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ABSTRACT 

Objective: The aim of the present study was to develop robust linear and non-linear Quantitative Structure-Activity Relationship (QSAR) models for 

exploring the relationship between the structural features of a series of sulphanilamide Schiff bases and their CA (II) inhibition activities. 

Methods: QSAR modeling of carbonic anhydrase (II) inhibiting activities of a series of sulphanilamide Schiff bases as a function of theoretically 

derived molecular descriptors calculated by Dragon software was established linearly by stepwise multiple linear regression (SW-MLR) method and 

non-linearly by artificial neural network (ANN) method, trained with different numerical techniques namely, Scaled conjugate gradient (SCG), quasi-

Newton (BFGS), and Levenberg-Marquardt (LM) algorithm. SW-MLR method was also used to select descriptors from large descriptor pool. After 

the selection of variables, best selected linear model was validated by Y-randomization test. The applicability domain was assessed by the 

normalized mean Euclidean distance value for each compound. The prediction quality of proposed non-linear QSAR models was tested externally 

using validation and test set. 

Results: The low value of R2
average = 0.214 from the Y-randomization test and no significant correlation between the selected descriptors indicates 

that linear model is reliable, and robust. Applicability domain analysis has also revealed that the suggested model has acceptable predictability. To 

explore non-linear relationship between selected descriptors and the target property, ANN approach trained with three supervised algorithms 

(BFGS, SCG and LM) was used. Statistical comparison of the quality of models obtained using ANN method trained with above mentioned three 

algorithms with SW-MLR model shows that ANN with 4-3-1 architecture and trained with LM algorithm has better predictive power as indicated by 

low RMSEval (0.11), MAPEval (11.95) values and high R2
val (0.96) value.  

Conclusion: The results of this work indicated the ANN trained with fastest Levenberg-Marqardt algorithm is a promising tool for establishing non-

linear relationship between selected sulphanilamide Schiffbases and their CA (II) inhibition values. 

Keywords: Sulphanilamide Schiff bases, Artificial neural network, Scaled conjugate gradient (SCG), Quasi-Newton (BFGS) and Levenberg-
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INTRODUCTION 

Carbonic anhydrases (CAs) are a class of metalloenzymes containing 
Zn2+ion as active site. CAs are involved in catalyzing the inter-
conversion of carbonic acid and carbon dioxide to bicarbonate and 
H3O+, playing an important role in several physio-pathological 
processes. Various clinically used drugs have been reported to 
possess significant CA inhibitory such as derivatives belonging to the 
sulphonamide, sulphamate or sulphamide families [1-6]. Carbonic 
anhydrase (II) is one of the fourteen forms of human α carbonic 
anhydrases. CA (II) is related to many diseases, including glaucoma, 
tumors, epilepsy and diabetes. 

In chemometric research, quantitative structure-activity relationships 

(QSAR) studies offer the advantage of being more environment 

friendly than experimental approaches in molecular design and 

sustainable pharmacy. QSAR models are potentially important in 

making it possible to evaluate large number of chemicals without 

using conventional laboratory procedure as well as reducing 

number of tests on animals during drug development. Role of QSAR 

in accessing and reducing risks for sustainable development is well 

documented [7, 8]. These models are mathematical equations 

constructing a relationship between theoretical descriptors [9] 

obtained from chemical structures and biological activities. There 

are several approaches in QSAR modeling. Linear modeling 

approaches such as multiple linear regression (MLR), Partial least 

square (PLS) are developed to extract the maximum information 

from complex data matrices based on their linear behavior. In 

contrast, artificial neural networks (ANNs) have been used for 

exploring non-linear modeling and optimization when underlying 

mechanisms are very complex [10-12]. Generalization, convergence 

and complexity are some of the important factors in training of a 

multilayer feed-forward artificial neural network which influence 

its performance. These factors are highly dependent upon the type 

of numerical technique or algorithm used for training.  

For training of multilayer feed-forward artificial neural networks, 

the backpropagation (BP) algorithm is generally preferred due to 

its simplicity. Among various methods of training, second order 

methods include Scaled conjugate gradient (SCG), quasi-newton 

(BFGS), and Levenberg-Marquardt (LM) algorithm [13, 14].  

