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ABSTRACT 

Objective: To develop and characterize ginger oil loaded solid lipid nanoparticles (SLN) for enhancement of its stability.  

Methods: Ginger oil loaded SLNs were prepared in four different batches by double emulsification method using different concentrations of soya 

lecithin and Tween 80. Further, these batches were characterized for particle size, zeta potential, drug entrapment efficiency and in vitro release 

study. After observing the results, batch F4 was further characterized by Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron 

Spectroscopy (TEM) and Differential Scanning Calorimetry (DSC). In addition the optimized batch was subjected to anti-microbial study. Finally, 

stability studies were done by storing the F4 formulation at accelerated condition, room temperature, refrigerated temperature and photostability 

were performed by exposing the formulation to UV/fluorescence lamp for 6 mo.  

Results: The encapsulation efficiency of various batches of SLNs was in the range of 79.75 to 90.24%. The size ranges varied between 50 to 1000 

nm. Zeta potential of all formulations was found to be in the range of-44.52 to-49.37 mV. The FTIR spectra of optimized F4 batch indicated no 

significant structural changes or complexation reactions between drug and excipients. Moreover, TEM image of displayed spherical shape with 

smooth surface. In vitro drug release study exhibited 95% drug release up to 12 h which indicated suitability of formulation. Thus F4 batch 

formulation stored at room temperature and refrigerated conditions was found most stable while, accelerated and photostability samples were 

found to be most susceptible in comparison.  

Conclusion: The physicochemical stability of ginger oil extract was enhanced by loading it into solid lipid nanocarriers; the resulting SLNs also 

showed good antimicrobial potential against Klebsiella pneumonia throughout storage conditions. 
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INTRODUCTION 

Natural products have been used abundantly from ancient times due 

to their rich Phyto-constituents and lesser side effects [1]. The 

products from natural origin having complex mixtures are derived 

as raw or processed part of plant [2]. Most of the medicinal plants 

and phyto-preparations have been used in therapy and prevention 

of various human diseases, including the cardiovascular, 

gastrointestinal, nervous system, skin disorder and cancer [3]. 

Amongst the millions of medicinal products, Ginger (Zingiber 

officinale Roscoe, Zingeberaceae) is the one of the important prime 

herb in Ayurvedic, Chinese and Unani herbal medicines system. 

Since ancient times, it has been potentially used for the treatment of 

rheumatism, nervous disorders, gingivitis, toothache, asthma, 

stroke, constipation and diabetes [4]. Moreover, ginger had shown 

its effect in the prevention of post-operative nausea and vomiting 

without having significant gastric emptying and against cytokines 

secreted at the site of inflammation [5, 6]. In addition to this, ginger 

had proven its potential in emesis, hyperemesis gravidarum [7], 

motion sickness [8] and cancer chemotherapy [9]. 

Ginger is found to be a rich source of volatile oils, resinous matter, 

starch and mucilage [1]. It consists of about three percent of a fragrant 

essential oil, sesquiterpenoids in smaller amounts and a small 

monoterpenoid fraction [10]. The pungent principles of ginger 

produced hot sensation in the mouth and it was due to the occurrence 

of oleoresin in the form of gingerols, shogaols, paradols and 

zingerones [11]. 

Due to the increasing demand of ginger and its products in local and 

international markets, major emphasis was given on the 

development of stable formulation of ginger oil. However, the 

formulations like ginger oil loaded emulsion were found susceptible 

to degradation, thus having less shelf life. To increase the shelf-life 

therefore, there is the needs of proper formulation of ginger oil like 

SLN, which might enhance its stability. 

Solid lipid nanoparticles (SLNs) are lipid-based submicron-sized 

colloidal carriers systems and considered to amalgamate advantages 

of polymeric nanoparticles, liposomes and emulsions 

simultaneously decreasing their individual drawbacks [12-14]. Solid 

lipid core matrix present in SLNs can solubilize lipophilic molecules. 

The lipid core is stabilized by the use of surfactants (emulsifiers). 

