phase 
depend on the rate of drug transfer between plasma and tissues. 
Therefore for many drugs with multiphase kinetics the observed 
terminal t1/2 differs considerably from the calculated value. For 
example, the ACE inhibitor Enalapril at shows a biphasic kinetics 
with a terminal t1/2 = 39 h [15]. However, taking into account the 
reported data for Vss (0.38 L/kg) and CL (6.1 L/h), the calculated t1/2 
value should be about 3 h. The prolonged terminal phase of 
Enalapril at is attributed to the slow release of the drug from its 
complexes with ACE.  

We found only two reports on successful in silico prediction of t1/2 for 
congeneric series of drugs – fluoroquinolones [16] and antidiabetic 
agents [17]. Therefore, the prediction of drug half life with in silico 
methodology appears to be a challenging problem. Recently we 
published a series of reports on the application of in silico approach 
for prediction of key pharmacokinetics properties (steady state 
volume of distribution, plasma protein binding and unbound 
clearance) of acidic drugs [18-20]. This study completes our 
investigations with a modeling of the quantitative relationships 
between chemical structure and half-life.  

EXPERIMENTAL SECTION 

Dataset 

Success of QSPkR modeling depends crucially on the appropriate 
selection of the dataset. The dataset used in the present study 
involves values for t1/2 of 142 acidic drugs following iv 
administration, extracted from Obach-Lombardo-Waters database 
[21]. The drugs are classified as acids, bases, neutral, and 
zwitterions on the basis of their ionization at physiological pH 7.4. 
The fractions of the drug ionized as an acid (fA) and as a base (fB) are 
calculated by the equations:  

4.7pKA a101
1f −+

=
 and 

apK4.7B 101
1f −+

=
 

The mol files of the drugs are taken from Databank [22] or chemical 
Book [22]. The pKa values are calculated using ACD/LogD version 
9.08 software (Advanced Chemistry Development Inc., Ontario, 
Canada). If more than one basic or acidic center present in the 
molecule, the pKa of the strongest one is considered. A drug is 
classified as an acid in two cases: if fA exceeds 10 % while fB is 
negligible or if fA exceeds fB and is close to 100%.  

The dataset was used for construction of six modeling sets – each 
one composed by a training set and an external test set. To this end 
the drugs were arranged in an ascending order with respect to t1/2 
and were divided to six subsets by allocating one of every six drugs 
into a different subset. Every subset was used once as a test set for 
external validation of the models developed by the respective 
training set comprising the remaining five subsets. For modeling 
purposes, t1/2 was presented as log t1/2.  

Descriptors 

The descriptors used in this study were calculated using the 
software packages ACD/LogD version 9.08 software (Advanced 
Chemistry Development Inc., Ontario, Canada) and MDL QSAR 
version 2.2 (MDL Information systems, Inc., San Leonardo, 
California. Total of 187 descriptors were derived including electro-
topological indices, molecular connectivity indices, descriptive 
properties (the number of atoms of given atom type, rings, hydrogen 
bond donors and acceptors, etc.), integral 2D (molecular weight, 
logP, log D7.4, etc.) and 3D (polarizability, surface area, volume, etc.) 
Properties. 

Variable selection 

A three step variable selection procedure was performed in order to 
derive the most relevant descriptors for t1/2 prediction. The initial 
screening reduced the number of descriptors to 145 as descriptors 
with nonzero values for less than 3 molecules and descriptors 
correlating to log t1/2 with r < 0.1 were excluded. Further selection 

was performed for everyone training set by applying the genetic 
algorithm (GA) in order to avoid over-fitting. Selected descriptors 
entered a step wise linear regression for construction of QSPkRs for t1/2. 

Using different combinations of descriptors, a number of QSPkR 
models were derived for each training set. Their performances were 
assessed by an explained variance (r2), cross-validated coefficient 
(q2), external validation coefficient (r2pred), accuracy and mean fold 
error of prediction (MFEP) defined in the next section. Descriptors, 
which emerged in more than 20% of the models, were selected for 
development of a consensus QSPkR model. 

