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ABSTRACT 

Objective: Yeast commonly causes superficial mycoses similar to the dermatophytes. Superficial mycoses were reported with an estimated 

incidence of ∼140,000,000 cases/year worldwide and most frequently caused by Malassezia globosa and Malassezia furfur. Treatment available for 

these conditions is limited and with side effects. Moreover, termination of the treatment may result in the reoccurrence of the disease. The objective 

of this research was to identify the putative drug targets using computational approaches. 

Methods: The analysis of genome sequence improves the understanding of diseases which leads to better treatment. Comparison of the genome of 

the pathogen with the host at the molecular level is suitable for performing the sequence based prediction of protein-protein interaction network, 

which also forms the basis of drug target identification leading to the discovery of new drugs for the improved treatment.  

Results: Out of 100 pathways of M. globosa, 95 were common to the host and 5 were unique to the pathogen. Total common and unique targets 

from common pathways are 1704 and 300, respectively. A unique target from unique pathways and 147 from common pathways were non-

homologous targets. From this, 46 targets were screened out as essential and processed in the next phase to identify the clustered targets which 

resulted with three clusters based on their biological role and subcellular location. 

Conclusion: In this study, putative drug targets were identified in M. globosa using in silico approaches of subtractive genomics and cluster network 

which will help in the next level of drug discovery such as lead identification for the novel targets. 
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INTRODUCTION 

Now fungi are becoming ubiquitous in the environment and fungal 

infections are increasing at an alarming rate causing significant 

health problems [1]. The growing populations of immune 

compromised individuals with highly susceptibility to fungal 

pathogens have become a common cause of morbidity and mortality 

[2]. Fungal infections can be divided into systemic and superficial 

mycoses. Systemic or deep mycoses are able to infect internal 

organs. Superficial mycoses affect external part of the skin and hair, 

and these infections are the most common fungal diseases which 

affect approximately 25% of the general population worldwide [3]. 

Members of the genus Malassezia have become noticed as 

opportunistic yeasts of increasing importance in recent years by 

dermatologists and mycologists [4-7]. Out of 14 recognized species 

of Malassezia [8], a small genome size, spanning ∼9 Mb, Malassezia 

globosa is associated with skin diseases [9] such as pityriasis 

versicolor [10], seborrhoeic dermatitis and dandruff [11]. Treatment 

involves the use of ketoconazole, selenium sulfide, zinc pyrithione, 

ciclopirox olamine, climbazole [12] but termination of the treatment 

often leads to the reoccurrence of the symptoms [13]. 

Microorganisms are becoming resistant to multiple antibiotics, 

making the infections tough to eradicate [14]. Novel antimicrobials 

are therefore needed to combat infections. Target identification is 

the foremost important step in drug discovery as this whole process 

depends on the target and also important to battle against diseases 

and drug resistant microorganisms. Traditional method of drug 

discovery is time-consuming, labour intensive, cost effective and 

yield few drug targets. Novel therapeutics in areas with a high 

medical need is based on innovative putative drug targets, a key 

focus for both the pharmaceutical industry and academic research. 

Thus the focus in drug development has been shifted to 

computational subtractive genomic approach for identifying 

pathogen specific drug targets. Targeting the pathogen’s metabolic 

enzymes (targets) affect only the pathogen and not the host. 

Exploiting the metabolic differences between the host and the 

pathogen avoids host-drug interactions, i.e. the problem of cross-

reactivity and side effects are minimized by non-homologous 

proteins. Advances in computational methods, availability of 

complete genome and significant information in databases such as 

metabolic pathways, enzymes and various tools come in handy. 

Glycolytic pathway involved enzymes were reported as potential 

targets against fatal disease causing parasitic organism, 

Trypanosoma brucei [15]. Blocking the enzymes involved in the 

aspartate pathway by phytocompounds is lethal to the 

microorganism [16]. Lacking literature about metabolic pathway 

analysis based potential drug targets in M. globosa enhanced the 

focus on identifying the same.  

