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ABSTRACT 

Objective: This study aimed to measure concordance between different renal function estimates in terms of drug doses and determine the potential 
significant clinical differences. 

Methods: Around one hundred and eighty patients (≥ 1 8 y) with chronic kidney disease (CKD) were eligible for inclusion in this study. A paired-
proportion cohort design was utilized using an artificial intelligence model. CKD patients refined into those who have drugs adjusted for renal function. 
For superiority of Cockcroft-Gault (CG) vs. modified diet in renal disease (MDRD) guided with references for concordance or discordance of the two 
equations and determined the dosing tiers of each drug. Validated artificial neural networks (ANN) was one outcome of interest. Variable impacts and 
performed reassignments were compared to evaluate the factors that affect the accuracy in estimating the kidney function for a better drug dosing. 

Results: The best ANN model classified most cases to CG as the best dosing method (79 vs. 72). The probability was 85% and the top performance 
was slightly above 93%. Creatinine levels and CKD staging were the most important factors in determining the best dosing method of CG versus 
MDRD. Ideal and actual body weights were second (24%). Whereas drug class or the specific drug was an important third factor (14%). 

Conclusion: Among many variables that affect the optimal dosing method, the top three are probably CKD staging, weight, and the drug. The 
contrasting CKD stages from the different methods can be used to recognize patterns, identify and predict the best dosing tactics in CKD patients. 
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INTRODUCTION 

Starting in 1998, the United States FDA made a requirement that 
new medication applications include renal dosing [1]. In 2004, the 
European Medicines Agency (EMEA) brought forth a similar 
statement in acute kidney injury patients [2]. Many of the old 
medications still have dosing algorithms largely based on post-
marketing data [3]. Patients with CKD have several challenges that 
may alter the response to medications, and hence, may affect the 
optimal dose of medications. 

Dosing of medications in CKD patients is further complicated by the 
very nature of the dose-response interaction for the various 
medications. Some medications need high peak levels, whereas others 
require less fluctuation of the levels over the dosing intervals [4-18]. 
For example, aminoglycoside antibiotics are an example of the former, 
whereas β-lactams are a representative of the latter [19-22]. 

Artificial neural networks (ANN) employed to predict if choosing the 
optimal renal function estimate to dose drugs in CKD patients is 
heuristic rather than an exact problem. Therefore, we are certain 
that a good ANN model will very likely give better predictive ability 
than simple statistical pattern recognition. The ANN model 
incorporated one outcome; namely, superior renal function estimate 
(CG or MDRD). Therefore, our actual ANN structure would look like 
the one shown in fig. 1. This is a probabilistic neural network with 
24-input layer, two hidden layers; one for the study cases, and the 
second for two categories of the outcome and a final output layer. 
Generalized regression networks (GRN) used for continuous 
outcomes and make predictions that can be drawn against actual 
data (fig. 2). The first hidden layer in both designs ensures accuracy. 
The second hidden layer reduces dimensionality to drive ANN 
toward fast convergence [23, 24]. Using ANN to try to maximize the 
accuracy, by which we can dose drugs with either CG or MDRD right 

from the beginning, will give us an idea about some of the factors 
that may be used as input variables in an ANN model. ANN model 
will then determine which variables are of the greatest importance 
for the prediction of the best renal function estimates. 

 

 

Fig.  1: Our ANN model structure 

 

MATERIALS AND METHODS 

Study design and setting 

A paired-proportion cohort design was utilized using an artificial 
intelligence model. The study was conducted at a national military 
hospital in the United Arab Emirates (UAE) with a 300-bed tertiary 
care center serving around 300,000 patients. The prevalence of CKD in 
UAE population is estimated at about 10%. For the purposes of this 
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study, we will use the term “pattern” to mean an individual patient 
case with its distinct clinical input variables. Diseases as input 
variables were based on actual diagnoses documented in the patient 
files or the standardized study data collection sheets. Almost all 
numerical values were real values for the patients with missing values 
comprising a very minute less than 1% replaced with median of the 
variable. 
 

 

Fig.  2: ANN–GRN example 

Ethical considerations 

This study was undertaken in full accordance with the declaration of 
Helsinki 1964 as all its amendments. An informed consent was 
obtained from every patient before their enrollment in the study. 
Moreover, the ethical study approvals were secured from relevant 
institutions. 