There is the presence of physiological and compatible lipids with a 

high melting point as the solid core, which is coated by non-toxic 

amphiphilic surfactants as the outer shell. The advantage of SLN 

formulation lies in their submicron size range (50-1000 nm) and 

existence in the solid-state at both body and room temperatures 

[15]. Number of unique properties of SLNs makes them the 

convincing option for improving the performance of 

pharmaceuticals, nutraceuticals [16]. 

The stability testing of Solid lipid nanoparticles is equally important 

as it has the following potential applications in quality attributes like 

compatibility of the container closure system, comparability 

assessment after manufacturing changes, expiration dating, stability 

data and product specification. 

Thus above study was aimed to develop ginger oil loaded solid lipid 

nanoparticles and demonstrate the stability of the formulation 

under accelerated conditions, room temperature, refrigerated and 

photostability conditions. It was expected that shelf life of ginger oil 

will be enhanced and further, the formulation was also studied for 

antimicrobial activity. 
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MATERIALS AND METHODS 

Materials 

Ginger Volatile oil was obtained as a gift sample from Nisarg Biotec, 
Satara. Soya lecithin was purchased from VAV life sciences, Mumbai. 
Cholesterol was obtained from Loba Chemie and Polyvinyl alcohol 
from SD Lab, Mumbai. Potassium dihydrogen phosphate, KBr IR 
grade, NaOH Pellets, Dichloromethane, Tween 80 were purchased 
from Merck specialties Pvt. Ltd. Methanol was obtained from 
Molyche Molychem Ltd. and Ethanol from Changshu Yangyan 
Chemicals, China. 

Methods 

Preparation of ginger oil loaded solid lipid nanoparticles 

Double emulsification method was used to prepare ginger oil loaded 

SLNs. Soya lecithin and cholesterol as lipids while low molecular 

weight PVA as hydrophilic polymers was chosen after preliminary 

trials for the selection of polymers. Ginger oil was dissolved in 

methanol while soya lecithin and cholesterol were dissolved in 

dichloromethane. Both solutions were stirred for 30 min to 

solubilize polymers and drug. Then organic solution was added 

dropwise to the aqueous portion by syringe. Tween 80 was added as 

stabilizer and homogenized for 10 min. Later the white cloudy 

primary emulsion was poured into 2% PVA solution and 

homogenized for an additional 5 min. The resultant w/o/w emulsion 

was stored at room temperature and the solvent was evaporated in 

rotavac. Further formulation was sonicated on high-intensity probe 

sonicator for 5 min to reduce the size. The stable emulsion was 

freeze-dried at-80 °C under reduced pressure and lyophilized to get 

SLNs [17, 18]. 

Characterization of SLN 

Particle size determination 

Particle size analysis was performed by using the laser diffraction 

technique (Malvern 2000 SM, Instruments, UK). The particle size 

measurements were carried out at a 90 ° scattering angle. The SLN 

sample was dispersed in distilled water and the average particle size 

was determined. The data presented was mean values of three 

independent samples produced under identical production 

conditions.

 

Table 1: Formulation of ginger oil loaded solid lipid nanoparticles 

Ingredients  F1  F2  F3  F4  

Ginger volatile oil  20 mg  20 mg  20 mg  20 mg  

Soya lecithin 20 mg  40 mg  50 mg  100 mg  

Cholesterol  10 mg  10 mg  10 mg  10 mg  

Dichloromethane  10 ml  10 ml  10 ml  10 ml  

Tween 80 1%  2%  3%  4%  

PVA  2%  2%  2%  2%  

Water  q. S q. S q. S q. S 

 

Zeta potential 

Photon Correlation Spectroscopy (PCS) (Malvern Zetasizer UK and 

ZEN 3600) was used to determine zeta potential of SLNs [19]. The 

samples were diluted in the ratio of 1:20 with deionized water. All 

results correspond to the average±SD of three separate experiments at 

25 °C. 

Determination of drug entrapment efficiency 

The entrapment efficiency was calculated by using 2 g of 

formulation. The solution was centrifuged at 12000 rpm for 20 min. 

Then supernatant fluid was collected and passed through the 

membrane filter. 1 ml of supernatant was then taken and diluted to 

10 ml with ethanol. The supernatant was assayed 

spectrophotometrically at 230 nm [17].  

