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ABSTRACT  

Objective: The aim of this study was to evaluate and compare the in vitro toxicity of three carbon nano particles on five different cell lines.  

Methods: Human alveolar epithelial (A549) cells, hepatocytes (Hep G2 cells), human embryonic kidney cells, HCT 116, and intestinal (P407 cells) 
cells were exposed to multi walled carbon nanotubes, carbon nano fibres and carbon nano rods. The adverse effects of carbon nano particles were 
analyzed after 48 h incubation with different cell lines using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay method.  

Results: Incubation of carbon nano particles with different cells produced a concentration-dependent inhibition of growth of the cells. The TC50

Conclusion: The results indicating the greater cytotoxic effect of carbon nano particles than quartz particles. 

 
values (toxic concentration 50, i. e., concentration of particles inducing 50% cell mortality) of three nano particles was found to be in the range 
28.29–46.35 µg/mL, and less than that of quartz (known toxic agent, 30.24-54.95 µg/mL). 
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INTRODUCTION 

The Nano Technology prefix “nano” is derived from the Greek word 
“nanos” meaning “dwarf”. Nanotechnology involves the 
manipulation and application of engineered particles or systems that 
have at least one dimension less than 100 nanometers (nm) in 
length [1].Nanotoxicity, a term coined in 2004, refers to the study of 
the potential toxic impacts of nano particles on biological and 
ecological systems. Nanotoxicology was proposed as a new branch 
of toxicology to address the gaps in knowledge and to specifically 
address the adverse health effects likely to be caused by 
nanomaterials. As per Donaldson et al. quoted, “discipline of 
nanotoxicology would make an important contribution to the 
development of a sustainable and safe nanotechnology” [2]. 
Although this size definition is no longer explicitly followed in the 
categorization of nanomaterials, these unique properties make 
nanoparticles the subject of intense study and 
commercial/industrial interest. During an average day, people may 
be exposed to commercially available nanoparticles in many 
settings, including silver (Ag) nanoparticles in sheets and clothing, 
titanium dioxide (TiO2) nanoparticles in cosmetics and sunscreens, 
carbon nanoparticles in bikes, and even clay nanoparticles in beer 
bottles. Over the past eight years, the field of nanotoxicity has grown 
significantly in response to and in hopes of addressing concerns 
(both public and regulatory) regarding the boom in nanoparticle 
technology and the subsequently increased possibility of exposure 
through consumer and medical applications [3]. In particular, 
biological applications that employ CBNs for DNA, proteins, and 
drug delivery [4, 5] have attracted much attention. Unfortunately, 
the information concerning the potential hazards related to CNM 
exposure is rare and still under debate [6, 7]. 

The pulmonary toxicity of carbon nanotubes (CNT) has been well 
described. Findings from CNT inhalation exposures included 
cytotoxicity, inflammatory cell influx, and interstitial fibrosis in the 
lung [8-10]. Some more recent studies also suggest the potential of 
CNM to promote lung tumorigenesis [11]. Several studies also have 
shown systemic effects such as immunosuppression, systemic 
inflammation, and changes in molecular signaling in extra 
pulmonary tissues [12-13]. Reduced vascular responsiveness and 
increased susceptibility to ischemia / reperfusion injury in cardiac 
tissue was also a product of CNM exposure [14]. Multi-wall carbon 

nanotubes (MWCNTs), Carbon nanofibres (CNFs) and Carbon 
nanorods (CNRs), unlike graphite, possess highly desirable 
electrical, mechanical, magnetic, and thermal properties [15]. The 
peculiar toxicity associated with nanomaterials that are different from 
bulk materials of the same chemical composition has been a concern. 
In particular, tubular materials with a high aspect ratio, e. g., CNTs, are 
suspected of showing asbestos-like toxicity because of their similarity 
in shape [16]. 