Model assessment and validation 

The QSPkR models constructed in the present study were assessed 
by the explained variance (r2) given by the equation:  
 

( )
( )∑

∑
=

=

−

−
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1i mean,obs,2/1i,obs,2/1

n
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Where t1/2,obs,i is the observed t1/2 of the ith drug, t1/2,calc,i is the 
calculated by the model t1/2 of the ith drug, and t1/2,obs,mean is the mean 
value of the observed t1/2.  

The predictive power of the models was explored by internal and 
external validation procedures. Internal validation consisted of 
leave-one-out cross-validation in the training tests (LOO-CV). In this 
approach each drug is excluded one by one, in turn, from the 
training set, and a QSPkR model is constructed using the remaining 
n – 1 compound.  

Eventually, the model is used to predict t1/2 of the excluded drug. 
External validation used external test sets of drugs which were not 
used in any step of model development. The quality of the models 
was assessed by the coefficients q2LOO-CV and r2pred following the 
equations:  
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where t1/2,pred,i is the predicted by the model value of t1/2 of the ith 
drug, and t1/2,obs,i-test, t1/2,obs,i-mean and t1/2,pre,i-test are the observed, mean 
and predicted by the model values of t1/2 for any drug from the 
external test set, respectively. 

The fold error of prediction (FE) was calculated as follows:  

i,pre,2/1i,obs,2/1 tlogtlog10FE −=  

The average value of FEs represents the mean fold error of 
prediction (MFE). The prediction accuracy is assessed as a percent of 
the total number of drugs which t1/2 is predicted with less than 2-
fold error.  

RESULTS 

Data set analysis 

The dataset used in the present study consisted of 142 acidic drugs 
belonging to different chemical and therapeutic classes. The 
molecular weight Mw varies between 126 and 1297 g/mol (mean 
376.5 g/mol; median 346.8 g/mol). Log P ranges between -7.48 and 
8.39 (mean 1.49; median 1.52), and log D7.4 – between -11 and 7.64 
(mean -1.5; median -1.36). Most of the drugs (85%) are completely 
ionized as acids at the physiological pH 7.4 while for only 8% fa < 0.5. 
The VDss is relatively low – it varies between 0.04 and 15L/kg (mean 
0.525 L/kg, median 0.220L/kg), and exceeds 0.7L/kg for only 15 
drugs (10.5%). The CL also varies significantly – between 0.06 and 
1070 mL/min/kg (mean 10.82, median 2.10 mL/min/kg). Most of 
the acids are highly bound to plasma proteins with a free fraction fu 
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in the range 0.0004 – 1 (mean 0.3, median 0.15). The values for t1/2 
vary between 0.12 and 1200 h (mean 17.2, median 1.8 h). 32 drugs 
(22.5%) have t1/2 < 1 h, while for 15 drugs (10.6%) t1/2 > 24.  

QSPkR models for t1/2 

In order to derive a robust and predictive QSPkR model for log t1/2, 
the whole dataset was divided into six training sets as described in 
the Experimental section. Four training sets consisted of 118, and 

two training sets – of 119 molecules. Each training set differed from 
the others in about 1/6 of the involved drugs. Different 
combinations of descriptors were used and GA followed by step wise 
regression was applied for selection the most predictive descriptors. 
A total of 45 statistically significant QSPR models were derived on 
the six training sets. The models were validated by LOO-CV and by 
external validation using six test-sets (four of them containing 24 
molecules, and two – 23 molecules). The statistics of the best 
performing models are given in Table 1.  

