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ABSTRACT 

Objective: Entomopathogenic fungi are rich source of secondary metabolites which posses both pharmacological and insecticidal activity. It is 
essential to assess metabolite toxicity of chemically diverse toxic metabolites of entomopathogenic fungus. Human acetylcholine esterase, 
cytochrome p450 and glutathione S-transferase are important enzymes involved in human xenobiotic detoxification.  

Methods: In this study, in silico interaction of 13 selected secondary metabolites of entomopathogenic fungi with the target human proteins were 
carried out using Molegro Virtual Docker 4.0.2.  

Results: This study reveals serinocyclin-A, have shown highest binding energy (176.07 KJ mol-1

Conclusion: The study concludes that serinocyclin-A, helvonic acid, cytochalasin B and beauverolide among 13 secondary metabolites tested were 
found to be more toxic and may inhibit the human metabolic pathways. 

) with glutathione S-transferase followed by helvolic 
acid, cytochalasin B and beauverolide H have shown considerable inhibition among the metabolites tested. 

Keywords: Entomopathogenic fungi, Xenobiotic detoxification, In silico interaction, Serinocyclin-A, Glutathione S-transferase, Molegro virtual 
Docker, Helvolic acid, Cytochalasin B, Beauverolide H. 

 

INTRODUCTION 

Entomopathogenic fungi are promising source for bioactive 
molecules of pharmacological and insecticidal interest [1], [2], [3]. 
Some of them can be used for food and medicine development [4]. 
There is cumulative interest in the utilization of entomopathogenic 
fungi (EPF) for the biological control of crop pests and diseases [5], 
[6]. Globally, a number of entomopathogenic fungal based 
commercial products were registered for the use as insect pest 
control agents in crop protection [7], while many other biocontrol 
fungal strains or formulations are estimated to be placed on the 
global market in the next few years. These metabolites serve diverse 
functions, depending on the ecological niche of the fungus, therefore 
assessment of environmental risks composed by these microbial 
pest control agents is essential [8]. Hence, based on metabolite 
toxicology of entomopathogenic fungal biological control agents, 
considerations must be made as for the possible presence of toxins 
in the formulated products [9].  

In response to xenobiotic exposures mammals have generally 
evolved counter-defense mechanisms to induce proteins involved in 
xenobiotic detoxification. In the perspective of human biochemistry, 
detoxification can be described as a specific metabolic pathway, 
active throughout the human body by which unwanted chemicals 
are eliminated. This metabolic detoxification involves a series of 
enzymatic reactions which neutralize, solubilise toxins and 
transport them to the liver or kidneys, so that they can be eliminated 
from the body. This process is also known as xenobiotic metabolism. 
The detoxification enzymes namely: glutathione S-transferase [10], 
cytochrome p450 [11], acetylcholine esterase [12] were reported to 
play a significant role in this process.  

Purification of any secondary metabolite of EPF is time consuming 
and requires the use of several analytical methods. Only a few 
among the several possible metabolites produced by these 
organisms are isolated. Therefore, a risk assessment investigation 
based on entomopathogenic fungal secondary metabolites is not 
economically feasible.  

However some reports are available regarding assessment of few 
fungal metabolites (destruxin A and oosporein) toxicity using whole 
organism assays using Artemica salina and Daphnia magna [13]. Strasser 
et al. [9] proposed risk assessment of metabolites produced by 
microbials in crop protection products. It was proved that all secondary 
metabolites of EPF have biological activity (Table 1). But there were no 
reports about interaction of these thirteen secondary metabolites of EPF 
with the target proteins that are involved in detoxification.  

To understand the effect of fungal secondary metabolites on humans 
in the current investigation using molecular docking studies were 
done on selected proteins (enzymes) of human. Hence, the current 
hypothesis focuses on a comparison and interaction study of three 
detoxification enzymes glutathione S-transferase (PDBID: 3LII), 
cytochrome p450 (PDBID: 3NXU), acetylcholine esterase (PDBID: 
4GTU) in Homo sapiens

MATERIALS AND METHODS 

 using Molegro virtual Docker (MVD 
2010.4.0.2). The current investigation is to study the interaction of 
secondary metabolites with target proteins and predict which one is 
more toxic. 