Several QSAR studies of CA (II) inhibition using theoretical and 

physiochemical descriptors of various groups of molecules have 

been reported [15-17]. In this context, QSAR studies on, CA (II) 

inhibition activities of Schiff bases sulfanilamides based primarily 

on topological descriptors were reported by various researchers 

[18-20]. 

There is no report on the use of ANN trained with different 

algorithms in the QSAR modeling of CA(II) inhibition activities of 

Schiff bases sulphanilamide’s.  

Therefore, the purpose of present study was to examine the 

accuracy of ANN trained with different numerical techniques and to 

statistically compare the previously reported results with the results 

obtained from linear and non-linear modeling for better prediction 

of CA(II) inhibition activity in terms of log KCA(II). 
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MATERIALS AND METHODS 

Dataset 

The series of 35 Schiff base sulphanilamide compounds (fig. 1) and 

their CA (II) inhibition activities were taken from the work 

published by Supernan and Clare [17, 19]. The 3D structures of the 

compounds in the form of SDF files were generated from the 

Pubchem database using its various utilities. The activity data were 

first converted into logarithmic scale and then values of logKCA (II) 

were used for subsequent QSAR modeling as the response variables. 

The molecular formula of the compounds along with their logKCA 

(II) inhibitory activities are presented in the table 1. Twenty-four 

molecules were used to build the QSAR model and the rest eleven 

were used as external validation and test set.  

Instrumentation 

E-Dragon software [21] was used to calculate theoretical 

descriptors. All calculations present in this work were carried out on 

a personal computer with a Window XP operating system. SPSS 

software [22] was used for SW-MLR analysis. ANN calculations were 

performed with Matlab [23]. 

 

Fig. 1: Structure of representative sulphanilamide compounds 

 

Generation and selection of molecular descriptors 

E-Dragon software [21] was used to calculate a total of 979 1-, 2-and 

3-D descriptors including constitutional, molecular properties, 

topological descriptors, connectivity indices, information indices, 

topological charge indices, geometrical descriptors, WHIM, 

3DMorse, Getaway and RDF descriptors for each molecule. Since 

large number of descriptors are calculated for each molecule. The 

calculated descriptors were first analyzed to check the existence of 

constant and near constant variables, which were removed. 

Furthermore, the correlation of the descriptors with each other and 

with target property (logKCAII) was examined in order to decrease 

the redundancy.  

SW-MLR method 

Stepwise multiple linear regression (SW-MLR) method was applied 

for each category of 1-, 2-and 3-D descriptors to get reduced pool of 

descriptors. In stepwise technique one parameter at a time is added 

to a model and always in the order of most significant to least 

significant in terms of F-test values [24, 25]. Statistical parameters 

were calculated subsequently for each step in the process, so the 

significance of the added parameter could be verified. The goodness 

of the correlation is tested by the regression coefficient (R2), the 

standard error of the estimate (SEE) and the F-test [26]. Finally, 

twenty-five best selected descriptors from various categories were 

further subjected to stepwise multiple linear regression to get most 

significant descriptors. 

ANN method 

In the present work Matlab software package was used for 

implementation of three layered fully connected, feed forward 

computational neural network. For further improvement of 

performance in comparison with that of SW-MLR method, ANN 

approach was used for mapping non-linear relationship between 

theoretical descriptors selected from SW-MLR method and logKCA 

(II) inhibitory activities, In ANN approach, each neuron in any layer 

is fully connected with the neurons of adjacent layers.  

