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ABSTRACT 

Objective: To evaluate the use of protein glycation inhibitors and probiotics to ameliorate secondary complications in diabetes and to improve gut 

microbiota respectively in high fructose fed Wistar rat. 

Methods: The study was conducted on male Wistar rats for 7 d. Blood glucose levels in oral glucose tolerance test (OGTT) were measured using 

glucometer, serum parameters were analyzed using commercial kits, antioxidant status was evaluated by measuring superoxide dismutase (SOD) 

and catalase (CAT) levels, total reactive oxygen species were estimated using a fluorescent 2’, 7’-dichlorofluorescin diacetate (DCF-DA) dye, and 

tissue fluorescence of liver, kidney and intestine were measured using a spectrofluorimeter. 

Results: OGTT pattern shows significant increase in blood glucose of fructose fed rats i.e. 154 mg/dl while, in aminoguanidine (AMG) treated and 

gut microbiota modulated animals it is 137 and 119 mg/dl resp. after 30 min on glucose administration. Marked reduction was found in SOD 6.37 

and 11.25 U/mg of protein and catalase 186 and 65.5 U/mg of protein in liver and kidney of fructose fed animals when compared to fructose+AMG 

and fructose+EUGI. There is 5-6 fold significant increase in general and specific tissue fluorescence of liver and kidney, and 2.2 fold increase in liver 

reactive oxygen species was observed in fructose fed group as compare to control animals. Significantly higher glycation was found in intestine of 

fructose fed animals (general fluorescence 2.1 and specific fluorescence 3.1 AU/mg), more than that of diabetic control rats (general fluorescence 

0.9 and specific fluorescence 1.6 AU/mg), represented an evidence for adverse impact of excess fructose on healthy gut. 

Conclusion: The use of protein glycation inhibitor and use of pre and probiotics significantly improved the serum parameters and would prevent 

progression to secondary complications. 
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INTRODUCTION 

Diabetes mellitus is known to initiate several changes in various 

tissues of the body. Chronic hyperglycemia can eventually lead to 

secondary complications of diabetes such as nephropathy, 

neuropathy, retinopathy and cardio vascular diseases (CVD). The 

underlying causes involve glycation of proteins, oxidative stress, and 

involvement of immunological response and eventual destruction of 

tissues through multifactorial events. Protein glycation is known to 

cause changes in the protein structure such as alpha beta 

transitions, changes in the charge on the protein and electrophoretic 

mobility of the protein [1]. This is initiated through Amadori 

rearrangement, and formation of Advanced Glycation Products 

(AGEs) through Maillard reactions. The AGEs influence the 

functionality of the proteins and changes their clearance pattern. It 

is likely that continued impact of food with high glycemic index and 

sugars can initiate such changes. 

Throughout the life ecological aspect shapes the microbial diversity 

of an individual and the mutualistic symbiosis in between them, 

majorly contributes a steady microbiota [2-4]. While, such changes 

in the gut may influence the gut microbial flora. Earlier reports have 

demonstrated a change in gut microflora in diabetics [5-7]. 

The use of probiotics has been suggested to influence this 

distribution and promote healthy outcomes. The probiotic bacteria 

like Lactobacillus acidophilus, Lactobacillus rhamnosus, 

Bifidobacterium longum, Bifidobacterium bifidum, Streptococcus 

thermophiles and Yeast Saccharomyces boulardii are found to be 

beneficial in preventing growth of pathogenic organisms, reducing 

inflammation and allergies, helping control over dysbiotic bacterial 

overgrowth and reduction of intestinal permeability. 

Bifidobacterium and Lactobacillus may help to ward off pathogens 

like Salmonella and Clostridium botulinum [8]. There have been 

several reports in implicating the microbial flora in the pathogenesis 

of obesity [9,10], diabetes [10, 11] and chronic kidney disease [12]. 

The present study attempted to evaluate the effect of fructose feed 

on protein glycation in the gut and other tissues and study of the use 

of protein glycation inhibitors can prevent such processes. It was 

also intended to study, if the use of probiotics can prevent the gut 

microbial changes and help to stop progression of diabetes. 

MATERIALS AND METHODS 

Chemicals and materials 

Chemicals and reagents used were of analytical grade and purchased 

from local authorized distributors. Amino guanidine carbonate salt 

(AMG) was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Blood glucose level was determined by using ACCU-CHEK kit (Roche 
Diagnostics, Manheim, Germany). 

The Prebiotic and probiotic combination sachet (EUGITM) 
manufactured by WALLACE Pharmaceuticals Pvt. Ltd., Mumbai was 
obtained locally. 