Preparation of proteins 

The three dimensional crystal structures of acetylcholine esterase 
(PDB ID: 3LII), cytochrome p450 (PDB ID: 3NXU) and glutathione S- 
transferase (PDB ID: 4GTU) were retrieved from Protein Data bank 
(http://www. rcsb. org/). The imported protein structures were 
loaded in Molegro Virtual Docker 2010.4.0.2 (http://www. clcbio. 
com/products/clc-drug-discovery-workbench/). Optimization was 
done by removing water molecules and co-crystallized ligands. 
Further preparation of proteins were done by assigning bonds, bond 
order, hybridization, charges and tripos atom types, creating explicit 
hydrogens. 

Preparation of Ligands 

The secondary metabolites of EPF considered having potential 
pharmacological and pesticidal activities (Table 1).  
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These metabolites were identified from the Beauveria, Metarhizium 
and Lecanicillium sps were collected from various literatures [1], [2], 
[3]. The three dimensional structures of 9 metabolites of EPF namely 
aphidicolin (CID-457964), aurovertin- B (CID-6441012), 
beauverolide H (CID-194155), cytochalasin-B (CID-5311281), 
dipicolonic acid (CID-10367), helvolic acid (CID-3002143), 
serinocyclin-A (CID-24762344), swainsonine(CID-51683), tenellin 
(CID-54704235) were downloaded from Pubchem compound search 
of NCBI database as *. sdf (dot sdf) file format(http://pubchem. ncbi. 
nlm. nih. gov/). The structures of 4 fungal metabolites namely, 
bassionalides CID-163065, beauvericin (CID-105014), destruxin-E 
(CID-107863) and oosporein (CID-5359404) were drawn using 
Accelrys Draw 4.1(http://accelrys. com/) and ACD/ChemSketch 

software (http://www. acdlabs. com/). Further optimization was 
done by converting into three dimensional structures of these 
ligands using ACD chemsketch – 3D structure optimization option. 
Three dimensional structures of three organophosphorus pesticides 
namely, parathion (CID-991), phosmet (CID-12901) and 
azinphosmethyl (CID-2268) which were found to have highest 
interaction (toxicity) towards the test proteins 3LII, 3NXU and 4GTU 
respectively [14] were taken from existing databases and used as 
controls. All ligands were imported in Molegro Virtual Docker for 
optimization by removing water molecules and further preparation 
of proteins were done automatically by assigning bonds, bond order, 
hybridization, charges and tripos atom types, creating explicit 
hydrogens and detect flexible torsions in ligands. 

 

Table 1: Pharmacological and pesticidal activities of 13 secondary metabolites from different entomopathogenic fungi 

Secondary metabolite Source Entomopathogenic fungi Pharmacological/pesticidal activity 
Aurovertin B 
(CID-6441012) 

Metarhizium anisopliae [22] Inhibits proliferation of breast cancer cells in vivo [23] 

Aphidicolin 
(CID-457964) 

Lecanicillium Sp [24] Antiviral activity [25] 

Bassionalide 
(CID-163065) 

Beauveria bassiana [26] Insecticidal activity [27] 

Beauvericin (CID-105014) 
Beauverolide  
(CID-194155) 

B. bassiana [28] 
 
Beauveria sps [30] 

Insecticidal activity, Antitumor activity and Antimicrobial activity [29] 
Antiatherogenic activity[31] 

Cytochalasin D 
(CID-5311281) 

M. anisopliae [32] Antibiotic and antiviral activity [33] 

Destruxin-E 
(CID-107863) 

M. anisopliae [3] Insecticidal activity, antituberculotic activity [34], [35] 

Dipicolinic acid (CID-10367) 
Helvolic acid 
(CID-3002143) 

Verticillium lecanii [36] 
 