The architecture of ANN is such that (i) number of neurons in the 

input layer is equal to number of descriptors selected from SW-MLR 

method (ii) the number of hidden neurons is optimized and (iii) one 

neuron is placed in the output layer whose output is the target 

activity for each molecule. The input vectors and output values were 

preprocessed so that that they fall in the range [0.1-0.9]. ANN with 

standard numerical optimization techniques including Scaled 

conjugate gradient (SCG), quasi-Newton (BFGS), and Levenberg-

Marquardt (LM) were applied for training of the network 

Method validation 

The predictive power of QSAR methods is evaluated internally as 

well as externally using validation and test set as recommended by 

Golbraikh and Tropsha [27]. For internal validation, Y-

randomization technique was performed to check robustness of the 

model. External validation was performed by dividing the data set 

into training, validation and test set randomly in such a way that 

ratio of vectors for training, validation and testing were 0.7, 0.15 and 

0.15 respectively. As a result, 24, 6 and 5 Schiff base sulphanilamide 

compounds respectively chosen from the data set of 35 molecules 

for training, validation and test set. Finally, the performance of the 

prediction system was evaluated using the following common 

statistics: coefficient of determination (R2), root mean of squared 

errors (RMSE) and mean absolute per cent error (MAPE). The 

Applicability Domain (AD) is assessed by the normalized mean 

distance values for each compound. 

 

Table 1: Experimental, calculated logKCA (II) values and normalised mean distance values of sulphanilamide compounds 

S. No. R1 R2 LogKCa(II)a SW-MLRb 4-3-1 

(LM)b 

4-5-1 

(SCG)b 

4-6-1 

(BFG)b 

N. M. D. 

1 Phenyl H 1.4314 0.949 1.154 1.212 1.15 0.001 

2 2-Nitrophenyl H 1.3222 0.882 0.961 1.004 1.118 0.264 

3 4-Hydroxyphenyl H 1.2788 1.200 1.023 1.013 1.056 0.206 

4 4-Methoxyphenyl H 1.2788 1.160 0.873 0.767 1.035 0.000 

5 4-Dimethylaminophenyl H 0.9031 0.653 0.963 0.957 0.731 0.072 

6 4-Cyanophenyl H 1.0414 1.078 1.106 1.178 1.202 0.088 

7 3,4-Dimethoxyphenyl H 0.4771 0.871 0.798 0.752 0.831 0.018 

8 3-Methoxy-4-acetoxyphenyl H 1 0.680 0.466 0.486 0.44 0.000 

9 2,3-Dihydroxy-5-formylphenyl H 0.301 0.622 0.592 0.515 0.604 0.565 

10 2-Hydroxy-3-methoxy-5-formylphenyl H 0.4771 0.757 0.486 0.408 0.496 0.039 

11 3-Methoxy-4-hydroxy-5-bromophenyl H 0.6021 0.730 0.738 0.728 0.744 0.110 

12 5-Methyl-2-furyl H 0.6021 0.544 1.022 1.105 0.935 0.176 

13 Pyrol-2-yl H 0.301 0.855 0.869 0.779 0.904 0.046 

14 Imidazol-4(5)-yl H 1.0792 0.921 0.824 0.693 0.863 0.059 

15 2-Pyridyl H 0.9542 0.736 1.2 1.387 1.051 0.001 

16 4-Pyridyl H 0.699 1.099 1.132 1.126 1.139 0.044 

17 4-Methoxystyryl Me  −0.9208 -0.864 -0.325 -0.634 -0.256 0.278 

18 4-Dimethylamino styryl Me  −1.0000 -1.132 -0.332 -0.623 -0.266 0.701 

19 3,4,5-Trimethoxy styryl Me  −0.6198 -0.235 -0.067 -0.156 -0.073 1.000 

20 4-Methoxy styryl Ph 0.1761 0.144 -0.091 -0.112 -0.085 0.052 

21 3,4,5-Trimethoxy styryl Ph 0.3711 0.239  0.097 0.418 -0.056 0.304 
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22 3,4,5-Trimethoxy styryl 4-