Study subjects 

All adult, patient’s ≥ 1 8 y, CKD (based on physician/nephrologists-
assigned diagnosis) were eligible for inclusion in the current study. 
Patients who were pregnant had cancer, human immunodeficiency 
virus (HIV), acute kidney failure, dialysis, and those on medications 
interfering with serum creatinine (SCr) were excluded. As shown in 
table 1, a cohort of 180 consecutive cases was included in the study 
to provide the desirable clinical response in each case, variables 
included in the ANN model. Recruited CKD patients would be refined 
into those who have drugs adjusted for renal function and were 
added as an input variable (table 2). For superiority of CG vs. MDRD 
and guided with references such as Lexi-comp®, adult drug book–
kidney disease program, package insert or European Medicines 
Agency (EMC) monographs [25, 26]. Our research determined the 
dosing tiers of each drug. Consequently, our group determined the 
presence of concordance or discordance of the two equations. 

 

Table 1: Variables included in the ANN model and their summary data

Variable 

* 

Description 
Input  
Age 67 (23–99)Drugs‡

ABW  
Bisoprolol (22) 

76 (40.5-115) Trimetazidine (11) 
Gender M: (107), F: (44) Atenolol (9) 
IBW 59 (45–84) Sitagliptin/Metformin(8) 
ABW to IBW 1.32 (0.5–2.18) Sitagliptin (5) 
Height 164 (75–184) Metformin (4) 
SCr 1.69 (0.97–6.57)Others (8) 
CG eCrCl 31.0 (10.4–59.7)CG Stage3A (35), 3B (42), 4 (65), 5 (9) 
MDRD eGFR 42.7 (2.13–75.0)MDRD Stage3A (42), 3B (67), 4 (18), 5 (4) 
  mGFR Stage 3A (18), 3B (60), 4 (21), 5 (5) 
No of Drugs 8 (3–26)Doses Adjusted Yes (42), No (109) 
DM  Yes (90), No (61) Electrolyte Disturb. Yes (39), No (112) 
HTN Yes (137), No (14)CHD Yes (45), No (106) 
DLP Yes (112), No (39)Polypharmacy Yes (135), No (16) 
Smoker Yes (3), No (148)Matching Mgfr Yes (45), No (85) 
Anemia Yes (48), No (103) 
Output  
Estimate Dosing Response CG (85), MDRD (66) 

ABW; actual body weight, IBW; ideal body weight, SCr; serum creatinine, DM; diabetes mellitus, HTN, hypertension, DLP; dyslipidemia, CHD; 
congenital heart disease *Continuous variables as Median (Range), Categoric variables as group (count) 

 

Table 2: Most common drugs as an input variable 

Drug Count 

Bisoprolol 22 

Trimetazidine 11 

Atenolol 9 

Sitagliptin/Metformin 8 

Sitagliptin 5 

Metformin 4 

Others 8 

 

Sample size 

For the primary parameter of interest which was matched the 
proportion of the superiority of CG vs. MDRD, a free online tool 
was used, namely, (Satulatorbeta), which was accessed on January 
11th, 2019 (URL: http://statulator.com/SampleSize/ss2PP.html) 
to calculate the required sample size. Assuming that 45% and 55% 
of the pairs are superior for either CG or MDRD, respectively, the 
correlation between paired observation was 99% (almost 100%) 

and after applying continuity correction, the study would require a 
sample size of 19 pairs to achieve a power of 80% and a two-sided 
significance of 5% for detecting a difference of 0.10 between 
marginal proportions. Predicting a dropout rate of about 20%, 24 
such pairs were required to detect the 10% difference. 

Artificial neural network model 

We constructed our ANN model by using Microsoft Excel add-in 
(Microsoft Corp., Redmond, WA), Neural Tools, version 7.6.0 