 

Table 1: QSPkR models for log t1/2 constructed for six training sets, validated by external test sets 

Training 
set 

Model r2 q2 r2pred MFE Accuracy 
% 

1 

489.09intSHB)007.0(043.0Acnt_4intSHB)002.0(045.0
2intSHB)004.0(013.010xvch)61.16(06.71

7xvch)49.3(58.214xc)179.0(824.1acnt_SdsCH)044.0(17.0
SssO)007.0(022.0SaasC)023.0(106.0tlog 2/1

+±+±
+±−±

+±−±+±

−±−±=

 
Outliers of the training set:  atovaquone, ceftriaxone, chlorpropamide, losartan, 
phenobarbital, tesaglitazar, valproic acid  
Outliers of the test set:  5-fluorouracil, diflunisal, ifetroban, tenoxicam 

0.715 0.624 0.414 2.12 
±1.03 

46 

2 

774.0SHCHnX)070.0(420.02intSHB)004.0(019.09xvch)28.17(42.64
7xvp)055.0(232.04xvch)28,1(29.5acnt_SdsCH)048.0(152.0

SdsssP)019.0(119.0SddssS)012.0(065.0tlog 2/1

+±−±−±
+±+±−±

−±−±−=

 
Outliers of the training set:  5-fluorouracil, acetylsalicylic acid, chlorpropamide, 
pentobarbital, tesaglitazar  
Outliers of the test set:  artesunate, cefotetan, enalaprilat phenobarbital, quercetin 

0.664 0.603 0.671 1.78 
±0.8 

58 

3 

254.010xvch)1.21(34.73
9xvch)38.19(16.627xvch)18.4(86.20SssO)008.0(027.0

acnt_SdsCH)040.0(131.0SssssC)058.0(208.0
SaaCH)006.0(016.0acnt_SddssS)055.0(358.0tlog 2/1

+±
+±+±−±−

±−±

−±+±=

 
Outliers of the training set:  5-fluorouracil, atovaquone, chlorpropamide, enalaprilat, 
ifetroban, phenobarbital,  
Outliers of the test set:  risedronate 

0.594 0.539 0.533 2.35 
±2.0 

67 

4 

064.09xvch)65.14(19.167xvch)96.3(25.234xpc)017.0(087.0
acnt_SdsCH)038.0(154.0acnt_SssO)043.0(181.0

acnt_SdsssP)101.0(563.0SddssS)0228.0(070.0tlog 2/1

+±+±−±
−±−±

−±+±−=

 
Outliers of the training set:  5-fluorouracil, atovaquone, chlorpropamide, enalaprilat, 
ifetroban, phenobarbital, roqinimex 
Outliers of the test set:  tesaglitazar, warfarin 

0.587 0.525 0.832 2.46 
±1.77 

42 

5 

210.010xch)39.5(98.239xvch)97.14(75.777xch)50.3(64.14
acnt_SdsCH)033.0(123.0SaasC)024.0(072.0

acnt_SdsssP)094.0(609.0SddssS)012.0(096.0tlog 2/1

+±+±+±
−±−±

+±+±−=

 
Outliers of the training set:  5-fluorouracil, atovaquone, enalaprilat, phenobarbital, 
pentobarbital 
Outliers of the test set:  chlorpropamide, roquinimex 

0.641 0.590 0.450 2.04 
± 

1.44 
 

65 

6 

177.010xch)23.4(31.259xvch)1.15(22.77
7xch)66.3(4.14acnt_SdsCH)035.0(125.0SaasC)024.0(102.0

SdsssP)022.0(129.0acnt_SddssS)06.0(521.0tlog 2/1

+±+±
+±−±−±

+±−±=

 
Outliers of the training set:  5-fluorouracil, diflunisal, enalaprilat, phenobarbital 
Outliers of the test set:  atovaquone, pentobarbital 

0.648 0.560 0.577 2.07 
± 

1.06 

57 

 

The QSPkR models derived on the six different training sets are 
quite similar in terms of selected variables, outliers and statistics. 
The explained variance of the best models r2 varies between 0.587 
and 0.715 (mean 0.642).  

The internal q2LOO-CV ranges from 0.525 to 0.624 (mean 0.574), and the 
external r2pred – between 0.414 and 0.832 (mean 0.580). The MFEP varies 
between 1.78 and 2.46, and the accuracy – between 42 and 47% (mean 
56%) Several drugs were identified as outliers by almost all models – for 
example, phenobarbital (100% of the models), chlorpropamide (96%), 5-
fluorouracil (96%) and atovaquone (73%). Despite some differences, 
most developed QSPkR models contain common variables. The most 
frequently emerged descriptors are listed in Table 2. 