MeOC6H4 

0.1038 -0.047 0.216 0.196 -0.078 0.651 

23 3-Nitrostyryl 4-

MeOC6H4 

 −0.1871 -0.051 -0.022 0.087 0.106 0.050 

24 3,4,5-Trimethoxy styryl 4-

NH2C6H4 

 −0.0706 -0.191 -0.174 -0.276 -0.092 0.234 

  External set               

1 2-Hydroxyphenyl* H 1.6128 -0.106 1.504 1.819 1.755 0.218 

2 4-Nitrophenyl* H 0.699 1.381 0.873 0.767 1.035 0.087 

3 3,4,5-Trimethoxyphenyl* H 0.4771 0.818 0.496 0.526 0.549 0.326 

4 3-Pyridyl* H 0.9031 1.266 1.067 0.899 1.018 0.072 

5 Styryl* Ph  −0.2518 -0.013 -0.246 -0.528 -0.156 0.219 

6 3,4,5-Trimethoxy styryl* 4-

PhC6H4 

0.3945 0.106 0.456 0.223 -0.077 0.033 

7 4-Chlorophenyl** H 1.4472 1.219 0.992 0.927 1.051 0.013 

8 3-Methoxy-4-hydroxyphenyl** H 0.9031 0.781 0.915 0.929 0.896 0.203 

9 2-Furyl** H 0.699 0.930 0.847 0.735 0.885 0.150 

10 Styryl** Me  −0.4089 -1.013 -0.345 -0.0624 -0.362 0.012 

11 4-Dimethylaminostyryl** Ph 0.2279 -0.359 -0.007 -0.044 0.026 0.222 

a = observed logKCA(II) activity; b= calculated logKCA(II) acitivity by different methods; * = compounds in validation set; ** = compounds in test set, 

N. M. D.= normalized Mean Distance 

 

RESULTS AND DISCUSSION 

Linear approach 

The reduced data set containing twenty-five descriptors was further 

subjected to stepwise regression analysis in order to select a limited 

number of descriptors significantly contributing to the prediction of 

logKCA (II) inhibitory activity of Schiff bases of sulfanilamides. As 

the aim was to select only 4 or 5 descriptors, considering the 

number of compounds in the data set was 35. Finally, four 

descriptors namely JGI8, Mor20u, R7u+ and G1s showing high 

accordance with inhibitory activity logKCA (II) were selected out 

and activities of the 24 compounds used in training set were fitted.  

Here JGI8 = Mean topological charge index of order 8 (2D 

autocorrelations), Mor20u = signal 20/unweight (3D-MoRSE 

descriptors), R7u+= R maximal autocorrelation of lag 7/unweight 

(GETAWAY descriptors) andG1s =1st component symmetry 

directional WHIM index/weighted by atomic electro topological 

states (WHIM descriptor). The different DRAGON classes, to which 

these descriptors belong, are briefly described as follows. 2D 

autocorrelations descriptors are spatial autocorrelations, calculated 

from molecular graph. 3D MoRSE descriptors are very flexible 3D 

structure encoding framework for cheminformatics. GETAWAY 

descriptors are calculated from the leverage/geometry matrix 

obtained by centered atomic coordinates and Weighted Holistic 

Invariant molecular (WHIM) descriptors are geometrical descriptors 

based on statistical indices built to capture relevant 3D information 

regarding molecule. A correlation matrix was obtained among all the 

descriptors used, in final selection of the model because regression 

equation is useless if descriptors are highly correlated. It can be seen 

from the correlation matrix (table 2), there is no significant 

correlation between the selected descriptors. 

 

Table 2: Correlation matrix for the inter-correlation of selected descriptors 

  

JGI8 

JGI8 Mor20u R7u+ G1s 

1       

Mor20u 0.47604 1     

R7u+ 0.63326 0.1867 1   

G1s 0.73423 0.44847 0.42863 1 

 

In the present work, these descriptors were used for construction of 

both linear and nonlinear models. The best selected model obtained 

by SW-MLR method contained four descriptors resulted in a strong 

correlation to experimental pIC50 values (R2 =0.83, S=0.303 R2
adj= 

0.80). As results suggest, 83% of variance in the training data matrix 

could be explained by selected four descriptors. The F ratio in the 

Annova table shows that independent variables statistically 

significantly predict the dependent variable F(4,19)=24.348, p<.005 

suggest the regression model is good fit of data. As for as collinearity 

statistics concern, the value of tolerance ranges from 0.20-0.76 

which is>0.1 and VIF ranges from 1.3-4.9 which is<10. Selecting the 

four descriptors as independent variables, parameters and 

unstandardized coefficient values of the stepwise regression multi 

parametric model are depicted in the table 3. 

