

International Journal of Pharmacy and Pharmaceutical Sciences

Print ISSN: 2656-0097 | Online ISSN: 0975-1491

Vol 13, Issue 2, 2021

Original Article

OPTIMIZED AND VALIDATED SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF AMPICILLIN IN PHARMACEUTICAL FORMULATIONS

SK MANIRUL HAQUE

Department of Chemical and Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia Email: Haque_m@jic.edu.sa

Received: 17 Oct 2020, Revised and Accepted: 18 Dec 2020

ABSTRACT

Objective: A simple, precise, and accurate spectrophotometric method has been developed to determine Ampicillin in pharmaceutical formulations.

Methods: The proposed method, based on the carboxylic acid group reaction, present in Ampicillin with a mixture of KIO_3 and KI, form a yellowcolored product in an aqueous medium. The response was allowed to proceed at 25 ± 1 °C, and absorbance measured after 5 min against a reagent blank prepared simultaneously using a UV-Vis spectrophotometer. The parameters verified were specificity, linearity, linearity range, accuracy, precision, detection limit, quantitation limit, robustness, and ruggedness.

Results: The yellow-colored product was measured at 352 nm against the reagent blank using UV–Vis spectrophotometer. The linear dynamic range of concentration was $0.25-2.5 \mu$ g/ml with a correlation coefficient of 0.9999. The LOD, LOQ values to be 0.086 and 0.261 μ g/ml, respectively, for the proposed method. The percentage of recoveries was 98.27–100.89% with an acceptable relative standard deviation (±2%). The robustness and ruggedness values were excellent.

Conclusion: The ICH guidelines for pharmaceuticals and human use were followed and applied to validate the proposed method. The method was compared with available literature and found similar results that confirmed the reliability and effective way for Ampicillin's determination.

Keywords: Ampicillin, Potassium iodate, Potassium iodide, Spectrophotometer, Method development, Validation, Tablets

© 2021 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/) DOI: https://dx.doi.org/10.22159/ijpps.2021v13i2.40025. Journal homepage: https://innovareacademics.in/journals/index.php/ijpps.

INTRODUCTION

Ampicillin is semi-synthetic antibiotics with broad antimicrobial properties., chemically known as (2S,5R,6R)-6-([[2R)-2-amino-2-phenylacetyl]amino)3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylic acid (fig. 1). It is an amphoteric compound and acts as an aliphatic amino acid. It has been a therapeutic drug against many gram-positive microorganisms. It is still more active with gram-negative microorganisms due to its enhanced ability to penetrate the bacteria through the outer membrane.

Fig. 1: Structure of penicillin-type antibiotic drug, Ampicillin

Ampicillin is available in tablets, capsules, powder for oral suspension and injection as commercial usage since 1961 [1]. The extensive literature survey revealed that several analytical techniques, likely as high-performance liquid chromatography (HPLC) [2, 3], capillary electrophoresis (CE) [4, 5], Fouriertransform infrared spectroscopy (FTIR) [6] were available for the determination in bulk and pharmaceutical formulations. It can be quantified with liquid chromatography-mass spectrophotometry (LCMS) [7] and ultra-performance liquid chromatography-mass spectrophotometry (UPLC-MS) [8] in biological fluids. Most of the techniques are involved with the complicated procedure, extraction with toxic solvents, and expensive instrumentation and pretreatment of the sample before analysis. However, Ultraviolet-Visible (UV-Vis) spectrophotometer is a convenient technique for the study of pharmaceuticals. Generally, the quantification without any pretreatment procedure before analysis [9-13]. Ampicillin as well can be quantified in bulk and drugs [14, 15]. The presented paper describes a fast, sensitive, and economical method for determining Ampicillin in pharmaceutical formulations. The procedure was based on the reaction of a carboxylic acid group of Ampicillin with a mixture of potassium iodate (KIO₃) and potassium iodide (KI) to form a yellow-colored product in an aqueous medium at room temperature (25 °C), followed spectrophotometrically by measuring the absorbance at 352 nm.