The 28 most frequently emerged descriptors were used further for 
development of the final QSPkR model for the whole dataset of 142 
acidic drugs. By applying the GA and step wise regression the 
following consensus model was derived:  

492.09intSHB)009.0(031.02intSHB)004.0(013.010xvch)76.16(39.86
9xvch)32.15(41.487xvch)47.3(14.11acnt_SdsCH)040.0(124.0

SaasC)022.0(119.0SdsssP)017.0(140.0SddssS)011.0(116.0tlog 2/1

+±+±−±
+±+±−±

−±+±−±−=

 

N = 133 r2 0.688 q2LOO-CV 0.600 MFE 2.06±1.19 Accuracy 61% 

Nine drugs were identified as outliers (5-fluorouracil, losartan, 
atovaquone, ifetroban diflunisal, chlorpropamide, pentobarbital, 
phenobarbital and valproic acid). Their removal resulted in 
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improved explained variance from r2 = 0.574 to r2 = 0.688. The 
Consensus model predicts t1/2 with less than 2-fold error for 61% of 

the drugs. The plot of calculated by the Consensus model versus 
experimental values of log t1/2 is shown in Figure1. 

 

Table 2: The most frequently emerged descriptors in the QSPkR models for log t1/2 

Descriptor Encoded structural information Frequency % of 
models  
(training sets) 

SdsCH, 
SdsCH_acnt 

Sum of the E-state values or the number of atoms of the type dsCH  76% (6) 

SddssS, 
SddssS_acnt 

Sum of the E-state values or the number of atoms of the type ddssS  47% (6) 

xch7, xvch7 7-order connectivity index (simple and valence) accounting for a presence of a 7-member ring 
system 

78% (5) 

xch9, xvch9 9-order connectivity index (simple and valence) accounting for a presence of a 9-member ring 
system 

51% (5) 

SdsssP, 
SdsssP_acnt 

The sum of the E-state or the number of atoms of the type dsssP  42% (5) 

xc4 Simple 4-order cluster connectivity index 29% (5) 
xch4, xvch4 4-order connectivity index (simple and valence) accounting for a presence of a 4-member ring  24% (5) 
SHBint9 Internal hydrogen bond index:  the largest product of E-state values for hydrogen acceptor and donor 

pair separated by 9 skeletal bonds 
37% (4) 

xch10, xvch10 10-order connectivity index (simple and valence) accounting for a presence of a 10-member ring 
system 

33% (4) 

SHBint2 Internal hydrogen bond index:  the largest product of E-state values for hydrogen acceptor and donor 
pair separated by 2 skeletal bonds 

31% (4) 

SaasC, SaasC_a The sum of the E-state values or the number of atoms of the type aasC (substituted aromatic carbon 
atoms) 

20% (4) 

SssO, SssO_acnt, SaaCH, SaaCH_acnt, xc4, xvpc4, xch8, xvch8, SHBint4_Acnt  Less presented 

 

Table 3: Checklist of criteria for prediction of t1/2 for acidic drugs 

S. No. Descriptor t1/2 decreases t1/2 increases 
1 SdsCH_acount – presence of methine groups  √  
2 xvch7 – presence of a 7-member ring system √  
3 SaasC – substituted aromatic carbons  

- with prevalence of polar substituents 
- with prevalence of non-polar substituents 

 
√ 

 
√ 

4 SddssS – presence of Sulphonyl groups  √ 
5 SdsssP – presence of Phosphonate groups  √ 
6 xvch9 – presence of a 9-member ring system  √ 
7 xvch10 – presence of a 10-member ring system  √ 
8 SHBint_9 – presence of hydrogen bond donor and acceptor separated by 9 skeletal bonds   √ 
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Fig.1: log t1/2 predicted by the consensus model versus observed log 
t1/2 values for 142 acidic drugs. Nine outliers are shown as blank 

points. The straight lines represent the 2-fold error limits. 
 

