
 

Original Article 

COMBINATORIAL PHARMACOPHORE MODELING AND ATOM BASED 3D QSAR STUDIES OF 

BENZOTHIADIAZINES AS HCV-NS5B INHIBITORS 

 

PRASANTHI POLAMREDDY1,2, VINITA VISHWAKARMA1*, MANOJ KUMAR MAHTO2 

1Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar 

Nagar, Rajiv Gandhi Salai, Chennai 600119, India, 2Excelra Knowledge Solutions Pvt Ltd, NSL-SEZ, Uppal, Hyderabad 500039, India 

Email: vinitavishwakarma@sathyabama.ac.in    

Received: 18 Nov 2017 Revised and Accepted: 11 Jan 2018 

ABSTRACT 

Objective: The objective of the current study was to elucidate the 3D pharmacophoric features of benzothiadiazine derivatives that are crucial for 

inhibiting Hepatitis C virus (HCV) Non-structural protein 5B (NS5B) and quantifying the features by building an atom based 3D quantitative 

structure-activity relationship (3D QSAR) model.  

Methods: Generation of QSAR model was carried out using PHASE 3.3.  

Results: A five-point pharmacophore model with two hydrogen bond acceptors, one negative ionization potential and two aromatic rings (AANRR) 

was found to be common among a maximum number of benzothiadiazine based NS5B inhibitors. A statistically significant 3D QSAR model was 

obtained from AANRR.6 which had correlation-coefficient (R2) value of 0.924, cross-validated correlation-coefficient (Q2) of 0.774, high Fisher ratio 

of 138 and low root mean square standard error (RMSE=0.29). There is another parameter, Pearson’s R, its value emphasizes correlation between 

predicted and observed activities of the test set. For the current model, Pearson’s R-value is 0.90, hence underlining the good quality of the model. 

The present study suggests that nitrogen atom of benzothiadiazine sulfamide ring, oxyacetamide group attached to C7 carbon of benzothiadiazine 

and sulfonamide oxygens are crucial for NS5B inhibitory activity. Prediction of activities of hit drugs generated in earlier research suggests that 

Aprepitant (Phase predicted activity: 6.9) could be a potential NS5B inhibitor. 

Conclusion: This 3D QSAR model developed was statistically good and can be used to predict the activities of newly designed NS5B inhibitors and 

virtual screening as well. Predict the activities of newly designed NS5B inhibitors and virtual screening as well. 
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INTRODUCTION 

Hepatitis C virus (HCV) Non-structural protein 5B (NS5B) is an RNA 
dependent RNA polymerase enzyme essential for viral genome 

replication. NS5B is an intensely pursued target for the development 
of Hepatitis C therapies, as it is the key enzyme in viral replication 

conserved among all the genotypes [1, 2]. NS5B is 591 amino acids 
long last 21 amino acids at C-terminal end function as membrane 

anchor and hence NS5B is also classified under tail anchor proteins. 
NS5B can be available in a full-length form and truncated form. 

Truncated form NS5B∆55: lacks 55 amino acids extending beyond 
the C-terminal 21 amino acids (a portion of the active site). 

Truncated form NS5B∆21: lacks C-terminal 21 amino acid tail [3, 4]. 
NS5B synthesises complementary–Ve stranded RNA from+Ve 

stranded RNA template. RNA replication occurs through either 
primer-dependent elongation or de novo initiation [5]. 

From the NS5B crystal structure, it was found that the structure of 
the enzyme resembles the shape of an encircled right hand and has 3 

domains, namely thumb, finger and palm. The thumb domain and 
finger domain are bridged by two loops namely ∆1 loop and ∆2 loop. 

NS5B has four allosteric sites and one active site [6, 7]. The thumb 
domain has two allosteric sites, one located at the apex of ∆ 1 loop 

and other is adjacent to ∆1 loop. Third allosteric site is located in the 
palm domain in close proximity to active site [7, 8]. 