 

Table 3: The values of coefficients and collinearity statistics for the SW-MLR model 

Model 

 

Unstandardized coefficients   Standardized coefficients Collinearity statistics 

B Std. error Beta Tolerance VIF 

(Constant) 3.903 2.053    

JGI8 102.928 26.343 .806 .202 4.957 

Mor20u .626 .163 .408 .764 1.309 

R7u+ 42.645 13.227 .362 .683 1.464 

G1s -35.241 12.829 -.514 .246 4.070 

 

The results of the QSAR modeling by stepwise multiple linear 

regression method hinted the predominance of 2D topological 

(JG18) and 3D GETAWAY (R7u+) descriptor over other descriptors 

in the model influencing the logKCA (II) inhibitory activity of the 

studied compounds due to their relatively high numerical 

coefficient. In order to ensure the robustness of the proposed model, 
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Y-randomization test was performed by generating fifty random 

models, resulted quite low average R2 = 0.214, which confirmed that 

the internal validation of the proposed QSAR model is quite robust. 

But external validation parameters of the proposed SW-MLR model 

were not satisfactory. In the previous QSAR study of the set of 35 

sulfanilamide Schiff bases [19], numerous models with molecular 

descriptors and indicator variables were tested (32 models with up 

to seven parameters). In model 32 with seven parameters, a value 

for R2= 0.879 was obtained. In the present study, which has only four 

parameters, it is evident that the results for this set of compounds 

are quite satisfactory. 

Domain of applicability 

One of the OECD principles for model validation requires defining the 

applicability domain (AD) for the QSAR model for reliable prediction. 

Several AD approaches have been already proposed and classified into 

four major categories i,e, range based method, geometric method, 

distance based method and probability density method [28]. Distance 

based approaches calculate the distance of the query compound from 

defined points within the descriptor space of training data. Some 

commonly used distance measures in the QSAR studies include 

Mahalanobis, Euclidean and city block distance [29, 30]. In the present 

paper, AD is verified by Euclidean based approach. It is based on mean 

distance scores calculated by distance norms. At first, normalized 

mean distance scores for training set compound were calculated with 

values (0=least diverse to1= for most diverse). Then normalized 

distance for test set were calculated, and those test compounds with 

score outside 0 to 1 ranges and said to be outside AD. The normalized 

mean distance scores for both training and test compounds are 

presented in the table 1. The results show that all compounds fall 

within the applicability domain of model as their normalized mean 

distance score fall within the range of 0 and 1. 

Although, the linear model is quite satisfactory, as the results 

suggest, in order to improve predictive performance and to explore 

non-linear relationship between selected descriptors and logKCA 

(II) activities, ANN approach trained with different algorithms was 

used for mapping. 

Non-linear approach  

For successful training of the back propagation neural network, 

various factors should be considered including the number of 

hidden layers, the number of neurons in input and hidden layers, 

type of training algorithm, choice of activation function, number of 

epochs and learning rate. The SW-MLR selected four descriptors 

were used as inputs to the network, whereas, logK (CAII) inhibitory 

activity was used as the output value. As in most of the applications 

of ANN to chemistry, one hidden layer seems to be sufficient [31], a 

fully connected 3-layered feed forward network with back 

propagation pattern with mean squared error (MSE) as the 

performance function was used in the present study. The back 

propagation (BP) algorithm is a well-known method for supervised 

training of a multilayer feed-forward artificial neural network that 

adopts the gradient descent principle. However, the neural networks 

trained with back propagation algorithm exhibit slow learning rate. 

Many faster numerical techniques were proposed to speed up the 

convergence of the BPNN [32, 33]. Among these, scaled conjugate 

gradient algorithm (SCG), quasi-Newton (BFGS) algorithm, and 

Levenberg-Marquardt (LM) algorithm are three back propagation 

second order fast training algorithms that use standard numerical 

optimization techniques. These are well suited to neural network 

training where the performance function is MSE. The scaled 

conjugate gradient algorithm (SCG), is gradient based training 

algorithm. It is a very good general purpose training algorithm. 

Quasi-Newton (BFGS) method converges faster since it does not 

require calculation of second derivatives. The Levenberg-Marquardt 

algorithm is a variation of Newton’s method [34]. It provides a 

balance between convergence of steepest descent and the speed of 

Newton’s method. 