MATERIALS AND METHODS 

Identification of common and unique metabolic pathways 

Available computational tools encompass various in silico based 

approaches to identify new protein targets, of which, metabolic 

pathway/metabolic network analysis emerged as an efficient 

method to identify candidate metabolic enzymes as targets. KEGG 

(Kyoto Encyclopedia of Genes and Genomes), a manually curated 

database makes a clear understanding of the biological system of 

any sequenced organisms. Metabolic pathways of the M. globosa and 

the Homo sapiens were retrieved from the KEGG database and 

manual comparison was done to find out the unique and common 

pathways of the pathogen (http://www.genome.jp/kegg).  

Mining of suitable proteins 

The sequences of the protein pertaining to both pathways were 

retrieved from the UniProt (http://www.uniprot.org) database and 

subjected to BLAST (Basic Local Alignment Search Tool) and 

sequence similarity search was performed against the host 

proteome database. The main objective of this step is to define the 

non-homologous proteins of the pathogen as it’s likely to prevent 
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the cross-reactivity of drug compounds with the human host 

proteins [17]. ‘Expect’ value (e-value) fixed was <0.005 and a 

minimum bit score was> 100 to exclude the homologous sequences. 

Proteins which showed “hits” with the above mentioned cut-off 

values were considered as non-homologous proteins [18-20] and 

subjected to further screening process where remaining were 

excluded from the list. 

Essentiality assessment of M. globosa proteins 

DEG (Database of Essential Genes) is a database of indispensable 

genes from bacteria, archaea, and eukaryote organisms which 

support their cellular life. In order to identify the essential proteins 

of M. globosa, the resultant non-homologous were subjected to the 

protein BLAST tool and similarity search was performed against the 

essential eukaryotes [21] with an e-value <0.0001, bit score >100 

[22] and identity greater than 30% [23].  

Network based targets 

Selected indispensable proteins are then subjected to STRING 

(Search Tool for the Retrieval of Interacting Genes/Proteins) 

database to construct protein-protein interaction network 

(http://string.embl.de) [24]. Interactors with confidence score 

greater than or equal to 0.700 alone included here in the protein 

network [25] and with low and medium confidence score were 

eliminated to avoid false positives and false negatives. Target 

protein with more interactors is considered as a metabolically active 

protein which could be an appropriate drug target [26, 27]. The 

interaction network was analyzed using Cytoscape 2.8.1 [28], a 

package for biological network visualization and analysis. MCODE 

(Molecular COmplex Detection) plugin detects highly interconnected 

regions in the network. The optimized parameters in MCODE to 

analyze network includes loops, degree cutoff 2 and node score cut 

off 0.2, haircut, node density cutoff (0.1), k-core-2, maximum depth 

(100) were used to produce the best network [29]. 

Other Important criteria to be a drug target 

The subcellular localization of the eukaryotic targets was identified by 

support vector machine method (SVM), ESLpred is an elegant 

approach (http://www.imtech.res.in/raghava/eslpred/submit.html) 

[30]. All the identified potential drug targets were further evaluated 

for its druggability by searching them against DrugBank [31] and 

Therapeutic Target Database (TTD) [32]. 

RESULTS AND DISCUSSION 

Common and unique targets 

Identification of putative drug targets from annotated metabolic 

pathways available in KEGG using subtractive genomics/ 

proteomics has been widely used by several researchers in 

bacterial pathogens [33-38]. Metabolic pathways that are present 

in both the host and the pathogen are identified as common 

pathways and those which are present only in infection causing 

organism but not in the host as unique pathways. Out of 100 

pathways of M. globosa taken for the present analysis, 95 

pathways are common and 5 are unique to the pathogen. The same 

number of unique pathways were reported from Mycoplasma 

hyopneumoniae in the process of identifying the drug and vaccine 

targets [39]. Each common pathway of the Homo sapiens and the 

pathogen retrieved from pathway database were compared 

manually and identified the common and unique targets.  