Encapsulation efficiency or the entrapment efficiency was 

determined by using the formula given below:  

100/% ∗= WACAEE  

CA is the total concentration of ginger oil loaded solid lipid 

nanoparticles;  

WA is the total amount of ginger oil added;  

Drug content 

The drug content of SLN was determined by dissolving SLN solution 

in ethanol and the absorbance by UV visible spectrophotometer at 

230 nm. The drug content was calculated as 

100)/(% ∗∗= WAVACADC  

Where:  

DC is drug content 

CA is the total concentration of ginger oil loaded solid lipid 

nanoparticles;  

WA is the theoretical amount of ginger oil added;  

VA is the volume of solid lipid nanoparticles. 

In vitro release study 

In vitro release studies were performed using the dialysis bag 

method, modified to maintain a sink condition and achieve 

satisfactory reproducibility. The dialysis bag was soaked in 

deionized water for 12 h before use. Ginger oil loaded SLN 

dispersion was first poured into the dialysis bag with the two ends 

fixed by a thread and placed into the preheated dissolution media 

(phosphate buffer pH 7.4) placed in a beaker. The beaker was 

placed on a magnetic stirrer. At fixed time intervals of 1 hour 

samples were withdrawn for analysis and an equal volume of fresh 

dissolution medium was added until up to 12 h. The samples were 

filtered in membrane filter (0.22 ᶙm) it was analyzed by using a 

UV Spectrophotometer at a λmax of 230 nm against phosphate 

buffer of pH 7.4 as blank [20]. 

Anti-microbial studies using well diffusion method 

Well diffusion method described by Perez et al. was used for 

assessment of antibacterial activity of ginger oil loaded SLNs [21]. 

Samples of SLNs and standards were prepared using mixture of 

ethanol in deionized water. Nutrient broth was used for the 

preparation of culture of pathogenic bacteria (Hi media, India). 1% 

of pathogenic bacteria (109 CFU/ml) were added and mixed in 

Nutrient Agar at 40 °C. NA with 1% of pathogenic bacteria was 

poured to Petri plates. Wells were prepared by sterile cork borer 

and left to dry at room temperature. After that, prepared SLNs and 

standards formulations (5 mg/ml) were poured to the wells 

individually and kept at 37±2 °C for 24 h. Inhibition zone diameter 

was carefully measured, and values were expressed as mean with 

standard deviation. The experiment was done in triplicate. Further 

antimicrobial potential of F4 formulation stored at different stability 

conditions was estimated at the end of six months using a similar 

procedure as stated above. 

Optimization of formulation 

After observing the desired results of particle size, zeta potential, drug 

content and entrapment efficiency, the final batch was optimized. 
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IR spectrum of SLN 

The samples were mixed with 100 mg of potassium bromide (KBr). 

The samples were compressed to disc by applying the pressure of 5 

tons for 3 min in a hydraulic press. The prepared pellets were placed 

in the sample cell and the spectrums were analyzed in the region of 

4000-400 cm-1. By comparing the spectrums of ginger oil and 

formulation, the compatibility study was performed. 

Surface morphology 

Surface morphology of solid lipid nanoparticles loaded ginger oil was 
done by Transmission Electron Microscope (TEM) [22]. A small amount 
of SLN was taken in the metal stub. The stub was coated with conductive 
gold by Hitachi 1010 ion sputter and observed under Hitachi 3000 N 
Transmission electron microscope (JSM 5610 LV SEM, JEOL, Japan) 
chamber. The image was scanned at an acceleration voltage of 20 kV 
with a chamber pressure of 0.8 mmHg. 

Differential scanning calorimetry 

The thermal characteristics were determined using a differential 

scanning calorimeter (DSC Mettler Toledo).  

Approximately 10 mg of the samples were placed in aluminum 

pans with lids and heated. An empty aluminum pan was used as 

the reference. Differential scanning calorimetric curves were 

recorded in pure ultrahigh dry nitrogen across a temperature range 

of 30 °C–180 °C, with a constant linear heating rate of 10 °C per 

minute. Finally, the enthalpies were calculated using the Mettler Star 

software. 