There are several classes of HCV NS5B inhibitors that target 

different binding sites of the enzyme and inhibit HCV replication: (i) 

nucleoside analogues, (ii) pyrophosphate (PPi) analogues, (iii) non-

nucleoside inhibitors. Nucleoside analogues bind to the active site of 

the enzyme by competing with the natural nucleotide triphosphate 

(NTP) counterparts for incorporation. In contrast, the non-

nucleoside inhibitors bind to allosteric sites and inhibit RNA 

synthesis at initiation stage. The pyrophosphate analogues mimic 

the PPi released during nucleotidyl transfer [9]. Many compounds 

targeting active and allosteric sites (Direct Acting Anti-virals) are in 

clinical development and till date, only active site inhibitors were 

launched in the market. Sofosbuvir is the breakthrough drug in the 

HCV research with pan-genotypic activity and good safety profile 

and is effective against cirrhosis as well [10]. Since then many 

Sofosbuvir based combination therapies were launched in the 

market. However, still there is a need for cost-effective therapies 

with short treatment duration (<8 w) and should be beneficial for 

niche patient population resistant to earlier therapies and those 

with renal failure as a comorbidity [11]. 

In the present study, a pharmacophore modelling and 3D-QSAR 

analysis was carried out using currently available NS5B inhibitors 

binding to Palm I site of the enzyme which could facilitate the 

activity prediction of newly identified Palm I inhibitors, to indentify 

novel NS5B inhibitors through virtual screening and help in optimizing 

identified hits. QSAR technique is widely used in ligand-based drug 

designing especially for lead optimization and identification of variable 

and potent compounds through virtual screening. QSAR quantifies the 

relationship between structural features of the compounds and 

biological activities. Herein an atom based QSAR model was built 

based on pharmacophore features generated using a group of 

benzothiadiazine derivatives binding to Palm I site of NS5B and tested 

under same experimental conditions. PHASE module of Schrodinger, 

New York was used for this analysis [12]. 

MATERIALS AND METHODS 

Dataset 

For the generation of pharmacophore based 3D-QSAR hypothesis, a 

set of 89 unique benzothiadiazine derivatives tested under same 

experimental conditions and with well-defined NS5B inhibitory 
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activity were selected [13-15] (table 1). All the 89 molecules were 

optimized and energy minimized using LigPrep module of 

Schrödinger. Ligand preparation involves the addition of hydrogens, 

adjusting bond orders, generation of stereoisomers, ionization states 

and tautomers, calculation of the energy of the molecule using 

OPLS_2005 force field, conversion of 2D to low energy 3D structure. 

The prepared ligands were subjected to conformation analysis 

where conformers were generated using ConfGen module 

implemented in Schrödinger which uses Monte Carlo simulations. 

Conformer with the lowest energy was selected for each of the 89 

molecules and loaded to Phase 3.3 model for the development of 

pharmacophore model. 

 

Table 1: Dataset of benzothiadiazine derivatives used for building 3D QSAR model 

S. No. Compound NO Compound IC50 (nM) pIC50 
 
1 

CMPD-1 

 

879 6.056 

 
 
2 

CMPD-2 

 

679 6.168 

3 CMPD-3 

 

604 6.218 

4 CMPD-4 

 

18 7.744 

5 CMPD-5 

 

31 7.508 
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6 CMPD-6 

 

20 7.698 

7 CMPD-7 

 

< 5 8.301 

8 CMPD-8 

 

< 5 8.301 

9 CMPD-9 

 

< 5 8.301 

10 CMPD-10 

 

6 8.221 

11 CMPD-11 

 

< 5 8.301 
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12 CMPD-12 

 

< 5 8.301 

13 CMPD-13 

 

< 5 8.301 

14 CMPD-14 

 

< 5 8.301 

15 CMPD-15 

 

12 7.920 

16 CMPD-16 

 

16 7.795 
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17 CMPD-17 

 

212 6.673 

18 CMPD-18 

 

6 8.221 

19 CMPD-19 

 

30   7.522 

20 CMPD-20 

 

13 7.886 
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21 CMPD-21 

 

< 5 8.301 

22 CMPD-22 

 

< 5 8.301 

23 CMPD-23 

 

7 8.154 

24 CMPD-24 

 

47 7.327 
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25 CMPD-25 

 

10 8.000 

26 CMPD-26 

 

20 7.698 

27 CMPD-27 

 

13 7.886 

28 CMPD-28 

 

32 7.494 



Int J Pharm Pharm Sci, Vol 10, Issue 3, 43-69 
 

50 

29 CMPD-29 

 

200 6.698 

30 CMPD-30 

 

25 7.602 

31 CMPD-31 

 

< 5 8.301 

32 CMPD-32 

 

16 7.795 

33 CMPD-33 

 

289 6.539 
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34 CMPD-34 

 

679 6.168 

35 CMPD-35 

 

975 6.010 

36 CMPD-36 

 