M. anisopliae [38] 

Insecticidal activity[37] 
 
Antimicrobial activity [20], [38]  

Oosporein 
(CID-5359404) 

Beauveria brongniartii [39], [9] Ativiral activity [40] 

Serinocyclin A (CID-24762344) M. anisopliae [16] Sub lethal effect on mosquito larvae [16] 
Swainsonine (CID-51683) M. anisopliae [9] Antitumor activity [41], [42], [43] 
Tenellin (CID-54704235) B. brongniartii [44] Toxic towards erythrocyte membranes ATPases [45] 
 

Table 2: Details of Energy scores and H-bond interactions of the top docking hits of ligands with target proteins. 

Protein Ligand MolDocka Rerank  b Interaction  Internalc HBondd LE1e LE3f g 

3LII(A) 5311281 -149.57 -81.81 -133.18 -16.38 -3.93 -4.27 -2.33 
3LII(A) 991 -96.92 -79.91 -101.97 5.04 -4.85 -5.38 -4.43 
3LII(B) 24762344 -153.69 -88.09 -146.86 -6.83 -13.02 -3.27 -1.87 
3LII(B) 991 -98.04 -78.98 -104.52 6.48 -2.5 -5.44 -4.38 
3NXU(A) 24762344 -176.07 -118.24 -169.07 -6.99 -6.50 -3.74 -2.51 
3NXU(A) 12901 -102.34 -81.74 -111.08 8.73 -7.63 -5.38 -4.30 
3NXU(B) 24762344 -167.15 -104.26 -158.23 -8.92 -5.94 -3.55 -2.21 
3NXU(B) 12901 -101.94 -80.26 -106.39 4.44 -6.30 -5.36 -4.22 
4GTU(A) 3002143 -150.46 -9.03 -162.15 11.68 -7.73 -3.66 -0.22 
4GTU(A) 2268 -106.48 -78.54 -122.16 15.68 -1.74 -5.60 -4.13 
4GTU(B) 24762344 -151.14 -27.89 -144.23 -6.90 -14.00 -3.21 -0.59 
4GTU(B) 2268 -91.40 -77.85 -100.64 9.24 -2.5 -4.81 -4.09 
4GTU(C) 194155 -135.52 -103.51 -147.80 12.27 -6.51 -3.87 -2.95 
4GTU(C) 2268 -82.61 -64.96 -91.45 8.84 -2.87 -4.34 -3.41 
4GTU(D) 24762344 -136.72 34.30 -130.14 -6.58 -10.71 -2.90 0.72 
4GTU(D) 2268 -83.84 -58.79 -89.40 5.56 -4.77 -4.41 -3.09 
4GTU(E) 24762344 -162.84 32.01 -156.72 -6.12 -13.29 -3.46 0.68 
4GTU(E) 2268 -86.92 -60.31 -98.97 12.04 -11.49 -4.57 -3.17 
4GTU(F) 24762344 -162.38 46.02 -154.97 -7.41 -16.54 -3.45 0.97 
4GTU(F) 2268 -92.41 -77.98 -103.29 10.88 -2.02 -4.86 -4.10 
4GTU(G) 24762344 -171.01 -59.91 -162.77 -8.24 -12.69 -3.63 -1.27 
4GTU(G) 2268 -92.66 -79.55 -105.04 12.38 -3.56 -4.87 -4.18 
4GTU(H) 24762344 -155.64 3.32 -151.41 -4.22 -10.69 -3.31 0.07 
4GTU(H) 2268 -78.73 -62.84 -88.65 9.92 -1.66 -4.14 -3.30 