CNM toxicity is dependent on their shape, size, purity, charge, dose, 
entry route into the body, concentration in the field of body-target, 
duration of influence and other factors. Engineered carbon 
nanomaterials such as multi-walled carbon nanotubes (MWCNT), 
Carbon nanofibres (CNFs) and Carbon nanorods (CNRs) have 
applications in structural and electronic devices due to their 
extraordinary thermal conductivity, mechanical and electrical 
properties, which creates a potential occupational exposure 
situation [17]. Potential bioactivity (in vitro toxicity and increased 
production of inflammatory mediators, and/or in vivo increased 
inflammation and pathology) of CNM has been attributed to length 
[18], diameter [19], aggregationstate [20], contaminants [21], aspect 
ratio/rigidity [22], and release of reactive oxygen species [23]. 

MATERIALS AND METHODS 

The 
present study was aimed to evaluate and compare the in vitro 
cytotoxicity of three nanomaterials MWCNTs, CNFs and CNRs using 
MTT assay on five different human cell lines namely human alveolar 
epithelial (A549), human hepatocytes (Hep G2 Liver cells), human 
embryonic kidney (HEK 293) cells, intestinal (P407) cells and HCT 
116 Colon Cancer cells. 

Particle types 

The Carbon Nano Materials MWCNTs (D*L 110-170 nm *5-9 µm), CNFs 
(D*L100 nm20-200 µm), CNRs (D*L 100 nm * 4-5 µm) were purchased 
from Sigma, St. Louis, USA. Quartz (Min-U-Sil) was purchased from U. S. 
Silica Company (Berkeley Springs, West Virginia) at >99% purity. 

Cell culture and treatment 

Human alveolar epithelial (A549), human hepatocytes (Hep G2 Liver 
cells), human embryonic kidney (HEK 293) cells, intestinal (P407) 
cells and HCT 116 Colon Cancer cells were purchased from National 
Centre for Cell Science (NCCS, Pune), India. 
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These cell lines were grown and maintained using suitable media 
(DMEM/RPMI 1640, HiMedia, Mumbai, India). All the cell lines were 
grown in culture medium supplemented with 10% fetal bovine 
serum (FBS, HiMedia, Mumbai, India), 1% L-glutamine (HiMedia, 
Mumbai, India), and 1% penicillin–streptomycin–amphotericin B 
antibiotic solution (HiMedia, Mumbai, India). Cells were seeded at 
250,000 cells/flask in a total volume of 9 mL. When confluent, all the 
cells were trypsinized (using trypsin-EDTA, HiMedia, Mumbai, 
India), and seeded in 96 well plates (Tarsons, India) at the rate of 
2500/0.1 mL. Particle suspension (in phosphate buffer saline 
(PBS)/0.1% Tween 80) or medium alone was added to each well. 
For each nanomaterial, a stock solution of 1mg/mL particle in 
culture medium without any additive was prepared, vortex at 
maximum speed for 1 min and bath-sonicated for 5 min. 

Different concentrations of nanoparticles in culture medium were 
prepared and used (1–100 µg/mL). Preliminary experiments 
demonstrated the necessity to add 0.1% Tween 80 to the culture 
medium to obtain a homogenous suspension for three nanoparticles. 
Cells were exposed for 72 h to medium alone or in the presence of 
nanomaterials. At that time, MTT assay was performed to evaluate 
the toxicity of nanoparticles on different cell types.  

MTT assay method 

Mitochondrial function and cell viability were measured by the MTT 
assay [24]. Briefly, the cells were plated into a 96-well plate at a 
density of 1.0 x104

After thorough mixing for overnight, the plate was read at 490 nm 
for optical density that is directly correlated with cell quantity using 
ELISA (Biotech, UK) multiple plate reader. Inhibition of growth of 
cells was calculated from the relative absorbance of untreated 
control cells at 490 nm and expressed as the percentage inhibition. 

 cells /well. Cells were grown overnight in the full 
medium and then switched to the low serum media followed by 
exposure to carbon nanoparticles. After 48h of treatment with 
different concentrations of nanoparticles, the cells were incubated 
with MTT (2.5 mg/ ml) for 2 h. Then, 80 µl of lysis buffer (15% 
sodium lauryl sulphate in 1:1 mixture of N, N, dimethyl formamide 
and water) was added into each well to dissolve formazan crystals, 
the metabolite of MTT.  