774 6.111 

37 CMPD-37 

 

288 6.540 

38 CMPD-38 

 

728 6.137 
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39 CMPD-39 

 

276 6.559 

40 CMPD-40 

 

132 6.879 

41 CMPD-41 

 

879 6.056 

42 CMPD-42 

 

1527 5.816 

43 CMPD-43 

 

604 6.218 
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44 CMPD-44 

 

200 6.698 

45 CMPD-45 

 

3016 5.520 

46 CMPD-46 

 

57 7.244 

47 CMPD-47 

 

20 7.698 

48 CMPD-48 

 

16 7.795 
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49 CMPD-49 

 

51 7.292 

50 CMPD-50 

 

4936 5.306 

51 CMPD-51 

 

3337 5.476 

52 CMPD-52 

 

1168 5.932 

53 CMPD-53 

 

132 6.879 
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54 CMPD-54 

 

48 7.318 

55 CMPD-55 

 

9 8.045 

56 CMPD-56 

 

22 7.657 

57 CMPD-57 

 

12 7.920 

58 CMPD-58 

 

< 5 8.301 
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59 CMPD-59 

 

12 7.920 

60 CMPD-60 

 

< 5 8.301 

61 CMPD-61 

 

36 7.443 

62 CMPD-62 

 

5 8.301 

63 CMPD-63 

 

202 6.694 
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64 CMPD-64 

 

6 8.221 

65 CMPD-65 

 

< 5 8.301 

66 CMPD-66 

 

< 5 8.301 

67 CMPD-67 

 

17 7.769 

68 CMPD-68 

 

24 7.619 
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69 CMPD-69 

 

< 5 8.301 

70 CMPD-70 

 

18 7.744 

71 CMPD-71 

 

5 8.301 

72 CMPD-72 

 

685 6.164 

73 CMPD-73 

 

142 6.847 
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74 CMPD-74 

 

6 8.221 

75 CMPD-75 

 

8 8.096 

76 CMPD-76 

 

23 7.638 

77 CMPD-77 

 

7 8.154 

78 CMPD-78 

 

102 6.991 
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79 CMPD-79 

 

45 7.346 

80 CMPD-80 

 

65 7.187 

81 CMPD-81 

 

127 6.896 

82 CMPD-82 

 

55 7.259 

83 CMPD-83 

 

142 6.847 
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84 CMPD-84 

 

238 6.623 

85 CMPD-85 

 

50 7.301 

86 CMPD-86 

 

57 7.244 

87 CMPD-87 

 

173 6.761 

88 CMPD-88 

 

76 7.119 

89 CMPD-89 

 
 

26 7.585 
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Creation of pharmacophore sites and common pharmacophore 

hypothesis 

As the 3D-QSAR relies on the relationship between free energy 

change and equilibrium constant (ΔG °=-2.3RTlogKc), the data for 

QSAR model generation should be expressed in terms of free energy 

changes occurring during biological response [16]. 

ΔG °=-2.3RTlog10Kc 

ΔG is Gibb’s free energy, R is gas constant, T is temperature, Kc is 

equilibrium constant which is the ratio of the concentration of 

products and concentration of reactants. When measuring 

concentration values under equilibrium conditions, the concentration 

of the compound should be expressed as the inverse logarithm of 

compound concentration. The change is Gibb’s free energy is directly 

proportional to the inverse logarithm of compound concentration [16]. 

ΔG ° =-2.3RTlog10Kc = log1/[S] 

Where [S] is compound concentration 

Hence, the in vitro inhibitory concentration (IC50) values of 89 

molecules were converted to corresponding pIC50 (log1/IC50) values 

and used as dependent variable. The entire dataset is divided into 

actives and inactives based on activity threshold value (7.8) which 

was derived from dataset activity distribution (ranging from 6.0 to 

8.3). All the ligands with activity value greater than threshold value 

were categorized as active (31 molecules) and those with activity 

value less than threshold value were considered inactive (58 

molecules). Active ligands were chosen for identification of 

pharmacophore features, their frequency of occurrence and creation 

of pharmacophore sites points. The common pharmacophore 

hypothesis (CPH) was identified based on these site points using 

tree-based partitioning technique [17].  