aMoldock score is resulting from the PLP scoring functions through a new hydrogen bonding expression and new charge schemes. (Thomsoen and 
Christensen 2006). bRerank score is a linear grouping of E-inter (steric, Van der Waals, hydrogen bonding, electrostatic) between ligand and the 
protein, and E-intra, (torsion, sp2-sp2, hydrogen bonding, electrostatic) of the ligand biased by pre-defined coefficients. (Thomsen and Christensen 
2006). cTotal contact energy between the pose and the protein(kJ mol-1). dInternal energy of the pose. eHydrogen bonding energy (kJ mol-1). f Ligand 
Efficiency 1: MolDock Score divided by Heavy Atoms count. gLigand Efficiency 3: Rerank Score divided by Heavy Atoms count. 
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Table 3: Binding modes of best ligands (secondary metabolites) of entomopathogenic fungi towards enzymes involved in human 
xenobiotic detoxification. The maximum volume for the cavities of pose 1 was taken into concern in all the cases for superior docking 

with proximal amino acids in the cavities. 

Ligand Protein Mol Dock 
Score 
(kJ mol-1

Binding mode 

) 

Cavity 
Volume 
(A°

Amino acid 
Proximity value 

) 

Amino acid 
Sequence 

5311281 3LII[A] -149.57 

 

207.752 1.56 Arg-247; 
Gln-291; 
Phe-297; 
Pro-368 

24762344 3LII[B] -153.69 

 

156.16 1.67 Gln-369; 
His-405; 
Leu-536; 
Pro-235 

24762344 3NXU(B) -167.15 

 

781.824 1.56 Arg-106; 
Ile-369; 
Phe-215; 
Tyr-53 

 

Molecular docking 

Docking studies of optimized three dimensional structures of 
acetylcholine esterase (PDB ID: 3LII), cytochrome p450 (PDB ID: 
3NXU) and glutathione S-transferase (PDB ID: 4GTU) were done by 
creating surface and detection of cavities in protein surface were 
done using Molegro Virtual Docker.  

Acetylcholine esterase possess two protein chains (3LII [A] & [B]), 
while Cytochrome p450 possess two protein chains (3NXU [A] & 
[B]) and finally glutathione S-transferase possess eight protein 
chains (4GTU [A], [B], [C], [D], [E], [F], [G] and [H]). The optimized 
three dimensional ligands of aphidicolin (CID-457964), aurovertin- 
B (CID-6441012), bassionalides CID-163065, beauverolide H (CID-
194155), beauvericin (CID-105014), cytochalasin-B (CID-5311281), 
destruxin-E (CID-107863), dipicolonic acid (CID-10367), helvolic 
acid (CID-3002143), oosporein (CID-5359404), serinocyclin-A (CID-
24762344), swainsonine(CID-51683), tenellin (CID-54704235) 
along with three organophosphorus pesticides namely, parathion 
(CID-991), phosmet (CID-12901) and azinphosmethyl (CID-2268) 
were docked into these cavities having highest volume of individual 
protein chains (Table 3). They were saved individually into Molegro 
Virtual Docker software on ‘mol’ format. 

RESULTS AND DISCUSSION 

Docking of 13 EPF metabolites namely aphidicolin, aurovertin- B, 
bassionalides, beauverolide H, beauvericin, cytochalasin-B, 
destruxin-E, dipicolonic acid, helvolic acid, oosporein, serinocyclin-
A, swainsonine, tenellin along with three organophosphorus 
pesticides namely, parathion, phosmet and azinphosmethyl were 
done within the cavities of acetylcholine esterase, cytochrome p450 
and glutathione S-transferase generated five poses individually with 
unique chemical arrangement. The MolDock scores and cavity 
volume of best pose of each metabolite was selected for the 
subsequent protein-ligand interaction energy analysis (Table 2). The 
binding activity of secondary metabolites of EPF were found to be 
higher than the control ligands (organophosphorus pesticides) 
namely, parathion (CID-991), phosmet (CID-12901) and 
azinphosmethyl (CID-2268) towards the test proteins 3LII, 3NXU 
and 4GTU respectively (Table 2). 