Checklist for prediction of t1/2 

The descriptors involved in the consensus model describe a number 
of structural features governing t1/2 of the considered drugs. They 
are given in Table 3 in the form of a checklist of criteria which may 
be used for prediction of t1/2. SHBint_2 is not included due to its 
variable effect on t1/2. 

The checklist was applied to the dataset of the studied drugs, 
classified into three groups according to the value of t1/2. The first 

group involves 31 compounds with a short t1/2 < 1 h. Most of the 
molecules have structural features affecting negatively t1/2. 32% of 
them contain methine groups, another 32% – a 7-member ring 
system, and 16% involve aromatic carbons attached mainly to polar 
substituents. Descriptors with positive impact on t1/2 are less 
represented: no one drug contains neither a sulfonyl nor a 
phosphonate groups. Only one (fluvastatin) has a 9-member ring 
system and a hydrogen bond donor and acceptor separated by 9 
skeletal bonds. In contrast, 58% involve aromatic carbons attached 
mainly to non-polar substituents and 16% contain a 10-member 
ring system. Therefore, the difference between the numbers of 
positively and negatively criteria varies between -2 and 2 with a 
median value of 0. The second group comprises of 96 molecules with 
moderate half life (1 h < t1/2 < 24 h). Here predominate drugs with 
positively contributing structural features and 30% meet 2 or 3 
positive criteria. Only 35% of the molecules contain a negatively 
contributing descriptor. The difference between the numbers of 
positively and negatively criteria varies between -2 and 3 with a 
median value of 1. The third group consists of 15 drugs with a long 
half life (t1/2 > 24 h). Here emphatically prevail molecules with 
positively contributing descriptors. Only 1 drug (epristeride) 
contains methine groups, two molecules (hypericin and suramin) – 
aromatic carbons attached mainly to polar substituents, and no one 
– a 7-member ring system. At the same time 47% of the drugs 
contain either sulfonyl or phosphonate groups, another 47% –a 10-
member ring system, and 67% – aromatic carbons attached mainly 
to non-polar substituents. Thus, the difference between the numbers 
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of positively and negatively criteria varies between 0 and 3 with a 
median value of 2. The distribution of the drugs according to the 
difference between the numbers of positive and negative criteria is 
shown in Figure 2.  

This difference can be used to distinguish between drugs with short 
and long t1/2. Although there are drugs which t1/2 does not match 
exactly to the proposed criteria, the trend is obvious. For 68% of the 
drugs with a short half-life (< 1 h) the difference is ≤0. At the same 
time, for 67% of the drugs with a long half life (> 24 h) the difference 
is ≥ 2. Therefore, a difference between the numbers of positive and 
negative criteria = 0 can be set as an upper limit for short half life 
drugs, while a difference = 2 can be set as a lower limit for long half 
life. 
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Fig. 2: Distribution of the drugs (in %) according to the 
difference between the number of positive and negative 

criteria.  
 

DISCUSSION 

Knowing t1/2 of new drug candidates in the early stages of drug 
discovery is of paramount importance as t1/2 is a key parameter in 
determining of dosing regimen. Unfortunately, this parameter is also 
the most difficult to predict because of the complexity of underlying 
pharmacokinetic processes. Membrane permeability, plasma and 
tissue protein binding, affinity to efflux and influx transporters, 
metabolic ability, etc. are among the numerous factors governing 
drug half life.  

The present work is focused on development of QSPkR for t1/2 of 
acidic drugs. The study was performed on a set of 142 molecules 
following the conventional workflow. Total of 145 descriptors were 
used and a three step procedure was applied to identify the most 
significant variables. MLR was used for model development. In 
addition to internal validation, a rigorous external validation 
procedure was performed. To this end, QSPkR models were 
developed for six different training sets, and were tested on six 
external test sets. The derived models are very similar in terms of 
selected variables, outliers and statistics. The most frequently 
emerged descriptors are used for construction of the final, 
consensus model. The model is statistically significant (explained 
variance 69%) and fairly predictive (predicted t1/2 for 61% of the 
drugs with less than 2-fold error). The model is clear and 
interpretable revealing the most important structural features 
governing t1/2 for acidic drugs.  