Aljasmi et al. 
Int J Pharm Pharm Sci, Vol 11, Issue 12, 5-9 

7 

(Palisade Corp., Ithaca, NY). Input nodes consisted of 15 categorical 
and 9 continuous variables. We replaced missing input values (<1%) 
with medians and the most common classes for continuous and 
categorical variables, respectively. The ANN model incorporated one 
outcome; namely, superior renal function estimate (CG or MDRD). 
Therefore, our actual ANN structure would look something like that 
shown in fig. 1. This is a probabilistic neural network with 24-input 
layer, two hidden layers; one for the 151 cases, and the second for 
two categories of the outcome and a final output layer. Our 
combined dataset of 151 cases was divided as follows: 8 cases for 
validation or live prediction, and the remaining cases randomly 
assigned to training (80%) or internal validation or testing (20%). 
Live prediction or validation cases are cases that our ANN did not 
encounter before, i.e. the outputs in these cases are not known to the 
ANN. Training data are known and used in the training and fitting of 
the ANN. Whereas the testing or internal validation dataset is data 
known to the ANN which the ANN does not use in the training but 
rather it uses it in optimizing the model to new data with known 
output. The 80/20 division of the data training/testing gave the best 
ANN results. The 20% testing set prevents a problem known as 
overtraining or over-fitting, which is simply an ANN that is just 
trained to classify known data but not new one. We enabled all 
possible stop conditions: 2 h of training, 1,000,000 trials, and error 
change of less than 1% within 60 min. Neural Tools version 7.6.0 
generated variable impact (VI) for each input used in the training 
and validation of a given ANN. VI is a percentage that represents 
overall contribution of a given variable to the predicted outcome in 
the model. Furthermore, we reassigned inputs to study the effect of 
these modified values on outcomes by live predictions. Therefore, 
we were able to completely describe the ANN and role of individual 
variables including the drug in our model. 

Statistical analyses 

We studied multivariate for all outcome in one of two ways: 
reassignment of inputs and subgroup analyses. We applied all 
univariate statistical tests. We applied v2 or Fisher exact tests, as 
indicated, to evaluate statistical significance in case of unpaired 
categoric data. McNamara’s test used for paired categoric data. 
Unpaired and paired, 2-tailed, Student t-tests used as indicated to 
evaluate significance for continuous variables. Nonparametric tests 
were implemented when normality assumptions failed. A p-value of 
less than 0.05 was considered statistically significant. All statistical 

tests were performed by using SPSS, version 15.0.1, for Windows 
(IBM, Somers, NY). Variables included in the study were identified, 
measured and evaluated only from the sample population and did not 
include all possible variables that may affect the optimal dosing method. 

RESULTS 

Artificial neural network model pearls 

ANN model convergence 

Here Our ANN training converged to the best model after 261 trials 
(epochs) and in less than 1 minute. Actual numbers of cases used in 
training, testing and validation were 114, 29, and 8, respectively. 
Error reduction beyond 1% ceased and resulted in the auto-stop of 
the training process.  

Best ANN performance 

Our best ANN model performed to a quite acceptable level of 
accuracy. First for training data, the ANN model performed 
completely accurate with less zero cases with the probability of 
more than 80% of incorrect predictions. As far as testing and 
prediction data, the model performed quite favorably to no model 
with only 22% of bad predictions at a probability of more than 80%. 
Overall performance for the entire dataset is accurate to 91% of the 
cases. So the best ANN model can correctly classify the case into the 
best renal function estimate in 91% of the scenarios. The net would 
still classify most cases to CG as the best dosing method (79 vs. 72).  

Effect of varying the probability of prediction on the accuracy of 
the prediction 

Varying the probability of prediction, we were able to identify the 
cutoff probability at which the ANN performance is maximized. This 
probability was 85% and the top performance was slightly above 93%.  

Variable impacts 

Creatinine levels and CKD staging were the most important factors 
in determining the best dosing method CG versus MDRD (combined 
VI of above 51%). Ideal and actual body weights were second 
(combined VI of 24%). Whereas drug class or the specific drug was a 
third important factor (14%). Comorbidities had an insignificant 
contribution to the prediction of the best renal estimate (all VI less 
than 1%). These findings determining which renal function estimate 
is linked to the optimal drug dosing in our patient population (fig. 3). 

 

 

Fig. 3: Variable impacts for the best ANN model 
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Reassignment analyses 

We have attempted multiple reassignment analyses to the data to 
study the effect of the various variables and to know whether their 
effects are stable or fixed. For example, if we keep all the inputs 
constant and just change all medications to bisoprolol how will that 
change the predictions the model make? Or if we feed the patterns 
we had in the previous sections for CG or MDRD superiority, how 
will that modify the model predictions? Once again the most stable 
and significant impact was seen for CKD Stage, followed by weight, 
and thirdly by drugs. Let us take Bisoprolol as an example. If we 

consider that all the patients have the drug bisoprolol to adjust, 
there will be 1 more case requiring dosing by CG to optimal clinical 
response. In detail, three patients will shift optimal dosing from 
MDRD to CG and 2 from CG to MDRD. If we consider CKD stage, 
assume we chose that all patients would have the same CKD stages 
in pattern 1 (table 3). In this case, there will be 10 patients shifting 
from CG to MDRD and 19 from MDRD to CG. Changing all patients to 
morbidly obese resulted in 9 shifting to MDRD and to CG. On a 
matched case-control McNemar test none of these changes 
mentioned above reach statistical significance. This means that the 
input variables are almost in a state of equilibrium. 