Statistical analysis 

When at least 2 viability values were below 50% of control 
condition, the TC50 (toxic concentration 50, concentration of 
particles inducing 50% cell mortality) was calculated using 
GraphPad Prism software (logarithmic transformation of X-values 
and non linear regression -sigmoidal dose-response analysis with 
variable slope- with bottom and top constrains set at 0 and 100 
respectively). If a TC50 could be calculated, TC25 and TC75 were 
calculated (respectively concentration corresponding to 75 and 25% 
viability), using the following equation: TCf = [(f / 100-f)**1/H] * 
TC50

RESULTS 

 where f: percentage that needs to be calculated, H: hillslope, *: 
multiply, **: to the power. 

The cytotoxicity data of the three tested carbon nanoparticles with 
the MTT assay method on five different human cell lines are 
presented in Figures 1–5. Similar to quartz (a known toxic agent), 
exposure of three tested carbon nanoparticles to the different cells 
produced a concentration-dependent inhibition of growth of cells, 
resulting in reduction of viability percentage of the cells in 
nanoparticles exposed wells. For all the nanoparticles, TC50, TC25, 
and TC75 values (respectively concentration corresponding to 50%, 
75%, and 25% viability) were calculated on all the cell types and are 
shown in Table 1. The TC50

 

 values of three nanomaterials were 
found to be in the range 28.29–46.35 µg/mL. Irrespective of the type 
of cells, three nanomaterials produced greater cytotoxicity in all cell 
types tested.  

Table 1: Cytotoxicity of carbon nanomaterials on different human cell lines using MTT assay 
Nanoparticles  Cell Type TC50 TC(µg / ml) 25 TC(µg / ml) 75(µg / ml) 
CNF A 549 cells 28.29 4.90 163.10 
CNR A 549 cells 43.02 7.32 252.62 
MWCNT A 549 cells 35.77 6.17 207.04 
Quartz A 549 cells 38.74 5.67 264.68 
CNF Hep G2 cells 29.22 5.08 168.04 
CNR Hep G2 cells 41.18 6.96 243.55 
MWCNT Hep G2 cells 33.53 5.70 197.00 
Quartz Hep G2 cells 30.24 5.36 170.54 
CNF HEK cells 30.51 5.13 181.28 
CNR HEK cells 42.17 6.75 263.31 
MWCNT HEK cells 35.03 5.33 229.91 
Quartz HEK cells 39.46 6.63 234.73 
CNF P407 cells 33.38 5.73 194.40 
CNR P407 cells 46.35 7.39 290.65 
MWCNT P407 cells 39.19 6.50 236.13 
Quartz P407 cells 52.75 8.51 326.78 
CNF HCT 116 cells 34.65 6.15 195.20 
CNR HCT 116 cells 44.32 7.21 272.41 
MWCNT HCT 116 cells 38.27 6.34 230.93 
Quartz HCT 116 cells 54.95 8.98 336.03 
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Fig. 1: Cytotoxicity of carbon nanomateials on A549 cell lines 
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Fig. 2: Cytotoxicity of carbon nanomateials on HepG2 cell lines 
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Fig. 3: Cytotoxicity of carbon nanomaterials on HEK cell lines 
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Fig. 4: Cytotoxicity of carbon nanomaterials on P402 cell lines 
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Fig. 5: Cytotoxicity of carbon nanomaterials on HCT116 cell lines 

 

DISCUSSION 

The present study investigate and compare the in vitro cytotoxicity 
of three carbon nanomaterials MWCNTs, CNFs and CNRs using MTT 
assay on five different human cell lines namely human alveolar 
epithelial (A549), human hepatocytes (Hep G2 Liver cells), human 
embryonic kidney (HEK 293) cells, intestinal (P407) cells and HCT 
116 Colon Cancer cells. To date there are very few studies directly or 
indirectly investigating the toxic effects of nanomaterials and no 
clear guidelines are presently available to quantify these effects.  

Inhaled MWCNT, which deposit in the lungs, are transported to the 
parietal pleura, the respiratory musculature, liver, kidney, heart and 
brain in a single form and accumulate with time following exposure. 
The tracheobronchial lymph nodes contain high levels of MWCNT 
following exposure and further accumulate over nearly a year to 
levels that are a significant fraction of the lung burden 1 day post-
exposure [25]. Intraperitoneal injection of long (> 5 μm) MWCNT in 
mice causes fibrotic lesions and mesothelial cell proliferation [26, 
27]. So, the present study was used to assess the in vitro systemic 
effects of three carbon nanomaterials following its exposure.  