First, variant list of pharmacophore hypotheses was generated using 

the features and site points where the criteria were, a hypothesis 

should have minimum and maximum of 5 site points and must 

match at least 25/31 actives. Variant hypothesis not present in any 

of the ligands was filtered out and those common among maximum 

ligand molecules were picked for scoring and ranking. The best 

candidate CPH, which conveys 3D chemical characteristics that are 

critical for binding was selected for building the 3D-QSAR model. 

Building 3D-QSAR model 

3D-QSAR model was generated using the best candidate hypothesis 

selected based on scoring parameters. For a model generation, the 

entire data set was divided into a training set (70%) and test set 

(30%) in a random manner using “Automated Random Selection” 

option available in PHASE module [18]. PHASE has two approaches 

for building 3D-QSAR model–pharmacophore based and atom based 

approach. In pharmacophore based QSAR, only pharmacophore 

features are considered and not whole ligand features, hence, in this 

study, an atom based QSAR model was built. In atom based QSAR 

modelling, each molecule is considered as a set of Van Der Waal’s 

spheres (each atom corresponds to a sphere). Each Sphere is placed 

into one of the six categories-Hydrogen bond donor (Hydrogens 

attached to polar atoms), hydrophobic atom (carbons, halogens and 

hydrogens attached to them), Negative ionic atom (atoms with 

negative charge), Positive ionic atom (atoms with positive charge), 

electron withdrawing atoms (Polar atoms) and miscellaneous atoms 

(Other types of atoms). Van der Waal’s spheres of training set 

molecules are placed into a grid of cubes and each cube is allocated 

zero or more bits depending on different types of atoms occupying 

the cube. This occupation pattern is used to create partial least 

squares (PLS) QSAR models which can be used as an independent 

variable for QSAR model generation. The number of PLS factors in 

each model can be 1/5 of the training set molecules. 

RESULTS AND DISCUSSION 

NS5B inhibitors offer therapeutic potential for treatment of hepatitis 

C. Several compounds binding to allosteric sites of the enzyme were 

discovered, however, none of them was launched yet. In an attempt 

to identify more potent inhibitors binding to Palm I allosteric site of 

the enzyme, pharmacophoric characteristic features that are crucial 

for binding to NS5B allosteric site were identified using already 

reported NS5B inhibitors. From a set of 31 actives among 89 

benzothiadiazine analogues, a total of 102 variant hypotheses were 

generated. From the variant list, CPHs were identified and include 

AANRR which comprise pharmacophores of 22 ligands–AANRR (22), 

AAARR (15), AAANR (11), AARRR (10), AHNRR (10), and AAPRR (10).  

The CHPs were scored and ranked to identify the best candidate 

hypothesis. The scoring algorithm includes alignment with actives, 

the site points and vectors, volume overlap, selectivity, number of 

active ligands matched, relative conformational energy and activity 

[17]. Also, these pharmacophore hypotheses should discriminate 

between actives and inactives. A pharmacophore hypothesis 

comprises information on critical sites required for binding of 

actives and also sites which are preventing inactive from binding.  

To identify the pharmacophore models with more active and less 

inactive features, they were aligned with inactives and scored (In 

active). The survival score was adjusted by subtracting survival 

score of active with survival score of inactive (Survival (inactive)). 

 The hypothesis with maximum adjusted survival score is more 

preferred. After analysis of scores, the CPHs were ranked and best 

candidate hypothesis was selected which was used for building the 

3D-QSAR model. The best candidate hypothesis along with its 

corresponding scores is summarized in table 2. 

 
 

Table 2: Best candidate hypothesis along with scoring parameters 

ID Survival Survival (Inactive) Site vector Volume Selectivity #Matches Energy Activity Inactive 

AANRR.6 3.668 1.401 0.95 0.996 0.726 2.249 25 0 7.886 2.267 

Survival–A weighed combination of Site, vector and volume, larger the survival value better is the alignment of ligand over common 

pharmacophore, Survival (inactive)–Survival score of active with survival score of inactive subtracted, Site–this score determines how 

closely the site points are superimposed on the pharmacophore, Vector–Alignment score, Volume–Measurement of volume overlap in ligand 

and pharmacophore alignment, Selectivity–uniqueness of the pharmacophore to a particular ligand, #Match–number of actives fitting to the 

hypothesis, Energy–Relative energy of the reference ligand in kcal/mol, Activity–Relative activity of the reference ligand, Inactive–Survival 

score of inactive. 