Stability studies 

Stability studies were carried out as per ICH norms for six months 

using Programmable environmental test chambers (Thermolabs 

Instruments ltd.). The optimized formulation (F4) was packed in 

amber-colored vials and closed with airtight closures and stored 

for six months under different conditions of temperature and/light 

and labeled according to storage conditions. Samples were 

analyzed every month and were evaluated for appearance, pH, 

polydispersity index and entrapment efficacy up to the fifth 

month. At the end of the sixth month the samples were analyzed 

for particle size, antimicrobial activity, in vitro dissolution study 

and entrapment efficiency.  

 

Table 2: Form codes of an optimized batch for different storage condition 

S. No.   Test conditions  Temperature conditions  Form code  

1  Accelerated 40 °C±2 °C/75%±5% RH  A 

2 Room temperature 25 °C±2  B 

3 Refrigerated <4 °C±1   C 

4 Photo Stability UV/fluorescence lamp  D 

 

Phase separation study 

Phase separation study was carried out at a storage period of 1, 3, 

and 6 mo to check compatibility and stability of formulations by 

using distilled water and phosphate buffer saline.0.5 ml of each test 

sample was added to 5 ml of distilled water in the centrifuge tube 

and it was centrifuged at 4000 rpm for about 10 min. The study was 

repeated using saline phosphate buffer instead of phosphate buffer. 

It was visually observed after 1 hr of centrifugation for any phase 

separation or turbidity. 

RESULTS  

Characterization of SLNs 

Particle size 

Particle sizes of SLNs were observed in the range of 200 to 1000 nm, 

which was mostly affected by the amount of Tween 80 (table 3). The 

particle size distribution of batch F4 ford(10%), d(50%) and d(90%) 

were found to be 71 nm,109 nm and 182 nm, respectively, while the 

polydispersity index was found to be 0.644 respectively [23]. 

Particle size was impacted by increased concentration of surfactant 

as at higher concentration, the amount of surfactant was sufficient to 

cover primary emulsion [24, 25]. 

Zeta potential determination 

Zeta potential of four batches was observed in the range of-44.52 to-
49.37 indicating stability and charge distribution (table 3). Negative 
charge was probably due to the outer shell formed by nonionic PVA. 

Entrapment efficiency 

The entrapment efficiency of the ginger oil loaded SLNs was in the 
range of 79 to 90% (table 3), which were mainly influenced by the 
concentration of lipid and surfactant. Entrapment of drug was 
observed to be increasing with the increasing concentration of 
Tween 80 and soya lecithin, which might be responsible for the 
prevention of leaching of ginger oil from SLNs [24]. 

Drug content 

The drug content of the ginger oil loaded SLN was in the range of 82 to 
94% (table 3). Drug content was mainly influenced by the concentration 
of tween 80, which is stabilizer and soya lecithin with the drug for the 
formation of core and core modification in preparation of SLN. 

 

Table 3: Particle sizes, polydispersity index, zeta potential, drug content and entrapment efficiency of F1 to F4 formulation 

Batch  Particle size (nm)  Polydispersity index (PDI) Zeta potential Drug content (%) Entrapment efficiency (%) 

F1  209±2 0.984±0.06 -44.52±3.1 82.21±2.3 79.75±0.85 

F2  197±3  0.913±0.09 -47.28±3.2 87.08±3.5 86.02±0.75 

F3  187±2  0.785±0.21 -47.93±4.2 90.18±3.6 89.05±0.81 

F4  182±2  0.644±0.22 -49.37±3.9 94.41±2.8 90.24±0.54 

(n=3, mean±SD) 

 

In vitro drug release study 

The drug release of all the formulations was studied. The effect of 

the polymer ratio on the release of the drug from the SLN was 

studied and compared within four batches. The F4 batch gives better 

drug release than other batches. The drug release of all formulations 

(F1-F4) is shown in fig. 1. The solid lipid nanoparticles show an 

initial burst release (1 h) of 32.76-41.53.05%. The F4 formulation 

depicted high drug release due to the high concentration of lipid and 

surfactant ratio. At the end of 12 h, the percentage of drug release 

was observed around 95.22%: the F4 formulations depicted higher 

and prolonged drug release over other formulations. 