MATERIALS AND METHODS

Apparatus

The spectrophotometer, Cecil (CE 7400, UK), with a 1 cm glass cell was applied to carry out all the spectral runs.

Materials and reagents

The pharmaceutical formulation products of Ampicillin such as Ampicyn 500 (Cipla Limited, India), Campicillin 250 (Cadila Pharmaceuticals, India), and Ampiclox 500 (GlaxoSmithKline, UK) were brought from the local pharmacy. Potassium iodate and potassium iodide purchased from Sigma Aldrich, USA, and prepared solutions in distilled water with 2.5×10^{-3} and 2.5×10^{-2} M, respectively.

Extraction of ampicillin from the dosage form

Ampicillin (500 mg/capsule) powder materials were transferred into a 250 ml volumetric flask and dissolved with distilled water. The separation was continued with column chromatography using silica gel as a stationary phase and water: methanol: glacial acetic acid (1.2: 8.5: 0.3 v/v/v) as mobile phase. The target compound was separated and dried as solid Ampicillin.

Standard Ampicillin solutions

The standard Ampicillin solution (50 $\mu g/ml)$ was prepared in distilled water and diluted as per the requirement.

Optimization of variables

The parameters were thoroughly studied related to the color development of the product. Therefore, several conditions were optimized during quantification and maintained their optimum value throughout the determination process.

Potassium iodate (KIO₃) concentration

The effect of volume of potassium iodate $(2.5 \times 10^{-3} \text{ M})$ was investigated in the range of 0.1–1.5 ml, keeping ampicillin (2.5 μ g/ml) and KI (1.25×10^{-3} M) as constant. The absorbance was increased with the increasing volume of KIO₃ and became steady at 1.1 ml. Further addition of work does not have any impact on the color development of the product. Therefore, 1.3 ml used as an optimum volume throughout the experiment for KIO₃.

Potassium iodide (KI) concentration

The effect of volume of potassium iodide (2.5×10^{-2} M) was investigated for product's color development in the range of 0.2–2.2 ml, keeping ampicillin ($2.5 \mu g/ml$) and KIO₃ (7.5×10^{-5} M) as constant. The maximum intensity of the colored product gave rise to 1.8 ml of KI, and a further increase in the volume did not affect the absorbance. Thus, the proposed procedure used 2 ml as constant throughout the experiment for KI.

The proposed procedure for the determination of Ampicillin

Into a series of 50 ml volumetric flasks, different volumes of Ampicillin (50 μ g/ml) corresponds to 0.25–2.50 μ g/ml added with 2 ml of KI (2.5×10⁻² M) and 1.3 ml of KIO₃ (2.5×10⁻³ M). The final volume was made up of distilled water and shook the mixture well enough to mix them properly. The reaction's equilibrium achieves after 5 min; therefore, 5 min is used as the equilibrium time for its determination. Absorbance was recorded for all standard samples at 352 nm and applied to construct a regression equation against

Ampicillin's initial concentrations [16]. The intraday and interday precision of the proposed methods were established by measuring Ampicillin's content at three different concentration levels (low, medium, and high) at 0.5. 1.25 and 2 μ g/ml within one day and five consecutive days, respectively. Ampicillin, with a known amount (0.5 μ g/ml) in dosage form, was spiked with 100%, 200%, and 300% of additional Ampicillin pure drug, respectively, and determine the accuracy, precision of the proposed method following the recommended procedure as ICH guidelines [17–19].

Analysis of pharmaceutical formulations

Two ampicillin (label claim: 250 mg) capsules were mixed with 250 ml distilled water and kept for 30 min after stirred. After filtration to recover the drugs completely, repeated the washing steps several times. This solution was used for further process and applied the above procedure to determine the Ampicillin in pharmaceutical formulations.