 

The best candidate hypothesis AANRR.6 was associated with five-

point hypotheses and comprise of two hydrogen bond acceptors 

(pink sphere with arrows), negatively charged group (pink sphere), 

two aromatic rings (orange rings) (fig. 1A). When aligned with the 

molecule with maximum fitness score, the two oxygens of 

benzothiadizinyl ring occupied the hydrogen bond acceptor spheres; 

oxygen at C-2 position of quinolinone is engaged with a negatively 

charged sphere and aromatic rings were mapped to quinolinone and 

benzothiadizinyl rings (fig. 1B). Alignments of actives and inactives 

are shown in fig. 1C and D respectively. From fig. 1 we can easily 

identify that active ligand is having good alignment than an inactive 

one.
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Fig. 1: Best common pharmacophore hypothesis: (A) Pharmacophore site points (B) Alignment of best fit molecule (CMPD-20) and site 

points (C) alignment of active ligands with CPH (D) alignment of inactive ligands with CPH 

 

The spatial arrangement of features along with distances and angles 

were depicted in fig. 2 A and B. AANRR.6 was selected for building an 

atom based 3D-QSAR model. For generating the 3D-QSAR model, the 

dataset was randomly divided into training set and test set. A five-

component PLS model with good statistics was generated using 62 

training set compounds and validated using 24 test set compounds. A 

PLS factor of five is used to generate the model as it was observed that 

there was a significant increment in statistics and predictivity with an 

increase in PLS factors. The pharmacophore hypothesis AANRR.6 

yielded a 3D QSAR model with good statistical scores. 

 

 

Fig. 2: Pharmacophore site distances (A) Pharmacophore site of angles (B) 
 

As suggested by many QSAR modellers the model should be verified 

by goodness of Fit (R2), robustness or internal predictivity (Q2) and 

external predictivity (validation using external chemical compounds 

that were never included in the training set even at least once during 

the model building) [19]. The aim of internal predictivity is 

preliminary model validation and to select more robust and 

predictive model whereas, the goal of external predictivity is to 

evaluate the predictive power of the developed model by using it 

against a set of completely unseen chemical structures. 

The model showed a good R2 value of 0.924, Fit value (F) =138, 

standard deviation, (SD) =0.24 for the training set. Lower value of 

standard deviation (SD) reflects a lesser deviation from biological 

data. The model was validated using the internal test set molecules 

and the validity of the model is expressed as cross-validated R2 (Q2) 

which is the characteristic of the predictive ability of the model. The 

Q2 value less than R2 and close to R2 indicate the good predictive 

ability of the model. Cross-validation was done using leave one out 

(LOO) method, where one molecule from the training set is left out 

(only once) and R is computed for the left out molecule using model 

generated with remaining training set molecules. Sometimes more 

than one molecule is left out at one time (leave many out (LMO)). 

The Q2 value (0.77) so obtained emphasizes the model generated is 

best with RMSE value of 0.299. The fit of the model can be 

determined by root-mean-squared error (RMSE), an error between 

the mean of experimental activities and predicted activities. Lower 

RMSE reflects good predictive quality of the model. The statistical 

results of atom based QSAR model built are summarized in table 3. 

 

Table 3: Statistical parameters of QSAR model built based on AANRR.6 

ID PLS Factors SD R2 F P RMSE Q2 Pearson-R 

AANRR.6 1 0.624 0.4805 55.5 4.278e-010 0.4617 0.4639 0.724 

2 0.4927 0.6821 63.3 2.08e-015 0.3975 0.6027 0.83 

3 0.3882 0.806 80.3 1.236e-020 0.3393 0.7105 0.857 

4 0.3503 0.8447 77.5 2.213e-022 0.3605 0.6733 0.839 

5 0.2475 0.9249 138 3.454e-030 0.2993 0.7748 0.908 
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The interaction between ligand and receptor active site is analyzed 

using QSAR visualization option in PHASE and the interaction is 

represented by clouded cubes where blue and red cubes represent 

favourable and unfavourable regions respectively. The pharma-

cophore hypothesis that yielded 3D-QSAR model is aligned with 

ligands and features essential for NS5B inhibitory activity were 

analyzed. The 3D-QSAR visualization for most active compound and 

least active compound were given in fig. 3 and fig. 4 respectively. 
 