Optimization of formulation 

After observing the desired results of particle size, zeta potential, 

drug content and entrapment efficiency F4 batch were selected to 

carry out further stability studies. 
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Fig. 1: Cumulative release of ginger oil loaded SLNs of F1, F2, F3 and F4 formulations, (n=3, mean±SD) 

 

 

Fig. 2: Particle size distribution of an optimized batch 

 

 

Fig. 3: Zeta potential determination of optimized batch 

  

 

Fig. 4: FTIR spectra of (a) ginger oil (b) formulation 
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Fourier transforms infrared spectroscopy 

The characteristic peaks indicating the functional groups such as 
2931 cm-1 for OH stretch; H-bonded and 1370 cm-1CH3 bond 
which was essential for activity, remained unaltered and lower 
in the intensity in the formulation spectra. Pure drug indicated a 
prominent peak at wave number 1270-1718 cm-1. Formulation 
F4 showed all characteristic peaks of drug indicating there was 
no chemical interaction between drug and components selected. 
However, peaks in the formulation were observed to have 
reduced intensity. 

Transmission electron microscopy 

The solid lipid nanoparticles loaded ginger oil optimized (F4) 
Formulation were observed to be a spherical shape with smooth 
surface (fig. 5). The credit of formation of spherical shaped SLNs 
might be given to partitioning of organic solvent into aqueous 
medium followed by lipid precipitation around drug and 
simultaneous evaporation of solvent entrapped. 

Differential scanning calorimetry 

In (fig. 6) 16 graph (b) showed a broad endothermic peak at 103 °C. 

Another graph (a) is the formulation graph; this graph also showed 

an endothermic peak at 101 °C. Therefore, that formulation was 

claimed to be compatible with the polymer. From these results it 

was clear that the formulation was stable, as there was no significant 

change in its thermal properties [26] 

Antimicrobial study 

The degree of the zone of inhibition was mainly dependent on the 

type of bacteria as well as the type of formulation. F4 formulation 

depicted a bigger diameter of growth inhibitory zones compared 

to others [fig. 7]. Among the bacterial strains, Klebsiella 

pneumoniae was easily inhibited by all the tested samples followed 

by Staphylococcus aureus while Escherichia coli were found most 

difficult to inhibit [27]. 

 

Fig. 5: TEM image of optimized formulation 

 

 

Fig. 6: Thermo-grams of formulation and soya lecithin 

  

 

Fig. 7: Diameters of the zone of inhibition of F1 to F4 batches against Staphylococcus aureus, Klebsiella pneumoniae, E. Coli (n=3, 

mean±SD), STD (1): Ciprofloxacin STD (2): Ampicillin 

 

Stability studies 

Physical changes of formulation during stability 

The stability studies on optimized formulation code F4 were carried out 

for a period of six months (table 4). The F4 batch was studied for 

physical characteristics at different stability storage conditions at one-

month intervals. In accelerated and photostability conditions, it was seen 

that up to month four there was no change in the physical characters. 

However, at the end of month five and six, formulations started to show 

some visible particles. However, the slight phase separation was 

observed in accelerated condition and the complete phase was 

separated in photostability condition. The appearance was still whitish 

translucent. In-room temperature and refrigerated condition, there was 

no any change in the physical characters at the end of six months. 
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Table 4: Physical changes in optimized batch in different stability conditions 

Form code Initial 1st month 2ndmonth 3rd month 4thmonth 5th month 6thmonth 

A  

White and  

clear liquid 

+ + + + _ _ 

B + + + + + + 

C + + + + + + 

D + + + + _ _ 

Note: +means there was no change 

 

Determination of the effect of pH on stability 

pH of formulation F4 was measured at an interval of one month for 

about six months and comparison was made between F4 batch 

stored at different stability conditions (table 5). This study revealed 

that the F4 batch stored at room temp was stable up to six months 

while those stored at refrigerated temp was stable up to five months. 

The F4 batch stored at accelerated and photostability temp was 

stable up to three months, wherein, the pH had changed from 7.2 to 

7.9.
 