In the present study, the total number of common and unique 
targets from common pathways are 1704 and 300, respectively. Out 

of 1704 common targets, 705 are involved in metabolism, 802 in 
genetic information processing, 17 in environmental processing and 

180 in cellular processes. Total numbers of unique targets from 
common pathways include 177 in metabolism, 9 in genetic 

information processing, 53 in environmental processing and 61 in 
cellular processes. Five unique pathways of M. globosa are 

carbapenem biosynthesis, various types of N-glycon biosynthesis, C-
5 branched dibasic acid metabolisms, methane metabolism, 

sesquiterpenoid and triterpenoid biosynthesis. In this study, unique 
pathways have 29 enzymes of which 28 enzymes are involved in 

common pathways which is in accordance with the report [40] 

which stated that common drug targets are also involved in the 
pathway unique to the pathogens of bacterial meningitis. Also, the 

number of drug targets identified from the common pathways of M. 

globosa were more than that identified among Streptococcus 

pneumonia, Neisseria meningitidis, Haemophilus influenzae type b 
and Staphylococcus aureus causing bacterial meningitis. 

Non-homologous and essential targets 

In this phase, non-homologous targets were segregated from 

homologous targets in the common pathways to avoid the 

undesirable cross reaction of the drug, thereby preventing its 

binding to the homologous proteins in the host, and its essentiality 

represents a good alternative for the development of new antifungal 

drugs [41]. Conserved genes in different genomes often turn out to 

be essential [42, 43]. The products of essential genes that are 

indispensable for the growth, replication, viability or survival are 

important to develop drugs against the pathogen with a novel mode 

of action [44]. In M. globosa, a total of 147 non-homologous targets 

from common pathways were identified. Two unique targets were 

identified from unique pathways of which one target was found to 

be present in common pathways and the other is non-essential 

hence not included in the novel drug target identification. Out of 147 

targets from common pathways, only 46 targets were found to be 

essential and the remaining were found to be non-essential [table 1]. 

Based on the theory that similar proteins which are essential in 

one eukaryotic genome may be essential for another eukaryote, 

hits found with DEG database with the mentioned cut-off values 

were expected to represent the crucial conserved essential 

proteins of the selected organism while remaining proteins were 

not, therefore excluded from the list of probable drug targets. A 

study showed that 57 potential drug targets from eight human fungal 

pathogens (Candida albicans, Aspergillus fumigatus, Blastomyces 

dermatitidis, Paracoccidioides brasiliensis, Paracoccidioides lutzii, 

Coccidioides immitis, Cryptococcus neoformans and Histoplasma 

capsulatum), which did not include Malassezia sp., of which only 10 were 

conserved as essential targets [45]. 

Clustered targets 

Unlike the usual computational approaches, the other strategy to 

tackle a pathogen at the metabolic level is to identify the pathogen 

specific interacting enzymes [46]. Many functions within a cell are 

carried out by interactions between proteins being depicted by 

protein-protein interaction network that communicates associations 

between proteins. The network that finds hubs are the highly 

interconnected proteins or clusters playing an important role in the 

biological network as it is more likely to be an essential one than 

proteins having smaller links [47]. In the present study, 46 essential 

proteins of M. globosa studied using STRING database revealed low 

(<0.004), medium (0.400-0.700) and high confidence protein-

protein interactions (≥0.700). The interactors with confidence score 

≥0.700 alone were used which goes in line with the target 

identification pipeline for Mycobacterium tuberculosis [48] and five 

non-interacting proteins of M. globosa (MGL_1691, MGL_2217, MGL_ 

2793, MGL_1167 and MGL_2547) were excluded while selecting 

enzymes involved in the metabolic network as potential drug targets 

[fig. 1]. K-core clustering is the parameter that amplifies highly 

interconnected regions and removes less connected proteins that 

are usually a part of biomolecular interactions [49].  