RESULTS AND DISCUSSION

Reaction with a mixture of iodide and iodate

The literature reported [20] iodine formed by the interaction between potassium iodate and potassium iodide due to organic and inorganic acid reaction by the below equation.

$$5 I + IO_3 + 6 H^+ \rightarrow 3 H_2O + 3 I_2$$

The liberated iodine reacted with excess iodide ions to yield a triiodide ion ($I_2+I \rightarrow I_3^-$), which absorbs maximally at 352 nm. It was the fundamental mechanism to develop a spectrophotometric method for Ampicillin as it contains–COOH group in its moiety. The reaction mechanism suggested in Scheme 1 as per the above reaction. The communicated process corresponds to Ampicillin (0.25–2.50 µg/ml) was reacted with 1.3 ml KIO₃ (fig.2) and 2 ml KIO₃ (fig. 3) mixture and formed yellow-colored triiodide ions.

Scheme 1: Formation of triiodide ion that measures spectrophotometrically at 352 nm

Fig. 2: Effect of the volume of potassium iodate (2.5×10⁻³ M) on the absorbance of the product, Ampicillin (2.5 µg/ml), and KI (1.25×10⁻³ M)

Fig. 3: Effect of the volume of potassium iodide (2.5×10⁻² M) on the absorbance of the product, Ampicillin (2.5 µg/ml), and KIO₃ (7.5×10⁻⁵ M)

Validation of proposed methods

Specificity

The proposed method's specificity was evaluated by preparing a synthetic mixture of bulk drugs with common excipients used in the tablet formulations. It observed that no interference of excipients during the quantification drug.

Linearity and linear range

Under the optimized experimental conditions, the absorbance and concentration were linear within the range of 0.25–2.5 μ g/ml (fig. 4). The statistical treatment of the data yielded the linear regression equation A = 0.0035+0.4227 C. The statistical regression data

provided the slope, intercept, detection limits, quantitation, and results summarized in table 1. All the parameters were important as per the guidelines and considered during the validation of the developed method.

Accuracy and precision

The intraday and interday precision have resulted in an Ampicillin concentration of 0.5, 1.25, and 2 μ g/ml (table 2). The % RSD was in the range of 0.24–1.81 % within±2%. The recovery studies of each concentration level established the accuracy of the method. The procedure's % recovery was in the range of 99.32–100.65 % (table 3) within the acceptable limit of 98–102%, as per ICH guidelines [17–19].

Fig. 4: Linearity of the proposed method

Fable 1: Optical an	d regression	characteristics of the	proposed method
---------------------	--------------	------------------------	-----------------

Parameters	Values
λ_{\max}	352 nm
Calibration equation	A = 0.0035+0.4227 C
Linear dynamic range (µg/ml)	0.25–2.5
Standard Deviation (S ₀)	1.1×10 ⁻²
Slope (m)	4.22×10 ⁻¹
Correlation coefficient (r ²)	0.9999
Detection limit (µg/ml)	0.086
Quantitation limit (µg/ml)	0.261

Table 2: Summary	y of accuracy and	precision result	ts of the pro	posed method
------------------	-------------------	------------------	---------------	--------------

Proposed method	Amount (µ	g/ml)	% Recovery	% RSD	
	Taken	Found±SD ^a			
Intraday	0.75	0.756±0.014	100.89	1.81	
	1.50	1.497±0.004	99.81	0.24	
	2.25	2.234±0.006	99.27	0.27	
Interday	0.75	0.741±0.014	98.78	1.84	
	1.50	1.502±0.005	100.12	0.328	
	2.25	2.231±0.01	99.17	0.441	

^aMean for five independent analyses, SD, standard deviation, RSD, relative standard deviation

Table 3: Summary of accuracy and precision results of the proposed method for ampicillin pharmaceutical formulations