Experimental animals 

Male Wistar rats weighing about 190-200 g were used in the 

experiment. All the animals were maintained under laboratory 

conditions and were allowed free access to food (Amruth, Pune) and 

water ad libitum. Animal experiments were carried out as per the 

guidelines of animal ethical committee of the Institute and CPCSEA 

(Registration no. 233/CPCSEA). 
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In vivo experimental design 

The animals (n=4) were divided into five groups viz. 

Group I: Control (without fructose feed) 

Group II: Diabetic control: Diabetes was induced by giving a single dose 

of streptozotocin [40 mg/kg of body weight (BW)] through 

intraperitoneal route, in 0.1 M citrate buffer of pH 4.5, prepared freshly 

and animals were monitored for a period of 14 d to confirm diabetes. 

Group III: Non-diabetic rats with fructose feed (10 g/d) 

Group IV: Non-diabetic rats with fructose feed (10 g/d)+7 mg/kg 

BW AMG twice in a day. 

Group V: Non-diabetic rats with fructose feed (10 g/d)+50 mg 

prebiotic and probiotic combination (EUGI) [Fructo oligo 

saccharides (300 mg), Lactobacillus acidophilus, Lactobacillus 

rhamnosus, Bifidobacterium longum, Bifidobacterium bifidum, 

Streptococcus thermophilus (0.24 billion of each) and Saccharomyces 

boulardii (0.05 billion) = 1 g] twice in a day.  

The effect of doses was tested for 7 d of treatment. After the end of 

experiment, all the animals were fasted for 24 h and sacrificed to 

measure the biochemical parameters. 

Oral glucose tolerance test 

For performing OGTT, the rats were fasted overnight with free access 

to water ad libitum. Initial blood glucose level of each rat was checked. 

All the rats were fed orally with a glucose load of 3 mg/g BW. Blood 

samples were withdrawn from the tail vain at the time intervals of 0 

min, 30 min, 60 min and 120 min after glucose administration and 

blood glucose was measured using ACCU-CHECK glucometer. 

Determination of serum parameters 

Blood glucose level was determined by using ACCU-CHECK 

glucometer. Total triglycerides and high-density lipoprotein (HDL) 

levels were measured by using commercially available kits (Span 

Diagnostics, Surat, Gujrat, India). Serum creatinine and total 

cholesterol were measured by diagnostic kit (Creast Biosynthesis, 

Goa, India; Biolab Diagnostics, Boisar, India). Very low-density 

lipoprotein (VLDL) levels were calculated from total cholesterol and 

HDL cholesterol values. 

Determination of antioxidant status of liver and kidney 

Kidney and liver were homogenized in 100 mmol of Tris–HCl buffer 

pH 7.4 using Teflon homogenizer. The homogenate was centrifuged 

at 9000 rpm for 20 min at 4 °C and supernatant was used for the 

estimation of superoxide dismutase (SOD) and catalase (CAT). 

Protein content was estimated by using Bradford method [13]. 

Superoxide dismutase was estimated using the method described by 

Mishra and Fridovich (1972) [14]. In brief, 0.1 ml of supernatant was 

added to 3.5 ml buffer (phosphate buffer 50 mmol, pH 7.4), 0.3 ml of 

10 mmol ethylene diamine tetra acetate (EDTA), 1.2 ml of 130 mmol 

methionine and 0.6 ml of 150 μM nitro blue tetrazolium (NBT) in 100 

mmol sodium carbonate buffer, pH 10.35. Similarly prepared a 

reaction mixture in which supernatant was replaced by equal volume 

of distilled water which served as blank and was placed at dark. The 

reaction was started by addition of 0.4 ml riboflavin (60 μM). The 

tubes were radiated in front of 18W fluorescent bulb for 30 min and 

the reaction was stopped by placing the tubes in dark. The absorbance 

was read at 560 nm. Unit of SOD is described as the amount of enzyme 

required for inhibition of 50% oxidation riboflavin. 

Catalase activity was determined from liver and kidney as per 

method described by Beers and Sizer (1952) [15]. The change in 

optical density at 240 nm per unit time was taken as a measure of 

catalase activity. Phosphate buffer (100 mmol, 7.4 pH) 2.1 ml was 

taken into a cuvette and 50 μl of homogenate was added in the 

reaction mixture. Reaction was started by addition of 0.5 ml freshly 

prepared 30 mmol H2O2 solution. The rate of decomposition of H2O2 

was measured immediately by using UV-Visible spectrophotometer 

at 240 nm. The activity of catalase was expressed in units per mg 

protein calculated by following formula, 

Enzyme Activity (U/mg protein)

=
ΔA x 1000 x Total reaction Vol.