Interacting proteins with high confidence scores were visualized 
using MCODE plugin to predict protein-protein complex data set. 
This approach isolated densely connected regions or clusters in 
three steps namely (i) vector (nodes-proteins) weighting, (ii) 
complex prediction i.e. the protein with highest clustering density is 
used to seed a complex and (iii) optional post processing to filter or 
add proteins to the resulting complex according to certain 
connectivity criteria [29]. Finding precisely the important 
interacting enzymes as network clusters provides insights into the 
functions of unknown proteins [50] and as tools in the exploration of 
potential drug targets [46]. Indeed, the network view is increasingly 
being taken in many areas of applied biology including drug 
discovery [51, 52]. 
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Table 1: Essential proteins of Malassezia globosa 

S. 

No 

Name of the pathways Name of the pathogen’s enzyme MGL Seq ID DEG ID 

             Metabolism 

1 

 

Glycolysis/Gluconeogenesis/ 

Pentose phosphate pathway/Fructose 

and Mannose Metabolism 

hexokinase MGL_2217  

 

DEG20090714 

DEG20010617 

2 Starch and Sucrose Metabolism trehalose 6-phosphate synthase/phosphatase MGL_1326 DEG20030078 

3 Starch and Sucrose Metabolism trehalose 6-phosphate synthase/phosphatase MGL_2848  DEG20030078 

4 Starch and Sucrose Metabolism trehalose 6-phosphate synthase MGL_1842  DEG20030078 

5 

 

Starch and Sucrose Metabolism/MAPK 

signaling pathway  

 

1,3-beta-glucan synthase MGL_0311 

 

 DEG20080016 

DEG20091251 

DEG20090795 

DEG20090494 

6 Amino Sugar and Nucleotide Sugar 

Metabolism 

chitin synthase MGL_1195 DEG20010039 

DEG20020057 

7 Nitrogen Metabolism carbonic anhydrase MGL_1814  DEG20090940 

8 

 

Glycerolipid Metabolism/ 

Glycerophospholipid Metabolism 

glycerol-3-phosphate O-

acyltransferase/dihydroxyacetone phosphate 

acyltransferase 

MGL_2378  

 

DEG20090920 

 

9 

 

Glycerophospholipid Metabolism 

Glycine, Serine and Threonine Metabolism 

CDP-diacylglycerol---serine O-phosphatidyl 

transferase 

MGL_2439 

 

DEG20091203 

 

10 Glycine, Serine and Threonine Metabolism homoserine kinase MGL_3519  DEG20090876 

11 

 

Glycine, Serine and Threonine 

Metabolism/Cysteine and Methionine 

metabolism/Lysine Biosynthesis 

aspartate kinase 

 

MGL_4205  

 

DEG20090951 

 

12 

 

Glycine, Serine and Threonine 

Metabolism/Cysteine and Methionine 

metabolism/Lysine Biosynthesis 

aspartate-semialdehyde dehydrogenase 

 

MGL_3740 

 

DEG20091259 

 

13 Cysteine and Methionine metabolism  homoserine O-acetyltransferase MGL_2541 DEG20080024 

14 Cysteine and Methionine metabolism  homoserine O-acetyltransferase MGL_3917  DEG20080024 

15 

 

Valine, Leucine and Isoleucine 

biosynthesis/Pantothenate and CoA 

Biosynthesis 

ketol-acid reductoisomerase 

 

MGL_3299 

 

DEG20010747 

 

16 

 

Valine, Leucine and Isoleucine 

biosynthesis  

dihydroxy-acid dehydratase 

 

MGL_3741  

 

DEG20010579 

 

Pantothenate and CoA Biosynthesis 

17 Histidine Metabolism phosphoribosyl-ATP 

pyrophosphohydrolase/phosphoribosyl-AMP 

cyclohydrolase/histidinol dehydrogenase 

MGL_2613 DEG20030044 

18 Histidine Metabolism phosphoribosylformimino-5-aminoimidazole 

carboxamide ribotide isomerase 

MGL_2036 DEG20030128 

19 Histidine Metabolism HisF/His H/glutamine amidotransferase/cyclase MGL_0140 DEG20030249 

20 Histidine Metabolism imidazoleglycerol-phosphate dehydratase MGL_3523 DEG20080003 

21 Histidine Metabolism histidinol-phosphatase (PHP family) MGL_3105 DEG20091091 

22 Phenyl Alanine, Tyrosine and Tryptophan 

Biosynthesis 

 pentafunctional AROM polypeptide MGL_3989 DEG20090474 

DEG20030155 

23 

 