SddssS represents the sum of the E-state values for all atoms of the 
type ddssS. It presents in 28 molecules and accounts for the 
presence of a sulfonyl groups. Its absolute value increases in the 
order –SO2R <– SO2NH2 < –SO2OH. Especially large is the value for 
suramin containing 4 sulphonate groups. SdsssP is equal to the sum 
of the E-state values for all atoms of the type dsssP. It presents in 10 
molecules and accounts for the presence of phosphonate groups. 
Both SddssS and SdsssP have negative values due to the great 
number of electronegative atoms. Having negative coefficients in the 
QSPkR equations they contribute to an increase of t1/2.  

So risedronate (t1/2 = 200h) and suramin (t1/2 = 1200 h) have the 
longest t1/2 in the dataset. SaasC represents the sum of E-state values 
for all atoms of the type aasC (substituted aromatic C-atoms). It is 
positive for 99 and negative for 18 drugs. The presence of highly 

electronegative substituents like F, -OH, NO2, phosphonate or 

sulphonyl groups results in a lower E-state value (frequently 
negative), while the prevalence of aliphatic and aromatic 
substituents determine high positive E-state values. SaasC has a 
positive coefficient in the QSPkR equation. A positive value of SaasC 
contributes positively to t1/2 while a negative value of SaasC affects 
negatively t1/2. Most of the drugs with SaasC > 1 are highly bound to 
plasma proteins (more than 99%). SdsCH_acount is equal to the 
number of atoms of the type dsCH (methane groups). This 
descriptor contributes negatively to t1/2. 38% of the drugs 
containing this structural feature have a short t1/2 < 1 h. For only 
(epristeride) t1/2 exceeds 5 hours. Epristeride has extremely low 
clearance (0.33 mL/min) which may be due to extensive 
enterohepatic circulation. It is consistent with the observed second 
peak in the C/t curve following both iv and ev administration [24]. 
Xvch7, xvch9 and xvch 10 represent valence 7th, 9th and 10th order 
connectivity indices. Xvch7 accounts for the presence of a 7-member 
ring system and contributes negatively to t1/2. This descriptor 
presents in 20 molecules:  artesunate and chloazepate containing a 
seven-member ring, 16 β-lactam antibiotics of the penicillin class 
and the β-lactam inhibitors sulbactam and clavulanic acid – involving 
fused β-lactam and five-member rings. All of them have a short t1/2 
(< 1.4h). Artesunate [25] and chloazepate [26] are prodrugs, rapidly 
transformed to active metabolites during absorption. The penicillins 
[27] and sulbactam [28] are eliminated almost completely in urine 
by glomerular filtration and active tubular secretion. Clavulanic acid 
is eliminated almost equally by renal excretion and hepatic 
metabolism [29]. The predicted values for t1/2 are very close to the 
experimental data with FE ranging between 1.03 and 2.83 (MFE 
1.50±0.40) except for artesunate with FE = 7. Therefore the presence 
of a 7-member β-lactam ring system may be considered as favorable 
for an active transport secretion. Xvch9 accounts for the presence of 
a 9-member ring system and contributes positively to t1/2. The 
descriptor presents in 9 molecules with fused five- and six-member 
rings. The value of xvch9 is lower for fused aromatic rings, especially 
those containing N atoms, and higher for saturated systems. Most of 
the drugs are partially excreted in bile (epristeride [24], fluvastatin 
[30], indomethacin [31], Pantoprazole [32], telmisartan [33]. The 
drugs with the highest values of xvch9, therefore the longest t1/2, are 
also extensively distributed in tissues (telmisartan [33], epristeride 
[34], perindoprilat [35]). The presence of a 9-member ring system 
may be related to active secretion in bile and to extensive tissue 
distribution. Xvch10 accounts for the presence of 10-member ring 