Table 5: Changes in pH during different stability conditions 

Formulation codes Initial 1stMonth 3rd Month 5thMonth 

A  

7.2±0.1 

7.2±0.2 7.5±0.1 7.9±0.2 

B 7.2±0.3 7.2±0.2 7.2±0.2 

C 7.2±0.2 7.2±0.2 7.3±0.3 

D 7.2±0.2 7.4±0.3 7.8±0.2 

(n=3, mean±SD) 

 

Determination of effect of particle size distribution on stability 

Polydispersity index for F4 batch was studied for 6 mo. It was 

observed that the polydispersity index was gradually increased from 

0.644 to 0.824 and 0.724 for accelerated and room temperature, 

while it was altered to 0.741 and 0.913 for refrigerated and photo-

stability conditions. Entrapment efficiency was observed to be least 

in D batch at the end of the 5th month. 
 

Table 6: Particle sizes of optimized formulation stored at different stability conditions 

Formulation codes Initial 1stMonth 3rd Month 5th Month 

A  

0.644±0.22 

0.640±0.14 0.720±0.10 0.824±0.14 

B 0.645±0.12 0.665±0.14 0.724±0.21 

C 0.653±0.20 0.682±0.22 0.741±0.12 

D 0.698±0.21 0.834±0.16 0.913±0.15 

(n=3, mean±SD) 
 

Table 7: Entrapment efficiency of optimized formulation stored at different stability conditions 

Formulation codes Initial 1stMonth 3rd Month 5thMonth 

A  

90.24±0.54 

89.25±0.32 86.92±0.21 85.47±0.25 

B 90.21±0.51 87.21±0.36 83.66±0.36 

C 89.21±0.36 84.32±0.24 82.36±0.42 

D 89.33±0.32 83.64±0.25 81.69±0.26 

(n=3, mean±SD) 

 

Phase separation study 

Phase separation study was carried out at a storage period of one, 

three and six months to check compatibility and stability of F4 batch 

formulation in distilled water and phosphate buffer saline (table 8 

and 9). It was found that F4 batch stored at accelerated and 

photostability exhibited phase separation end of the month; 

however, F4 batch stored at room temp and refrigerated did not 

show phase separation up to six month. In this study, F4 formulation 

batch stored at room temperature and refrigerated was found to be 

substantially stable as there was no phase separation and found to 

be clear. 
 

Table 8: Phase separation study in distilled water of optimized formulation stored at different stability conditions 

Formulation codes At the end of 1st month At the end of 3rd month At the end of 6th month 

A No phase separation No phase separation Phase separation 

B No phase separation No phase separation No phase separation 

C No phase separation No phase separation No phase separation 

D No phase separation Slightly phase separation Phase separation 

 

Table 9: Phase separation study in phosphate buffer saline of optimized formulation stored at different stability conditions 

Formulation codes At the end of1st month At the end of 3rd month At the end of 6th month 

A No phase separation No phase separation Phase separation and showed particles 

B No phase separation No phase separation No phase separation 

C No phase separation No phase separation No phase separation 

D No phase separation Slight phase separation and shown some 

particles 

Phase separation and shown some particles 
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Particle size, polydispersity index, entrapment efficiency, in 

vitro dissolution and antimicrobial activity at the end of six 

months 

Particle size of optimized batch stored at different stability 
conditions was observed in range of 194 to 235 nm, being higher for 
the accelerated condition. However, the polydispersity index value 

was higher in case of photo-stability condition ranging from 0.756 to 
0.989. Entrapment efficiency was reduced considerably in 
accelerated conditions, while antimicrobial activity was retained to a 
considerable extent at all storage conditions. Drug release studies 
revealed better drug release in formulation stored at room 
temperature and refrigerated stability conditions as compared to 
those at accelerated and photo-stability conditions [26]. 