Phenyl Alanine, Tyrosine and Tryptophan 

Biosynthesis/Glycine, Serine and 

Threonine Metabolism 

tryptophan synthase 

 

MGL_0012 

 

DEG20080034 

DEG20090244 

24 

 

Phenyl Alanine, Tyrosine and Tryptophan 

Biosynthesis 

 

anthranilate synthase/indole-3-glycerol phosphate 

synthase/phosphoribosyl anthranilate isomerase  

 

MGL_0538  

 

DEG20091201 

DEG20030117 

DEG20090948 

25 Phenyl Alanine, Tyrosine and Tryptophan 

Biosynthesis 

chorismate synthase MGL_1168 DEG20091208 

DEG20030052 

26 Phenyl Alanine, Tyrosine and Tryptophan 

Biosynthesis 

anthranilate phosphoribosyltransferase MGL_1155  DEG20091019 

27 Phenyl Alanine, Tyrosine and Tryptophan 

Biosynthesis 

chorismate mutase MGL_0402 DEG20090359 

28 Thiamine Metabolism hydroxymethylpyrimidine/phosphomethylpyrimidine 

kinase 

MGL_1338 DEG20090945 

29 Riboflavin Metabolism GTP cyclohydrolase II MGL_1904  DEG20090158 

30 Riboflavin Metabolism 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5'-

phosphate reductase  

MGL_2361  DEG20010061 

31 Riboflavin Metabolism 3,4-dihydroxy 2-butanone 4-phosphate synthase MGL_0570 DEG20090968 

DEG20010261 

32 Riboflavin Metabolism  6,7-dimethyl-8-ribityllumazine synthase MGL_0356  DEG20090651 

33 

 

Riboflavin Metabolism 

 

riboflavin synthase 

 

MGL_0273 

 

DEG20010082 

DEG20091197 

34 Vitamin B6 Metabolism  5'-phosphate synthase pdxT subunit MGL_1990  DEG20030345 

35 Nicotinate and Nicotinamide Metabolism nicotinate phosphoribosyltransferase MGL_3226  DEG20090331 

36 Biotin Metabolism biotin synthase MGL_1037 DEG20030139 

37 Folate Biosynthesis 2-amino-4-hydroxy-6- MGL_1723  DEG20090637 
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hydroxymethyldihydropteridine 

diphosphokinase/dihydropteroate synthase 

DEG20010889 

38 

 

Folate Biosynthesis 

 

 para-aminobenzoate synthetase 

 

MGL_0916 

 

DEG20030117 

DEG20090948 

DEG20091201 

39 Terpenoid Backbone Biosynthesis  phosphomevalonate kinase MGL_2793 DEG20010822 

Genetic Information Processing 

40 Basal Transcription Factors transcription initiation factor TFIIF subunit alpha MGL_2547  DEG20091239 

41 Ribosome small subunit ribosomal protein S10 MGL_1513  DEG20010163 

DEG20090970 

42 Ribosome large subunit ribosomal protein L28 MGL_3122  DEG20090779 

43 Protein export signal peptidase complex subunit 3  MGL_1691 DEG20010691 

DEG20090095 

Environmental Information Processing 

44 MAPK signaling pathway osomolarity two-component system, phosphorelay 

intermediate protein YPD1 

MGL_3758  DEG20010156 

45 MAPK signaling pathway osomolarity two-component system, response 

regulator, SSK1 

MGL_0602 DEG20010520 

Cellular Processes 

46 Endocytosis ADP-ribosylation factor GTPase-activating protein 2/3 MGL_1167 DEG20090514 

 

 