 

Table 3: Interesting patterns with exclusive superiority of one renal dose estimation method 

Pattern Algorithm N ∆ IBW CG stage MDRD stage Superiority 
Phase I  ‡     
1 14 >56 3B 3 CG 
2 4 <61 3A or 5 2 or 4 MDRD 
3 4 <61 5 4 MDRD 
Phase II      
1 17 >56 3B 3 CG 
2* 1 <61 3A or 5 2 or 4 MDRD 
3** 0 <61 5 4 - 

N; Number of cases with the pattern, IBW; Ideal Body Weight, HTN; Hypertension, CG CKD Stage; Chronic Kidney Diseases stage according to 
Cockcroft-Gault equation, MDRD CKD Stage; Chronic Kidney Disease stage according to Modification of Diet in Renal Disease Equation. *The one 
case found in this pattern was a trimetazidine case with both hypertension and polypharmacy. **No cases with this pattern were seen in the 
external validation set. 

 

DISCUSSION 

Pharmacotherapy assessment in chronic renal disease (PAIR) 
criteria is a validated tool to assess medication safety and use issues 
in patients with CKD. It is noteworthy that inappropriate dosage 
comprised more than one-third of the drug-related problems (DRPs) 
in the PAIR criteria [27]. Another study conducted in the residents of 
aged care facilities; it has shown that DRPs were mostly dose-related 
[28]. Previous studies have shown that CG and MDRD perform better 
with varied scenarios [29-32]. However, the study on meropenem 
found no difference between CG and MDRD [33]. 

Readers should note our key findings compared with that of Breton 
et al. [34]. They simply showed that use of CG is associated with 
more dose adjustments overall in the population of elderly patients 
with renal impairment. According to the current findings, these risk 
factors are male sex, 18 to 65 y old, obesity, hypoalbuminemia, and 
CKD stages III, IV, V, and sometimes II. Some of these sources of 
variability were well established and studied as summarized by 
Lascano and Poggio [35]. However, multiple other factors may be 
involved as discussed by Cockcroft and Gault [36-38]. Dersch and 
McCormack correctly concluded that dosage selection in renal 
patients must be a clinical activity that ought to be individualized 
[39]. Nevertheless, real-life studies can help determine whether 
using CG or MDRD is superior empirically. Individual patient 
response and sound clinical judgment would then pave the way for 
careful escalation or de-escalation of therapy. 

We have shown the patterns of exclusive superiority of CG and 
others for MDRD. Out of total 151 cases we had about 40 cases 
(26.5%) that can be accurately dosed to optimal clinical response 
with CG or MDRD right from the start. Although this percentage is 
small, it is quite significant compared to completely chaotic dosing. 
Our ANN improved dramatically on the above fig. With our best 
ANN, we can dose slightly above 80% of testing cases and 75% of 
totally new cases with the best renal function estimate. We can 
actually dose slightly above 93% of the whole set with the right 
method immediately without the need for trial and error or 
continuous shifting between CG and MDRD derived doses. These 
findings are extremely important as we can now accurately choose 
the optimal dose and not wait until the 4th or the 5th

LIMITATIONS 

 follow up 
encounter to reach the right dose. This is the first ANN modeling of 
the drug dosing problem and the optimal renal function estimate 

method. With our model, we can be extremely confident about the 
right dose in CKD patients for the vast majority of cases. 

The study took into consideration some of the comorbidities that 
may affect the function of the kidney but didn’t cover all possible 
chronic illnesses that may affect kidney function. 

The study population is mainly collected over a period of 12 mo, no 
randomization could have been done or stratification to even out all 
other variables and confounders. 

In our study, we focused on the available prediction variables in our 
population to anticipate the best method to estimate kidney function 
and adjust drug doses. The results needs to be validated in a more 
controlled study to generalize it. 

We have excluded critically ill patients from the study population as 
it may undermine the assessment of creatinine clearance, moreover 
fluctuation in the kidney function is affecting the validity of the 
methods used. 

CONCLUSION 

We are sure that among the many variables that affect the optimal 
dosing method, the top three are probably CKD staging, weight, and 
the drug in question. A more sophisticated model is required to 
factor-in all possible variables in order to reach the most 
appropriate dose for renal patients. 
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