 

Fig. 3: Visualization of QSAR Model in the context of the active compound (Compound 22) in the training set. A) Hydrogen bond feature B) 

Hydrophobic feature C) Electron withdrawing feature D) Combination of all the pharmacophoric features 

 

In the most active compound, positive correlation of H-Bond donor 

feature was seen at the nitrogen atom of benzothiadiazine sulfamide 

ring and the oxygen atom of oxyacetamide group attached to C7 

carbon. Benzothiadiazole analogues with oxyacetamide substitution 

at C7 position showed low micromolar inhibitory activity in the 1b 

replicon assay also it makes favourable hydrogen bonding with Asn 

291 [15]. The electron withdrawing atoms which are part of 

oxyacetamide group were also positively correlated with NS5B 

inhibitory activity. Among the hydrophobic groups present in the 

molecule, Quinoline ring is positively correlated with activity. 

Substitution of fluorine at C6 position of the quinolone ring has been 

shown to improve the cellular activity [20]. In the less active 

compound, nitrogen atoms of 5-hydroxy pyridazine ring (hydrogen 

bond donor) and benzyl moiety of benzothiadiazine ring 

(hydrophobic group) are negatively correlated with activity (fig. 4). 

This molecule was also lacking a substituent at the C7 position, 

where there more probability of H-bond formation and filling the 

binding pocket. 

 

 

Fig. 4: Visualization of QSAR model in the context of inactive compound (Compound 50) in the training set. A) Hydrogen bond feature B) 

hydrophobic feature C) electron withdrawing feature D) combination of all the pharmacophoric features 

 

Fitness graph of observed values Vs PHASE predicted values with 45° 

regression line are depicted in fig. 5. The Fitness graph emphasizes 

reasonably good alignment between experimental values and 

predicted values for more than 70% of the dataset molecules. 

Predicted activity values of training and test set molecules are 

furnished in table 4. 
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Fig. 5: Fitness graph between observed and predicted values 

 

Table 4: Predicted activities of training and test set molecules 

S. No. Compound No QSAR set Observed activity Predicted activity Pharm set Fitness 

1 CMPD-1 Test 6.056 5.73 Inactive 1.54 

2 CMPD-2 Test 6.168 5.95 Inactive 1.52 

3 CMPD-3 Training 6.218 6.30 Inactive 2.12 

4 CMPD-4 Test 7.745 7.32 Inactive 2.99 

5 CMPD-5 Test 7.509 7.50 Inactive 2.95 

6 CMPD-6 Training 7.698 7.68 Inactive 2.29 

7 CMPD-7 Test 8.301 8.08 Active 2.60 

8 CMPD-8 Training 8.301 8.33 Active 2.61 

9 CMPD-9 Training 8.301 7.80 Active 2.62 

10 CMPD-10 Training 8.221 8.21 Active 2.54 

11 CMPD-11 Training 8.301 8.24 Active 1.05 

12 CMPD-12 Training 8.301 8.25 Active 1.04 

13 CMPD-13 Training 8.301 8.28 Active 1.00 

14 CMPD-14 Training 8.301 8.35 Active 1.01 

15 CMPD-15 Test 7.920 7.78 Active 1.04 

16 CMPD-16 Test 7.795 7.55 Inactive 1.10 

17 CMPD-17 Training 6.673 7.08 Inactive 1.10 

18 CMPD-18 Training 8.221 7.91 Active 2.30 

19 CMPD-19 Test 7.522 7.97 Inactive 3.00 

20 CMPD-20 Training 7.886 7.99 Active 3.00 

21 CMPD-21 Training 8.301 8.52 Active 2.69 

22 CMPD-22 Training 8.301 8.22 Active 2.52 

23 CMPD-23 Training 8.154 8.14 Active 1.03 

24 CMPD-24 Training 7.327 7.23 Inactive 1.06 

25 CMPD-25 Training 8.000 7.92 Active 2.74 

26 CMPD-26 Test 7.698 7.27 Inactive 1.06 

27 CMPD-27 Training 7.886 7.76 Active 2.95 

28 CMPD-28 Training 7.494 7.45 Inactive 2.58 

29 CMPD-29 Training 6.698 7.03 Inactive 1.06 

30 CMPD-30 Test 7.602 7.48 Inactive 2.67 

31 CMPD-31 Training 8.301 8.44 Active 2.60 

32 CMPD-32 Training 7.795 7.99 Inactive 2.67 

33 CMPD-33 Training 6.539 6.61 Inactive 2.22 

34 CMPD-34 Training 6.168 6.13 Inactive 1.52 

35 CMPD-35 Training 6.010 6.89 Inactive 2.31 

36 CMPD-36 Training 6.111 5.83 Inactive 1.55 

37 CMPD-37 Test 6.540 5.97 Inactive 2.41 

38 CMPD-38 Training 6.137 5.71 Inactive 2.45 
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39 CMPD-39 Test 6.559 6.57 Inactive 2.13 