Proposed method	Amount (µg/ml)		% RSD	% Recovery	
	Taken	Found±SD ^a			
Ampicyn-500	1.0	0.993±0.014	1.375	99.32	
Ampicyn-500	1.5	1.508 ± 0.004	0.239	100.65	
Ampicyn-500	2.0	2.000±0.002	0.118	100.01	
Campicilin-250	1.0	0.993±0.014	1.375	99.32	
Campicilin-250	1.5	1.508 ± 0.007	0.471	100.54	
Campicilin-250	2.0	2.001±0.001	0.068	100.05	
Ampiclox-500	1.0	0.993±0.014	1.375	99.32	
Ampiclox–500	1.5	1.508±0.004	0.239	100.65	
Ampiclox-500	2.0	2.000±0.002	0.118	100.01	

^aMean for five independent analyses, SD, standard deviation, RSD, relative standard deviation, ^bSAE, standard analytical error, ^cC. L., confidence limit at 95 % confidence level and 4 degrees of freedom (t = 2.776)

Robustness

The robustness study was performed at different laboratories. The due reason recorded the absorbance after 4.5 min and well continued for 5.5 min of reaction. The investigation resulted at 351 nm and 353 nm to check the method's robustness. The procedure's % recovery was in the range of 98.32–99.97 % and % RSD between 0.352–0.755 %, respectively, within the acceptable limit.

Ruggedness

The ruggedness test was conducted at three different concentration levels within the linearity range. The test was expressed in terms of %RSD, applied the same procedure using another UV-Vis spectrophotometer. The procedure's % recovery was within 98.5599.72 % and % RSD between 0.023–0.325 % within the acceptable limit of $\pm 2\%.$

Application of the proposed method

The proposed method was successfully developed and validated for the determination of Ampicillin in pharmaceutical formulations. The proposed method was compared with the reference method [3] using point and interval hypothesis tests. The calculated t-(paired) and F-values at 95% confidence level do not exceed the theoretical ones indicating any significant differences between the developed method's performances with the reference method (table 4). Table 4 showed that all samples of the drug's actual bias were smaller than $\pm 2\%$ and thus confirming that the proposed method was reliable with acceptable recovery.

Formulations	Proposed method Reference method					
	% Recovery	% RSD	t-and F ^b	$\theta_{Land} \theta_{U}^{c}$	% Recovery	% RSD
Ampicyn-500	99.91	0.25	t =0.016	$\theta_{L} = 0.989$	99.94	0.35
			F= 1.022	$\theta_{\rm U}$ =1.004		
Campicilin-250	99.93	0.16	t =0.121	$\theta_{L} = 0.984$	99.92	0.31
-			F= 1.83	θ_{U} =1.015		
Ampiclox-500	99.91	0.22	t =0.461	$\theta_{L} = 0.992$	99.81	0.55
-			F= 1.48	$\theta_{\rm U}$ =1.003		

Theoretical t-(ν = 8) and F-values (ν = 4, 4) at 95 % confidence level are 2.306 and 6.39, respectively. θ_L and θ_U are within the acceptable limits of ±2%.

CONCLUSION

The proposed UV-Vis technique is a simple, low-cost method and can easily be applied to Ampicillin's routine quality control sample analysis in bulk and pharmaceutical formulations. It has a more comprehensive dynamic range for the study with excellent accuracy and precision value. The proposed method does not require any laborious cleanup procedure before analysis and simple methodology for its determination. Therefore, it can easily accommodate in the laboratories of research, hospitals, and pharmaceutical industries for the quantification of Ampicillin in pure and pharmaceutical dosage forms.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

Single author and contributed all.

CONFLICT OF INTERESTS

The author report no conflicts of interest.

REFERENCES

1. Tadesse DA, Zhao S, Tong E, Ayers S, Singh A, Bartholomew MJ, *et al.* Antimicrobial drug resistance in escherichia coli f+ rom humans and food animals, United States, 1950–2002. Emerg Infect Dis 2012;18:741–9.