In this study, above mentioned three training algorithms were 

evaluated for the dataset divided in three parts namely training, 

validation and test sets. The transfer function in the first layer was 

tan-sigmoid, and the output layer transfer function was linear. To 

select the number of nodes, the concept of ratio ρ proposed by 

Andrea and Kalayeh [35], was used. The number of neurons were 

defined from 3-6, as ρ ranges from 2-1.04. MSE value for the 

prediction sets were calculated by changing number of neuron in the 

hidden layer. Change in learning rate in the range of.001-0.1 has no 

considerable effect on the MSE of the prediction set in the ANN with 

various numbers of hidden neurons. Predicted logKCA (II) values for 

the external set using above mentioned three algorithms along with 

linear SW-MLR method are presented in the table 1. 

Finally, the performance of the prediction system was evaluated 

using the following common statistics: Coefficient of determination 

(R2), root mean of squared errors (RMSE) and mean absolute 

percent error (MAPE). These statistical parameters for SW-MLR and 

ANN trained with different algorithms are listed in the table 4. 
 

Table 4: Statistical parameters obtained by applying SW-MLR and ANN trained with different algorithms to the validation and test set 

 SW-MLR 4-3-1 (lm) 4-5-1 (scg) 4-6-1 (bfg) 

R2 (val) 0.006 0.96 0.98 0.86 

R2 (test) 0.9 0.86 0.88 0.88 

RMSE(val) 0.796 0.11 0.161 0.253 

RMSE(test) 0.4 0.23 0.28 0.216 

MAPE(val) 80.59 11.95 31.09 40.41 

MAPE(Test) 34.46 34.52 43.26 30.87 
 

 

Fig. 2: Plot of experimental vs predicted activity for the QSAR model obtained by SW-MLR method (a) and ANN (trained with L-M 

algorithm)(b) 



Pandey 

Int J Pharm Pharm Sci, Vol 10, Issue 1, 202-207 

206 

 

Table 4 shows the superiority of ANN trained with Levenberg-
Marquardt algorithm over conjugate gradient algorithm (SCG), quasi-
Newton(BFGS) algorithm and SW-MLR as RMSE and MAPE values for 
validation and test set improved from SW-MLR to ANN (trained with 
LM). Finally ANN model trained with LM algorithm satisfied parameters 
proposed by Golbraikh and Tropsha [25] for external predictability 
(validation and test set). The R2 (pred) value of the QSAR model 
trained with Levenberg-Marquardt algorithm is 0.907, indicating a 
good goodness-of-fit of the model. The calculated values of other 
parameters k, k’, R2 andR’02 are found to be 1.01, 0.93, 0.9987 and 
0.9993 respectively these values are within the range,  ascertaining 
the fitting ability, stability, reliability and predictive ability of the 
proposed model.  

These results show that the combination of 2d-and 3d-descriptors 
can be used successfully for QSAR modeling of sulfanilamide Schiff's 
bases. The plots of the predicted logK (CAII) inhibitory activities 
versus the experimental values, obtained by SW-MLR (a) and ANN 
trained with Levenberg-Marquardt (LM) algorithm (b), are 
demonstrated in the fig. 2. The values of statistical parameters as 
well as graphical representation demonstrate superior non-linear 
mapping capabilities of the ANN model which is important from the 
point of view of the drug design of such therapeutical agents. 

CONCLUSION 

Linear (SW-MLR) and non-linear (ANN trained with three different 
numerical techniques) QSAR modeling of sulfanilamide Schiff's base 
inhibitors of the physiologically relevant isozyme CAII have been 
carried out using various important theoretical descriptors. Numerical 
techniques employed in this paper include Scaled conjugate gradient 
(SCG), quasi-Newton (BFGS), and Levenberg-Marquardt (LM) 
algorithm. The results of this work indicate that use of ANN trained 
with second order algorithms has a great potential for determining 
non-linear relationship between structural features and logK(CAII) 
inhibitory activity sulfanilamide Schiff's bases. In particular, BFGS 
conjugate algorithm and Levenberg-Marquardt are the best in terms of 
accuracy. The predictive accuracy of linear and non-linear models, 
together offers the possibility of designing potent selective inhibitors. 
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