Fig. 1: Interacting and non-interacting proteins of Malassezia globosa 

 

Four clusters were resulted from the entire network as the objective 

is to group proteins that are related by functions and have a 

significant biological process. High score of a cluster represents an 

important network region because the components of this molecular 

complex function towards the same biological goal that provides 

another level of functional annotation [47]. Even the node of the 

least score cluster found to be significant in some case [53]. Here, 

the first cluster involves most enzymes that participate in amino 

acid biosynthesis, an important pathway in identifying putative drug 

targets since the amino acid biosynthesis pathway had been already 

validated by the pathway comparison between aspergillosis causing 

pathogen and human proteins which revealed eight enzymes as 

potential targets for drug design where most of them were from this 

pathway [54]. Also, one of these clustered targets (MGL_0916) found 

to be participating in the metabolism of co-factor and vitamins, 

especially in the folate biosynthesis. The first cluster score is greater 

than 5 with 7 nodes (interactors) and 21 edges (interactions). The 

clustered targets given in the order of node IDs namely para-

aminobenzoate synthetase, glutamine amidotransferase, anthranilate 

phosphoribosyl transferase, anthranilate synthase/ indole-3-glycerol 

phosphate synthase/phosphoribosyl anthranilate isomerase, 

phosphorribosyl-ATP pyrophosphohydrolase/ phosphoribosyl-AMP 

cyclohydrolase/ histidinol dehydrogenase, tryptophan synthase, 

pent-afunctional AROM polypeptide were predicted to be present in 

mitochondria, a specialized organelle that regulate metabolism. 

Fungal pathogen specific mitochondrial proteins play a key role in 

virulence, adaptation to stress, cell wall synthesis and antifungal 

drug tolerance. Further, lacking homologs in human is an added 

advantage of antifungal therapy as stated by Calderone et al. [55].  
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The cluster2 consists of 5 nodes and 7 edges with the cluster score 

of 3.3. Targets namely 3,4-dihydroxy 2-butanone 4-phosphate 

synthase, GTP cyclohydrolase II,6,7-dimethyl-8-ribityllumazine 

synthase, 2,5-diamino-6-(ribosylamino)-4(3H)-pyrimidinone 5'-

phosphate reductase and riboflavin synthase of this cluster belong 

to the pathogen pathway of metabolism of co-factor and vitamins. 

The subcellular location of these targets varies viz MGL_0570 and 

MGL_1904 were predicted as nuclear, MGL_0356 as cytoplasmic, 

MGL_2361 as mitochondrial and MGL_0273 as extracellular 

enzymes. The cluster3 with the score 2.4 includes 4 nodes and 6 

edges, and these targets are involved in carbohydrate metabolism 

and signal transduction pathway. Likewise, in another analysis, six 

targets from the carbohydrate metabolism and some more targets 

from the other pathways were reported as essential for the bacterial 

organism surveillance and multiplication [56], and enzymes 

involved in carbohydrate metabolism as important drug targets in 

Leishmania parasites [57]. The cellular location of three enzymes 

(MGL_2848=trehalose 6-phosphate synthase/phosphatase; 

MGL=trehalose 6-phosphate synthase/phosphatase; and 

MGL=trehalose 6-phosphate synthase) predicted to be nuclear 

except MGL_0311 (1,3-beta-glucan synthase), an extracellular 

enzyme.  

The least score (1.5) of this analysis is for cluster4 with the equal 

number of nodes and edges (3) and the targets were identified as 

cytoplasmic proteins such as aspartate kinase, homoserine kinase 

and aspartate-semialdehyde dehydrogenase involved in amino acid 

metabolism. In the study of infectious pathogens such as 

Chlamydophila pneumoniae, Porphyromonas gingivalis and 

Helicobacter pylori causing Atherosclerosis, a total of 14 interacting 

drug targets were predicted [58]. 