Low-dose, long-term exposure of bronchial epithelial cells to 
MWCNT has been shown to induce cell transformation, and these 
transformed cells induce tumors after injection into nude mice [28, 
29]. Although, in vitro data is not a substitute for whole animal 
studies. Use of simple in vitro models with end points that reveal a 
general mechanism of toxicity can be a basis for further assessing 
the potential risk of chemical/material exposure.  

The results of the present study showed the higher cytotoxicity of 
three nanoparticles against all cell types tested and was comparable 
with a known cytotoxic agent, quartz. The TC50, TC25, TC75 values of 
three nanoparticles and quartz on five different human cell lines 
were showed in table 1. The TC50

Roberta brayner [30],investigate the cytotoxicity using MTT assay of 
three carbon based nano materials. In this study reported that, the 
toxicity order is CB>CNF>MWCNT. The tested carbon nano materials 
have shown more potent cytotoxicity towards lung, liver and kidney 
cells as compare to all cell lines. Equal or greater potency of SWCNT, 
MWCNT, and CNF compared with other inhaled particles (ultrafine 
carbon black, crystalline silica, and asbestos) in causing adverse lung 
effects including pulmonary inflammation and fibrosis [31-33]. On a 
mass dose bases, inflammation and lung damage at 1 day post-
exposure followed the potency sequence of SWCNT>CNF>asbestos. 
The same potency sequence was observed for TNF and IL-6 
production at 1 day post-exposure. SWCNT agglomerates were 
associated with the rapid (7 days) development of granulomas, 
while neither CNF nor asbestos (being more dispersed) caused 
granulomatous lesions. Interstitial fibrosis (noted as TGF 
production, lung collagen, and Sirius red staining of the alveolar 
septa) was observed at 28 days post-exposure with a mass-based 
potency sequence of SWCNT>CNF=asbestos. The potency sequence 
for fibrosis was not found to be related to structure number or 
particle surface area (determined by BET gas absorption method) 
delivered to the lung [33]. 

 values of three nanoparticles were 
found in the range of 28.29–46.35 µg/mL, were less than that of 
quartz (30.24 - 54.95 µg/ml), indicating the greater cytotoxicity of 
carbon nanoparticles than quartz particles. Among the three tested 
carbon nano materials, CNFs showed potent cytotoxicity on all cell 
types. The order of cytotoxicity was CNF>MWCNT>CNR.  

Previous results showed the ability of carbon nanoparticles to 
induce various effects in function of the cell type considered. For 
example, incubation of carbon nanotubes with different cells 
produced a concentration-dependent inhibition of growth of the 
cells [34]. Gold nanoparticle-induced death response in a human 
carcinoma lung cell line (A549 cells) whereas no effect was observed 
in BHK21 (hamster kidney) or HepG2 (human hepatocellular liver 
carcinoma) cells [35]. In contrast, our results showed that, 
irrespective of type of cells, all carbon nanoparticles produced a 
dose dependent inhibition of growth of cells. Therefore, developing 
such in vitro models to assess nanoparticles systemic toxicity would 
be of particular interest regarding development of routine screening 
tests and investigation of nanoparticles precise mechanisms of 
action.  

An unidentified radical is generated by two long, needle-like 
MWCNTs and these two CNTs were more cytotoxic than the other 
CNTs tested, suggesting that this radical could be related to the 
adverse effects of MWCNTs [36]. In vitro studies also indicate that 
exposure to CNF can cause genotoxicity (micronuclei) as a result of 
reactive oxygen species (ROS) production, which in turn reacts with 
DNA, and by interfering physically with the DNA/chromosomes 
and/or mitotic apparatus [37]. 

CONCLUSION 

In summary, exposure of carbon nanoparticles to cells produced 
concentration dependant cytotoxicity. Further studies are needed to 
investigate the general mechanisms involved in carbon nanotubes 
induced in vitro cytotoxicity and also to correlate these in vitro 
results with those of in vivo toxic effects. 
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