Extinction Coefficient x Vol. of enzyme
 

Where, Extinction coefficient = 43.6/M/cm  

Measurement of total reactive oxygen species (ROS) in liver  

The ROS were measured using a fluorescent 2’, 7’-dichlorofluorescin 

diacetate (DCF-DA) dye [16]. The 100 mg of liver tissue was chopped 

and incubated with 1 ml of 10 mmol DCF-DA for 30 min at 37 °C. After 

incubation the samples were sonicated for 15 seconds with 3 strokes 

and centrifuged for 4000 rpm for 5 min at 4 °C and the fluorescence of 

supernatant was measured using spectrofluorimeter (Cary Eclipse 

Fluorescence Spectrophotometer, USA) at 488 nm excitation 

wavelength and 530 nm emission wavelength. DCF-DA is a non-polar 

compound that readily diffuses into cell, where it is hydrolyzed to non-

fluorescent polar derivative DCFH and thereby trapped within the 

cells. In the presence of ROS, DCFH is oxidized to the highly fluorescent 

2’, 7’-dichlorofluorescein (DCF). The level of DCF fluorescence reflects 

the concentration of ROS. 

Measurement of tissue fluorescence-liver, kidney and intestine  

After sacrifice the rat’s liver, kidney and intestine were washed with 

saline, minced and defatted with the mixture of chloroform and 

methanol (2:1 v/v) overnight. The tissues were homogenized in 0.1 N 

NaOH and centrifuged at 10,000 rpm for 30 min at 4 °C temperature. 

The amount of total (370/440 nm) and specific (335/385 nm) AGEs 

from the supernatant was measured using a spectrofluorimeter. The 

fluorescence intensities of the samples were measured and 

represented in terms of arbitrary units (AU) per mg of protein [17]. 

Statistical analysis 

All the values were analysed by one-way analysis of variance 

(ANOVA). Obtained results were expressed as mean±SD for four rats 

in each group (n=4). p-value<0.05 were considered as significant. 

RESULTS 

Effect of treatment on oral glucose tolerant test (OGTT) 

The effect of fructose feed was studied on the oral glucose tolerant 

test after 7 d of treatment. The rats fed with only fructose showed an 

increase in the blood glucose level. The OGTT pattern shows that, in 

fructose fed animals the blood glucose level significantly increased 

up to 154 mg/dl at 30 min while rats feed with fructose+AMG and 

fructose+EUGI shows the blood glucose level 137 mg/dl and 119 

mg/dl respectively (fig. 1).  
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Fig. 1: Oral glucose tolerance test of experimental animals. 

Values were represented as mean ± SD (n=4. 

 

Body weight and serum parameter studies 

Animals fed with only fructose progressively gained more weight 

(250 g) than other animals and also demonstrated an increase in the 

fasting blood glucose level (95 mg/dl). While in fructose+AMG fed 



Patil et al. 

Int J Pharm Pharm Sci, Vol 10, Issue 7, 28-32 
 

30 

animals the blood glucose level was 71 mg/dl as similar that of 

control (67.2 mg/dl). The AMG and EUGI treated animal shows 

significant reduction in serum lipid profile as compared to the 

fructose fed group (table 1). 

Serum creatinine has been found to be a reliable indicator of kidney 

function. In fructose feed animals the serum creatinine level found 

slightly increased (0.725 mg/dl) than that of control (0.575 mg/dl), 

fructose+AMG (0.575 mg/dl) and EUGI treated animals (0.550 

mg/dl) (table 1). 

Urine volume 

Urine volume and rate of excretion was significantly increased in 

fructose feed animal group as compared to other treatment groups 

(table 1). 

 

Table 1: Effect of in vivo treatment on body weight, blood and urine parameters in experimental animals 

S. 

No. 