40 CMPD-40 Training 6.879 6.93 Inactive 2.29 

41 CMPD-41 Test 6.056 6.04 Inactive 1.55 

42 CMPD-42 Training 5.816 5.82 Inactive 2.46 

43 CMPD-43 Training 6.218 6.15 Inactive 1.53 

44 CMPD-44 Training 6.698 6.83 Inactive 2.50 

45 CMPD-45  5.520  Inactive  

46 CMPD-46 Test 7.244 7.31 Inactive 2.53 

47 CMPD-47 Test 7.698 7.35 Inactive 2.87 

48 CMPD-48 Training 7.795 7.64 Inactive 2.95 

49 CMPD-49 Training 7.292 7.24 Inactive 2.31 

50 CMPD-50 Training 5.306 5.88 Inactive 2.66 

51 CMPD-51 Training 5.476 5.05 Inactive 1.03 

52 CMPD-52    Inactive  

53 CMPD-53 Training 6.879 7.06 Inactive 2.66 

54 CMPD-54 Test 7.318 7.56 Inactive 2.66 

55 CMPD-55 Training 8.045 7.82 Active 2.51 

56 CMPD-56 Test 7.657 7.69 Inactive 2.52 

57 CMPD-57 Test 7.920 8.30 Active 2.85 

58 CMPD-58 Training 8.301 8.35 Active 2.51 

59 CMPD-59 Training 7.920 7.92 Active 2.50 

60 CMPD-60 Training 8.301 8.05 Active 2.51 

61 CMPD-61 Training 7.443 7.98 Inactive 2.86 

62 CMPD-62 Training 8.301 8.07 Active 2.87 

63 CMPD-63  6.694  Inactive  

64 CMPD-64 Training 8.221 8.41 Active 2.44 

65 CMPD-65 Training 8.301 8.21 Active 2.49 

66 CMPD-66 Training 8.301 7.98 Active 2.52 

67 CMPD-67 Training 7.769 7.65 Inactive 2.57 

68 CMPD-68 Training 7.619 7.57 Inactive 2.57 

69 CMPD-69 Training 8.301 8.28 Active 2.96 

70 CMPD-70 Training 7.744 7.76 Inactive 2.90 

71 CMPD-71 Training 8.301 7.88 Active 2.94 

72 CMPD-72 Training 6.164 6.34 Inactive 2.90 

73 CMPD-73 Test 6.847 7.08 Inactive 2.95 

74 CMPD-74 Test 8.221 7.70 Active 2.91 

75 CMPD-75 Training 8.096 7.76 Active 2.90 

76 CMPD-76 Test 7.638 7.24 Inactive 0.99 

77 CMPD-77 Training 8.154 7.82 Active 2.95 

78 CMPD-78 Training 6.991 7.10 Inactive 2.19 

79 CMPD-79 Training 7.346 7.60 Inactive 2.96 

80 CMPD-80 Training 7.187 7.34 Inactive 2.24 

81 CMPD-81 Training 6.896 6.92 Inactive 2.35 

82 CMPD-82 Test 7.259 7.61 Inactive 1.08 

83 CMPD-83 Training 6.847 7.46 Inactive 2.96 

84 CMPD-84 Training 6.623 6.81 Inactive 2.35 

85 CMPD-85 Test 7.301 7.46 Inactive 3.00 

86 CMPD-86 Training 7.244 7.50 Inactive 2.31 

87 CMPD-87 Training 6.761 7.08 Inactive 2.23 

88 CMPD-88 Test 7.119 7.04 Inactive 2.23 

89 CMPD-89 Training 7.585 7.50 Inactive 3.00 

 

There has been a debate on QSAR model validation topic over the 

past decade and was the subject of discussion in scientific 

communities [21, 22]. The consensus was that both cross-validation 

(internal validation) and external validation are philosophically 

different approaches and both are required to characterize the 

model [19]. As per organisation for economic co-operation and 

development (OECD) Principles, the QSAR model generated should 

be verified for the goodness of fit, applicability domain, robustness 

and predictive capability [23].  