system and contributes positively to t1/2. The value of xvch10 is 
lower for aromatic rings containing N or O atoms, connected with 
=O, -OH, -NO2 or -NH2, and higher for molecules with more than two 
fused rings. This descriptor presents in 19 molecules. A few drugs 
show deviations from the positive correlation between xvch10 and 
t1/2. Artesunate has much lower t1/2, while atovaquone and suramin 
have much longer longer t1/2 than expected on the basis of their 
values of xvch10. Artesunate differs from all other structures in that 
it contains four fused rings:  three six-member and one 7-member, 
which determine a rather high value of xvch10 leading to 
overestimation of t1/2. Actually the predicted value of 1.54 h is very 
close to t1/2 of dihydroartemisinine [25] – the active metabolite, in 
which the basic structural elements are preserved. Oppositely, the 
low value of xvch10 is inconsistent with its long t1/2 which as already 
suggested is dominated by the large number of sulfonyl groups. 
Atovaquone is identified as an outlier from the model. The drug is 
highly bound to plasma protein, with negligible metabolism and 
renal excretion. It is believed that the long t1/2 is due to 
enterohepatic circulation and biliary excretion [36]. SHBint_2 and 
SHBint_9 are internal hydrogen bond indices, indicating the 
potential for forming an internal hydrogen bond. Their values 
represent the largest product of E-state value and hydrogen E-state 
value from all donor-acceptor pairs separated by 2 or 9 skeletal 
bonds respectively. SHBint_9 presents in 3 molecules:  fluvastatin 
(t1/2 0.7h) with SHBint_9 = 5.7 characterizing a hydrogen bond 
between N and OH, and ACE inhibitors perindoprilat (t1/2 29 h) and 
enalaprilat (t1/2 39 h) with SHBint_9 =31.1 corresponding to a 
hydrogen bond between O and OH. Therefore, a large value of 
SHBint_9 contributes to a long t1/2. It may be related to the binding to 
ACE as it is believed that the prolonged elimination of some ACE-
inhibitors is due to the slow release of the drug from its complexes 
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with ACE [35,37]. SHBint_2 presents in 130 molecules and ranges 
between 20 and 40. The effect of this descriptor is variable as there 
are drugs with low value of SHBint_2 and long t1/2, and vice versa. In 
fact, the presence of hydrogen bond donors and acceptors capable to 
form hydrogen bonds may have versatile effect on t1/2. Hydrogen 
bonds involved in the binding with plasma and tissue proteins may 
cause a longer residence of the drug in the body, while those 
participating in binding with carrier proteins mediating the active 
secretion in bile and urine facilitate drug elimination. Because of the 
variable effect of SHBint_2 it has not been involved in the checklist of 
predictors. 

In summary, the presence of a sulfonyl or phosphonate groups, 9- or 
10-member ring system and donor-acceptor pair separated by 9 
skeletal bonds contribute to prolongation of t1/2, while the presence 
of methane groups and 7-member ring system affect negatively t1/2. 
The nature of the substituents at the aromatic carbon atoms may 
have diversely impact on t1/2: the prevelance of polar substituents 
contributes to a short t1/2, while the prevalence of non-polar 
substituents results in a longer t1/2. These findings are in accordance 

with our previous studies. It was found, that the number of 
phosphonate groups and the presence of a 9-member ring system 
contribute positively to VDss [18]. The number of sulfonate groups 
affects negatively the unbound clearance CLu [20].  

The number of substituted aromatic C-atoms increases plasma 
protein binding [19] but decreases CLu [20]. 

The outliers from the model are shown in Table 4.  