- Ahmed MS, Mohammed RH, Fadhil MA. RP-HPLC method validation for the determination of Ampicillin in Iraqi healthy volunteers serum. Int J Res Pharm Chem 2017;7:360–6.
- 3. Barot TG, Patidar K, Kshartri N, Vyas N. Development and validation of LC method for the determination of Ampicillin and dicloxacillin in pharmaceutical formulation using an experimental design. E J Chem 2009;6:955–64.
- Simon B, Hancu G, Gyeresi A. Application of capillary electrophoresis to the simultaneous determination and stability study of four extensively used penicillin derivatives. Brazilian J Pharma Sci 2014;50:521–7.
- Long C, Deng B, Sun S, Meng S. Simultaneous determination of chlortetracycline, Ampicillin and sarafloxacin in milk using capillary electrophoresis with electrochemiluminescence detection. Food Additives Contaminants Part A Chem Anal Control Exp Risk Assess 2017;34:24–31.
- Totoli EG, Salgado HRN. Development and validation of the quantitative analysis of ampicillin sodium in powder for injection by fourier-transform infrared spectroscopy (FT-IR). Phys Chem 2012;2:103–8.
- Chen L, Wang B, Diao Z, Zhao M, Xie K, Zhang P, Wang X, Zhang T, Wang J. Development and validation of an HPLC-ESI/MS/MS method for the determination of amoxicillin, its major

metabolites, and ampicillin residues in chicken tissues. Molecules 2019;24:2652.

- 8. Parker SL, Adnan S, Meija JLO, Paterson DL, Lipman J, Roberts JA, *et al.* A UHPLC–MS/MS method for the simultaneous determination of Ampicillin and sulbactam in human plasma and urine. Bioanal 2015;7:2311–9.
- Pallavi K, Babu PS, Babu GK. Development and validation of UV spectrophotometric method and RP-HPLC method for estimation of capecitabine in bulk and tablet dosage forms. Int J Appl Pharm 2016;8:24–9.
- 10. Madur S, Matole V, Kalshetti M. UV visible spectrophotometric method development and validation of dasatinib in bulk and solid dosage form. Int J Curr Pharm Res 2020;12:90–3.
- 11. Rai G, Kumar A. Screening and analysis of FTO gene polymorphism in north UP (India). J Critical Rev 2020;7:2274–80.
- 12. Supriya P, Madhavi LN, Rohith KBV, Ramana GV, Harini U, Pawar AKM. Development and validation of UV spectrophotometric and reversed-phase high-performance liquid chromatography-PDA methods for the estimation of alogliptin benzoate. Asian J Pharm Clin Res 2016;9:282-7.
- Khanchandani SS, Galgatte UC, Chaudhari PD. Development and validation of UV-visible spectroscopic method for estimation of rizatriptan benzoate in bulk and tablet dosage form. Asian J Pharm Clin Res 2013;6:113-6.

- 14. Ezeanokete CC, Ngwoke KG, Okoye FBC, Osadebe PO. Spectrophotometric determination of Ampicillin and cloxacillin in pure and fixed dosage forms through charge transfer complexation. Eur Chem Bull 2013;2:1009–12.
- 15. Misic IR, Miletic G, Mitic S, Mitic M, Marinkovic EP. A simple method for the ampicillin determination in pharmaceuticals and human urine. Chem Pharma Bull 2013;61:913–9.
- Ahmed AJ, Abdulla S, Yunusa U, Omar A, Haque SM. Development, computational studies and validation of spectrophotometric method of metformin hydrochloride in pharmaceutical formulations. J Chilean Chem Soc 2020;65:4895–9.
- United States Food and Drug Administration. Guideline for industry: text on validation of analytical procedures: ICH Q2A; 1995.
- United States Food and Drug Administration. Guidance for industry: Validation of analytical procedures: methodology, Q2B; 1996.
- International conference on the harmonization of the technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, validation of analytical procedures: text and methodology, Q2 (R1); 1996.
- Feigl F. Spot tests in the organic analysis. Chapter 3: Preliminary (Exploratory tests). 6th edition. Elsevier publishing company, Amsterdam; 1960. p. 117–8.