 

Table 10: Particle sizes, polydispersity index and entrapment efficiencies of optimized formulation stored at different stability conditions 

at the end of 6 mo 

Formulation codes Particle size (nm) Polydispersity index Entrapment efficiency (%) 

A 235±3 0.951±0.05 76.86±0.87 

B 194±2 0.756±0.23 81.54±0.78 

C 220±1 0.799±0.12 80.87±0.58 

D 215±5 0.989±0.06 79.52±0.69 

(n=3, mean±SD) 

 

 

Fig. 8: Cumulative release of optimized formulation stored at different stability conditions, (n=3, mean±SD) 

 

 

Fig. 9: Diameters of zone of inhibition of F1 to F4 batches against Staphylococcus aureus, Klebsiella pneumoniae, E. Coli, (n=3, mean±SD), 

STD (1): Ciprofloxacin STD (2): Ampicillin 

 

DISCUSSION 

The solid lipid nanoparticles of ginger oil were formulated by a 

double emulsification technique. The interfacial tension between the 

phases was minimized with the help of Tween 80. The stability of 

formed w/o type emulsion was enabled by adding co-emulsifier PVA 

as a hardening agent. The entrapment efficiency was influenced by 

the increased concentration of Lecithin and Tween 80. The DSC and 

FTIR spectrums revealed an absence of drug and lipid 

incompatibility. Higher entrapment of ginger oil in lipid core was 

represented by F4 formulation owing to its higher lipid content. 

Tween 80 was key ingredient responsible for reducing interfacial 

tension during homogenization and approximate spherical shaped 

solid lipid nanoparticles. Moreover, the concentration of tween 80 

was found to be inversely related to particle size as at higher 

concentration, SLNs exhibited lesser size. At lower concentrations, 

due to the lower amount of surfactant, it was unable to cover the 

dispersion, thus giving system less stability [27]. Partitioning of 

organic solvent in an aqueous medium resulted in lipid precipitation 

around ginger oil. However, the entrapped organic solvent was 

evaporated, simultaneously assuming the formed SLNs of spherical 

shape. F4 formulation revealed the release of the drug over a 

prolonged period of time, with the complete release after 12 h. 

Interestingly initial burst release in the formulation was due to 
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adsorption of some amount of drug on the surface of SLNs, while 

hindering resistance of lipid shell around the drug could be claimed 

as one of the reasons for later sustained release [27]. Best fit model 

for drug release of ginger oil loaded SLNs was found to be 

Korsmeyer Peppas model with R2 value from 0.9939 to 0.9941, 

revealing combined diffusion and hydrogel relaxation as the 

mechanism of drug release [29]. Amongst all bacterial strains, 

highest antimicrobial activity was shown against Klebsiella 

pneumoniae and least against E. Coli [28]. 

Instability studies, slight phase separation was observed in 

accelerated condition due to increased kinetic energy of system, 

while in photo-stability condition, complete phase separation 

depicted susceptibility of SLNs to light. Polydispersity index, which 

is measure of heterogeneity of particle sizes, was observed to be 

increased again in accelerated and photo-stability condition, 

increased aggregation of particles due to collision due to more 

kinetic energy being the predicted reason behind.  

At the end of sixth month, particle size and polydispersity index was 

more in almost all formulations stored at different storage conditions 

being highest in photo-stability and accelerated conditions. Lower 

entrapment efficiency at the end of six months revealed leakage of 

drug molecules from lipid core. Antimicrobial activity was observed to 

be retained in formulations stored at all storage conditions, but was on 

similar line for accelerated and photo-stability conditions. Thus, 

enhanced solubility of ginger oil in lipid matrix and decreased 

electrostatic repulsion between dispersed particles contributed to the 

long-term stability of SLNs, compared to ginger oil alone [27, 30]. 

CONCLUSION 

In this study, the potential of SLNs dispersions as carriers for the 

delivery of ginger oil was exploited. Solid lipid Nanoparticles were 

prepared by the w/o/w type double emulsification method by using 

bio-acceptable lipids such as Cholesterol, soya lecithin and Tween 80 

as an emulsifier. Drug loaded SLNs revealed average diameters in 

the narrow colloidal size range, a good loading capacity and drug 

release. The present formulation of solid lipid nanoparticles loaded 

ginger oil extract was found to be in the nano-size range. The 

physicochemical stability of ginger oil was enhanced by loading into 

solid lipid nanocarriers within established specification maintaining 

its integrity, quality and activity throughout the storage conditions. 

Moreover, ginger oil loaded SLNs could serve as an antimicrobial 

agent by retaining its potential by means of an intact colloidal 

carrier system.  
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