In our docking studies, the Mol Dock score of highest interaction 
energy calculated was -176.07 relative units. It was interesting to 
note that among the 13 metabolites used in this study, serinocyclin-
A has shown highest interaction with nine protein chains tested 
namely, 3LII[B], 3NXU[A], 3NXU[B], 4GTU[B], 4GTU[D], 4GTU[E], 
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4GTU[F], 4GTU[G] and 4GTU[H] which includes maximum MolDock 
score of -176.07 with 3NXU [A] and the proximal amino acid 
residues involved are Arg105, Leu482, Phe108, Tyr53 (Table 2). In 
case of 4GTU [G] the highest MolDock score was -171.01 and 
involved proximal amino acid residues includes Asn58, Ile9, Thr209, 
Tyr115 (Table 3). 3NXU[B] shows that third highest binding energy 
is -167.15 and the involved amino acid residues are Arg106, Ile369, 
Phe215, Tyr53 (Table 3). Similarly, the fourth and fifth highest 
binding energy with serinocyclin-A were found with 4GTU [E] and 
4GTU [F] are -162.84 and -162.38 respectively. It was interesting to 
note that the secondary metabolites of Beauveria brongniartii 
induced the glutathione S-transferase [15]. Alternation in 
glutathione S-transferase was found in the hosts when treated with 
the secondary metabolites of Beauveria bassiana. These 
serinocyclins were found to inhibit the swimming ability of 
mosquito larvae [16] and may play role in their control [17]. It was 
interesting to note that serinocyclins do not function as virulence 
factors in Spodoptera exigua [18], [19] and Colorado potato beetle 
[18]. However functional roles of these metabolites have been not 
yet identified. After serinocyclin-A, it was helvolic acid which has 
shown highest binding affinity towards the protein side chain of 
(human glutathione S-transferase) 4GTU [A] with a MolDock score 
of -150.46 and proximal amino acid residues involved are Asp161, 
Leu207, Ser107, Tyr115 (Table 3).  

Helvolic acid was known for its strong antimicrobial activity [20]. 
Cytochalasin B has shown higher binding affinity towards protein 
chain 3LII[A] with a MolDock score of -149.57 with proximal amino 
acid residues involved are Arg247, Gln291, Phe297, Pro368. 
Cytochalasin B is known for its inhibition of actin filament formation 
[21]. Beauverolide H was found to have MolDock score-135.52 
towards 4GTU[C] having a proximal amino acid residues include 
Arg112, Leu12, Thr109, Tyr115 (Table 3). The docking results 
indicated that serinocylin A as the most toxic entomopathogenic 
fungal secondary metabolites towards all the protein chains tested 
followed by helvolic acid, cytochalasin B and beauverolide H. 
However, further analysis can be carried out in wet lab to determine 
whether these findings are reflective to in vivo conditions. 
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Table 3: Contd. 

Ligand Protein Mol Dock 
Score 
(kJ mol-1

Binding mode 

) 

Cavity 
Volume 
(A°

Amino acid 
Proximity value 

) 

Amino acid 
Sequence 

3002143 4GTU[A] -150.46 

 

68.608 1.89 Asp-161; 
Leu-207; 
Ser-107; 
Tyr-115 

24762344 4GTU[B] -151.14 

 

61.952 1.75 Ala-111; 
Asn-108; 
Thr-209; 
Tyr-115 

24762344 4GTU[D] -136.72 

 

34.816 1.40 Asn-108; 
Leu-12; 
Ser-107; 
Tyr-208 



Challa et al. 
Int J Pharm Pharm Sci, Vol 6, Issue 9, 312-317 

 

316 
 

Table 3: Contd. 

Ligand Protein Mol Dock 
Score 
(kJ mol-1

Binding mode 

) 

Cavity 
Volume 
(A°

Amino acid 
Proximity value 

) 

Amino acid 
Sequence 

24762344 4GTU[E] -162.84 

 

45.568 1.46 Asn-58; 
Asp-161; 
Leu-12; 
Met-104 

24762344 4GTU[F] -162.38 

 

53.248 1.42 Ala-111; 
Asn-58; 
Gly-11; 
Ile-9 

24762344 4GTU[H] -155.64 

 

46.592 1.58 Ala-111; 
Gly-11; 
Trp-7; 
Tyr-115 
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