In addition, the other vital properties which are significant to be 

potential drug targets are druggability, molecular weight and sub-

cellular localization of these clusters [59] and the results of this 

study is given in table 2. The non-hit proteins of drug bank and 

therapeutic target database could be novel targets. In the present 

study, 2 proteins with hits were considered as druggable and the 

remaining may be the novel putative drug targets as stated in an 

earlier report [60]. Even lower molecular weight protein helped in 

mapping the small molecule binding and aids more specifically in 

developing the high-affinity inhibitors [61]. Here, molecular size of 

the enzymes found to be greater than 100 are more likely to 

represent essential and considered as significant drug targets [62].  

Enzymes from different metabolic pathways are important to 

identify novel drug targets. Eighty-six targets from amino acid 

metabolism and forty-one from vitamin and cofactor 

biosynthetic pathways and forty-eight from carbohydrate 

metabolism were identified as potential drug targets in 

Mycobacterium tuberculosis through the computational analysis 

[63]. Researchers interested in virology created the 

Chikungunya database containing its virulent strains and the 

role of drug target in the infection [64]. Targets are helpful in 

finding out suitable ligands or hits against disease causing 

organisms as in the case of Klebsiella pneumonia [65] and 

Mycobacterium tuberculosis [66]. Mahendran et al. [67] reported 

nine enzymes from the investigation of metabolic pathways 

where targets lacking three-dimensional structure were 

modeled in silico and identified potential ligands against 

Treponema pallidum. From the present analysis, 19 targets have 

been suggested as potential drug targets to combat infections 

caused by M. globosa. 

 

Table 2: Clustered targets of the pathogen 

Cluster Score  Nodes  Edges Node Identifications Subcellular 

location of the 

protein 

Molecular 

size 

Existing/Novel 

drug targets 

Pathways Involved 

1 5.25 7 21 MGL_0916 

MGL_0140 

MGL_1155 

MGL_0538 

MGL_2613 

MGL_0012 

MGL_3989 

Mitochondria 

Mitochondria 

Mitochondria 

Mitochondria 

Mitochondria 

Mitochondria 

Mitochondria 

464 

576 

413 

502 

884 

660 

1611 

No hits 

No hits 

Yes 

No hits 

No hits 

No hits 

No hits 

Metabolism of  

co-factor and vitamins 

and amino acid 

metabolism 

2 3.333 5 10 MGL_0570,  

MGL_1904,  

MGL_0356,  

MGL_2361,  

MGL_0273 

Nuclear 

Nuclear 

Cytoplasmic 

Mitochondria 

Extracellular 

172 

455 

171 

245 

293 

No hits 

No hits 

Yes 

No hits 

No hits 

Metabolism of  

co-factor and vitamins  

3 2.4 4 6 MGL_0311, 

MGL_2848,  

MGL_1842,  

MGL_1326 

Extracellular 

Nuclear 

Nuclear 

Nuclear 

1311 

1317 

523 

680 

No hits 

No hits 

No hits 

No hits 

Carbohydrate 

metabolism and signal 

transduction pathway 

4 1.5 3 3 MGL_4205, 

MGL_3519,  

MGL_3740 

Cytoplasm 

Cytoplasm 

Cytoplasm 

502 

355 

367 

No hits 

No hits 

No hits 

Amino acid metabolism 

Bold indicates existing druggable targets  

 

CONCLUSION 

Synthetic antifungal compounds which are the leading candidates 

among various treatment options have poor clinical efficacy as they 

are unable to prevent the recurrence. Such complications prompted 

the search of new antifungals to treat the clinical condition caused 

by M. globosa. Computational method reduces time in the 

identification of putative drug targets from important pathways. 

Designing target based drug reduces off-target side effects. 

Therefore the current research work focused on identifying the 

potential drug targets in M. globosa which may be the first study that 

would be helpful to explore new and efficient compounds in target 

based drug discovery for the treatment of the organism. Here, a total 

of 19 drug targets that include 2 druggable and 17 novel putative 

drug targets were identified by comparative genomics and cluster 

network approach thereby opening a new area in antifungal drug 

discovery through an interdisciplinary endeavour.  
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