The deviations of the outliers may be due either to very different 
structure or to unusual disposition patterns. The predicted value of 
t1/2 for 5-fluorouracil and losartan is overestimated with about 10-
fold error. Both drugs are substrates of substantial hepatic 
metabolism. 5-fluorouracil is a prodrug of the active 5-fluoro-5,6-
dihydrouridine and is eliminated with a rather high and dose-
dependent clearance ranging from 10 to 26 mL/min/kg [38]. 
Losartan is cleared with a very high hepatic extraction ratio as 
evidenced by the significant first pass effect following po 
administration [39] and the high CL, unrestricted by the extensive 
plasma protein binding. The other 7 outliers are underestimated

 

Table 4: Outliers from Consensus model together with the major pharmacokinetic parameters (according to Obach, Lombardo and Waters [21]) 

Ouitliers t1/2, h Vd Cl fu criteria 
 exp pred L/kg ml/min/kg  
5-fluorouracil 0.12 1.26 0.23 26 0.64 1 negative (=CH-) 
Losartan 1.82 19.05 0.37 8.20 0.01 1 positive (SaasC) 
Diflunisal 10 0.74 0.097 0.1 0.0016 1 negative (SaasC) 
Valproic acid 12 1.40 0.14 0.16 0.08 - 
Ifetroban 21.88 3.00 4.40 6.40 - 1 positive (SaasC) 
Pentobarbital 21.88 1.52 0.91 0.47 0.39 - 
Chlorpropamide 45.7 4.5 0.19 0.045 0.03 2 positive (SaasC, >SO2 
Atovaquone 63.1 9.1 0.6 0.15 0.001 2 positive (xvch10, SaasC) 
Phenobarbital 100 1.74 0.54 0.063 0.49 1 positive (SaasC) 

 

Atovaquone and ifetroban are cleared exclusively by biliary 
excretion. The long t1/2 of atovaquone is attributed to its extensive 
plasma protein binding, high metabolic stability and enterohepatic 
cycling [36]. The latter seems to be the main reason for the 
prolonged half life of ifetroban [40]. The long t1/2 is consistent with 
the large Vss, but contradicts to the high CL, questionable for a drug 
eliminated primarily via bile. If the reported values of Vss and CL are 
true, t1/2 should be 8 h – closer to the predicted value. Diflunisal is 
eliminated in urine as two glucuronide metabolites, without Phase 1 
biotransformation [41]. The extensive plasma protein binding 
together with the low CL may be considered as a main reason for the 
long t1/2. Biliary elimination and enterohepatic circulation are also 
reported [42]. Chlorpropamide [43] and pentobarbital [44] are 
eliminated mainly by hepatic metabolism with a very low extraction 
ratio as suggested by their low CL. The clearance of chlorpropamide 
is additionally restricted by the high plasma protein binding. 
Phenobarbital is also metabolized in liver, however about 30% of the 
drug is cleared unchanged via kidney [45]. The prolonged t1/2 may 
be a result of the low hepatic extraction ratio [46] and significant 
tubular reabsorption as phenobarbital is a liposoluble, weak acid, 
predominantly non-ionized at physiological conditions. Valproic acid 
drug may be considered as a structural outlier because it differs 
significantly from most of the compounds in the dataset:  it is a 
small, simple molecule, with molecular weight of about 144 g/mol, 
containing only a carboxyl group and two propyl residuals.  

CONCLUSION 

Statistically significant, predictive and interpretable QSPkR model 
was constructed for t1/2 of acidic drugs. The predictive ability was 
confirmed by internal and external validation procedures. The 
predicted t1/2 values for 61% of the drugs in the dataset are within 
the 2-fold error. Descriptors involved in the model have clear 
physical sense and reveal structural features governing t1/2 of acidic 
drugs. The presence of a sulfonyl or phosphonate groups, non-polar 
substituents at aromatic carbon, 9- or 10-member ring system and 
donor-acceptor pair separated by 9 skeletal bonds contribute to 
prolongation of t1/2, while the presence of methane groups, polar 

substituents in aromatic rings and 7-member ring system affect 
negatively t1/2. A short check list was proposed determining the cutoff 
between short half life (t1/2 < 1 h) and long half life (t1/2 > 24 h) drugs.  
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