Tissue/Sample Parameter Control Diabetic 

control 

Non-Diabetic Groups 

Fructose dose No fructose No fructose Fructose Fructose+AMG Fructose+EUGI 

1  Weight (g) 230.3±7.789 228.2±6.321  250.5±4.893 245.6±6.498  249.3±3.951 

2 Blood/Serum A) Initial Blood glucose 

(mg/dl) 

66.0±3.91  202.0±14.31 66.5±4.43 65.25±4.42  64.75±2.50 

B). Blood glucose (mg/dl) 67.25±4.92 203.3±17.15 95.00±4.16 71.00±8.83*  79.00±4.69*  

C) Lipid profile test (mg %)  

i] Total Cholesterol  58.0±4.32 130.5±9.67 83.00±2.58 68.00±4.32* 72.75±5.70 

ii] S. Triglycerides  59.0±6.83 147.0±14.65 167.0±10.13 85.0±12.91* 75.50±5.00* 

iii] S. HDL Cholesterol  41.50±2.64 39.00±2.58 37.00±2.58 30.75±2.21* 27.25±2.21* 

iv] VLDL Cholesterol  11.00±2.58 29.50±3.41 32.50±3.41 18.00±1.63* 13.25±2.21* 

D) Urea (mg/dl) 23.25±3.59 64.0±9.76 30.25±1.70 23.5±3.10* 24.0±1.82* 

E) Creatinine (mg/dl) 0.575±0.05 2.60±0.216 0.725±0.05 0.575±0.05* 0.550±0.05* 

3 Urine Volume (ml/day) 14.50±2.08 32.75±5.25 20.25±2.38 15.75±1.70* 16.00±1.63* 

Each value expressed as means±SD, (n=4). *values significant at P<0.05 as against fructose fed. 

 

Effect on antioxidant status and tissue fluorescence 

The in vivo antioxidant status was evaluated in terms of liver and 

kidney SOD and catalase enzyme activity. In fructose fed animals 

liver and kidney SOD activities were reduced significantly (6.37 and 

11.25 U/mg of protein respectively) as compared to control group. 

While in fructose+AMG treated group the values are nearly equal to 

that of control group. Similarly, the liver and kidney catalase 

activities in fructose fed group are significantly decreased (186 and 

65.5 U/mg of protein) as that of control group. In fructose+AMG 

treated animals the liver and kidney catalase values are 204 and 

95.75 U/mg of protein respectively. While EUGI treated animals the 

liver and kidney SOD values are 7.2 and 14.53 U/mg and catalase 

values are 200 and 83.75 U/mg of protein respectively (table 2). 

There is 5-6 fold increase in general and specific fluorescence of 

fructose fed animals as compared to control animals. In control and 

fructose+AMG fed animals it was 2.86 and 4.42 AU/mg respectively. 

The tissue fluorescence of all the tissues increased significantly in 

fructose feed animals than of the control, fructose+AMG and EUGI 

treated animals (table 2). 

Fluorescence of intestine 

There is 5 and 4 fold increase in general and specific fluorescence of 
intestine (duodenum) in fructose feed animals than that of control 
group (0.426 and 0.807 AU/mg resp.). In AMG treated animals these 
values are 0.511 and 0.924 AU/mg as similar with control group. 
EUGI treatment found efficiently reducing the rate of protein 
glycation (0.902 and 2.147 AU/mg resp.) (table 2). 

Liver reactive oxygen species (ROS) 

Fructose feed animals showed a 2.2 fold increase in generation of 

ROS in liver as compared to that of control (1.47 AU/mg of tissue). 

While in AMG and EUGI treated animals it is 2.8 and 2.96 AU/mg of 

tissue respectively (table 2). 

  

Table 2: Status of antioxidant parameters and tissue fluorescence in experimental animals 

S. No. Tissue/Sample Parameter Control Diabetic 

control 

Non-Diabetic Groups 

Fructose Fructose+AMG Fructose+EUGI 

1 Liver a) SOD (U/mg of protein) 9.000±0.432 4.000±0.816 6.375±0.464 8.275±0.377* 7.225±0.434 

b) CAT (U/mg of protein) 223.8±8.098 123.3±9.069 186.3±4.787 204.0±6.325* 200.8±6.500* 

Fluorescence  

i] General (AU/mg) 

0.235±0.026 8.240±0.796 4.463±0.613 1.009±0.154* 1.611±0.282* 

 ii] Specific (AU/mg) 0.842±0.065 13.69±0.871 4.319±0.272 1.872±0.119* 3.018±0.095* 
ROS (488/520) AU/mg of Tissue 1.477±0.193  4.017±0.189 3.207±0.098 2.805±0.103 2.965±0.034 

2 Kidney c) SOD (U/mg of protein) 19.00±2.94 7.425±0.512 11.25±1.708 15.55±1.215* 14.53±1.176* 

d) CAT (U/mg of protein) 112.2±5.901 44.75±4.787 65.5±4.435 95.75±3.775* 83.75±6.449* 

Fluorescence  

i] General (AU/mg) 

1.20±0.184 6.651±0.429 4.663±0.423 1.50±0.225* 2.73±0.354* 

 ii] Specific (AU/mg) 2.86±0.393 15.66±2.336 17.57±1.284 4.429±1.028* 12.66±1.732* 

3 Intestine 

(Duodenum) 

Fluorescence  

i] General (AU/mg) 

0.426±0.033 0.938±0.100 2.180±0.330 0.511±0.070* 0.902±0.058* 

 ii] Specific (AU/mg) 0.807±0.102 1.640±0.235 3.100±0.331 0.924±0.110* 2.147±0.116* 

Each value expressed as means±SD, (n=4). *values significant at P<0.05 as against fructose fed. 