In internal validation, the model will be validated using test set 
molecules that were also part of training set during multiple 
iterations of model generation. Internal Validation determines the 
statistical robustness of the model and this preliminary validation is 
required to proceed for external validation. In external validation, a 
new set of molecules (prediction set) which were never part of 

training set during model development will be used for verifying the 
model. The prediction set can be either separated from the dataset 
selected before the model generation or collated from the literature 
after model generation. The number of molecules in the prediction 
set should be 10–20% of the dataset (both training and test set 
molecules) used for model generation.  

External validation demonstrates the predictive power of the model. 
In the current study, though the QSAR model was validated using 
cross-validation, this validation is not sufficient to demonstrate the 
predictive capability of the model (24).  

Hence, the generated model was also validated using the prediction 
set comprising 10 benzothiadiazine analogues [25]. The activity 
values predicted with 3D QSAR model built using AANRR.6 were 
given the table 5. For most of the compounds, the observed values 
were aligned with predicted values. 
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Table 5: Predicted and experimental values of external dataset comprising benzothiadiazine analogues 

S. No. Compound Name Structure Observed activity Predicted activity 

1 EX_VT_1 

 

6.09 6.42 

2 EX_VT_2 

 

6.32 6.75 

3 EX_VT_3 

 

7.17 7.23 

4 EX_VT_4 

 

6.39 6.75 

5 EX_VT_5 

 

7.46 6.98 

6 EX_VT_6 

 

7.62 6.89 

7 EX_VT_7 

 

7.96 6.93 

8 EX_VT_8 

 

6.48 6.99 
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9 EX_VT_9 

 

7.26 6.93 

 

The robustness and predictive power of the model were proved 

through internal and external validation. This model was used to 

predict the NS5B inhibitory potential of the drugs (Aprepitant, 

Doripenem and Argathroban) that showed desired binding 

interactions with residues of the binding pocket [26]. It was found 

that the predicted activities of only Aprepitant are in line the 

activities of the existing active palm I inhibitors. The details of phase 

predicted activities were furnished in table 6. Structural features of 

Aprepitant fit with 4 (A2, A3, R14 and N11) out of 5 pharmacophoric 

site points. The genomics analysis performed earlier also 

emphasized desired overlap between HCV pathophysiology and 

Aprepitant effects [26]. 

 

Table 6: Phase predicted activities of aprepitant 

Compound No of sites 

matched 

Phase predicted 

activity_1 

Phase predicted 

activity_2 

Phase predicted 

activity_3 

Phase predicted 

activity_4 

Phase predicted 

activity_5 

Aprepitant 4 6.91 6.84 6.95 6.90 6.93 

 

HCV research has gained momentum in the recent past. Many 

hepatitis C drugs were launched in the market since 2011 and 

sofosbuvir is considered as a breakthrough drug. However, in 

spite of tremendous progress in hepatitis C drug discovery still 

there exist an unmet medical need in this therapeutic area. Also, 

the marketed NS5B inhibitors act by binding to the active site 

and none of the NS5B allosteric inhibitors was launched yet. In 

order to strengthen the pipeline of NS5B inhibitors targeting 

palm I site (present close to active site), a 3D QSAR model was 

generated in the present study that can be used to optimize 

existing NS5B inhibitors binding to palm I, to predict NS5B 

inhibitory activity of new molecular entities and also to identify 

new NS5B inhibitors through virtual screening. An Atom-based 

QSAR model was built using pharmacophoric features common 

among benzothiadiazine derivatives.  

The common pharma-cophore hypothesis AANRR.6 is the best 

hypothesis with survival score of 3.668. The best candidate 

hypothesis AANRR.6 has two hydrogen bond acceptors, one 

negative ionization potential and two aromatic rings. The 3D 

QSAR model built using AANRR.6 showed good statistical scores 

(R2 = 0.924, Q2value 0.774) and prediction power was 

demonstrated using external dataset. Prediction of NS5B 

inhibitory activity of drugs identified in the earlier work 

emphasized the fact that Aprepitant could be a potential 

inhibitor. 

CONCLUSION 

The 3D QSAR model emphasized the positive correlation of 

nitrogen atom of benzothiadiazine sulfamide ring, oxyacetamide 

group attached to C7 carbon of benzothiadiazine and 

sulfonamide oxygens with NS5B inhibitory activity. NS5B 

inhibitory potential predicted by 3D-QSAR model emphasizes 

the Aprepitant as a potential inhibitor but needs to be further 

evaluated under in vitro conditions. 
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