 

DISCUSSION 

Earlier attempts in our lab have demonstrated that fructose is more 

efficient in glycation of protein than glucose hence it has chosen for the 

experiments. Further whether these changes can be prohibited leading 

to positive outcomes is evaluated. High fructose feed have influenced 

drastic changes in the whole body within a span of 7 d. It was observed 

that there is extensive glycation of various tissues and a strong 
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oxidative stress is initiated. These changes can snowball into various 

metabolic disorders. In a study conducted by Prakash et al. in 2011 

[18] demonstrated that high fructose feeding in rat leads to impaired 

glucose tolerance and insulin resistance. It has been reported that, 

modulating composition of gut flora with prebiotics improved gut 

permeability, reduced metabolic endotoxemia, lowered inflammation, 

and alleviated glucose intolerance [19, 20]. Recent clinical study 

suggesting that gut microbiota modulation with novel probiotics 

prevents and efficiently controls type II diabetes along with its 

complications [21]. In support to these work we have found that, an 

oral glucose tolerance test in the various treated groups also 

demonstrates prevention in a shift towards a diabetic curve as seen in 

fructose fed rats and reduction in postprandial spikes is one of the 

major strategies to prevent establishment of diabetes through the use 

of probiotics and protein glycation inhibitors. 

It is surprising to note that fructose feed for seven days led to an increase 

in fasting blood glucose level and influences the lipid profile of the 

animals (table 1). Use of aminoguanidine, a protein glycation inhibitor 

prevents such changes to a greater extent. Likewise the probiotics also 

seem to have a beneficial effect. It is significant that a fructose feed of 10 

g/d influenced such chronic changes in serum creatinine and increased 

urine excretion. Oxidative stress helps to accelerate pathological 

conditions in diabetes [22-24] and promotes the rate of protein glycation 

[25, 26]. So, we attempted to study the effect of probiotics and glycation 

inhibitor AMG on ROS formation, antioxidant status and tissue 

fluorescence. The oxidative stress is also found to increase in the tissues 

such as the liver and kidney and is found to be reduced on treatment. 

The extent of protein glycation has been evaluated through study of 

general and specific fluorescence. The increase in tissue fluorescence 

indicates the extent of glycation. The general and specific fluorescence of 

liver and kidney increased significantly in fructose fed animals. 

Hyperglycemia causes glucose auto-oxidation, protein glycation, protein 

kinase C activation and lipid peroxidation which further results in 

generation of reactive oxygen species [27, 28]. Fructose feeding 

significantly increased rate of ROS generation in liver as compared to 

that of control animals. The glycated intestinal proteins presented an 

evidence for adverse effect of excess fructose feeding on healthy gut, 

promoting the prediabetic state. 

CONCLUSION 

In conclusion, this preliminary study throws light on the impact of 

high fructose feed on glycation of proteins and probable changes on 

such glycation. Fructose feed can greatly influence changes in the 

whole body in just 7 d implying that such repeated insults can 

eventually lead to establishment of diabetes. It is interesting to note 

that while aminoguanidine can inhibit protein glycation 

significantly, use of probiotics also demonstrate a similar effect 

points to the importance of gut microbiota in promoting positive 

changes. Thus the present study raises the possibility of prevention 

of establishment of diabetes and its progression through use of 

protein glycation inhibitors and prebiotics and probiotics.  

ABBREVIATIONS 

Oral glucose tolerance test-OGTT, aminoguanidine-AMG, super-

oxide dismutase-SOD, catalase-CAT, cardio vascular diseases-CVD, 

advanced Glycation Products-AGEs, body weight-BW, prebiotic and 

probiotic combination-EUGI, high-density lipoprotein-HDL, very 

low-density lipoprotein-VLDL, ethylene diamine tetra acetate-EDTA, 

nitro blue tetrazolium-NBT, reactive oxygen species-ROS, 2’, 7’-

dichlorofluorescin diacetate-DCF-DA, 2’, 7’-dichlorofluorescein-DCF, 

arbitrary units-AU, standard deviation-SD. 
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