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ABSTRACT 

Objective: The study aimed to evaluate the critical physicochemical properties (lipophilicity, aqueous solubility, and degree of ionization) of 
atractylodin and β-eudesmol using in vitro testing.  

Methods: Lipophilicity (Log P and Log D) was determined using the shake-flask method (n-octanol/water partition). Aqueous solubility was 
determined using kinetic solubility assay in media with pH ranging from 1.2 to 7.4. The degree of ionization (pKa

Results: Log P and Log D values of 3.0-5.0 suggested moderate lipophilicity of both compounds. Both exhibited low aqueous solubility over the 
investigated pH range (0.08-0.93 and 1.97-32.48 μg/ml for atractylodin and β-eudesmol, respectively). Based on the pK

) was determined using the 
potentiometric titration method. 

a

Conclusion: Atractylodin and β-eudesmol are classified as BCS class II drugs. The physicochemical parameters of both compounds obtained from 
the current study will be further applied for in silico prediction of their ADME (absorption, distribution, metabolism, and excretion) properties. In 
addition, PBPK modeling will be used for the prediction of optimal dose regimens of the capsule formulation of the standardized extract of 
Atractylodes lancea for first-in-human (FIH) and phase II studies in patients with cholangiocarcinoma. 

 values of 9.63 
(atractylodin) and 9.12 (β-eudesmol), both are classified as basidic compounds.  
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INTRODUCTION 

Cholangiocarcinoma is a biliary tract cancer originating in the 
epithelium of the biliary tree. It is becoming an increasingly common 
form of liver-associated cancer with rising incidence worldwide. The 
highest incidence and mortality rate is reported in Asia, particularly 
in the Northeastern region of Thailand [1, 2]. The major problems 
in the control of cholangiocarcinoma are the lack of diagnostic tools 
for early cancer detection, as well as effective chemotherapeutic 
drugs [3]. There is a pressing need to search for alternative 
medicines that are effective, safe, and affordable for patients. 

Atractylodin and β-eudesmol are the major bioactive sesquiterpenoid 
components isolated from the rhizome of Atractylodes lancea. 
Recently, our group has demonstrated anti-cholangiocarcinoma 
potential and promising safety profiles of A. lancea, including its 
bioactive compounds in both in vitro and in vivo models [4-8]. The 
pharmacokinetic study in hamsters showed rapid absorption, 
distribution, and elimination of β-eudesmol. The maximum 
concentrations in vital organs were reached within 2 h after oral 
administration and 15 min after intravenous injection. It was almost 
entirely excreted (97.7–99.5% of the administered dose) in urine, 
feces, and bile during the first 60 min [7]. For atractylodin, the study in 
mice using radio-labeled technetium-99m revealed relatively rapid 
absorption (time to maximum plasma concentration 

Physiologically based pharmacokinetic (PBPK) modeling is a useful 
computational tool to accurately simulate concentration-time profiles of 
drugs or drug candidates in blood or other biological fluids. The 
approach has been recommended by the US FDA to support decision-
making during the drug discovery phase to select candidate compounds 
for further preclinical and clinical development, particularly first-in-
human (FIH) dose extrapolation [12]. PBPK models are parameterized 
with both physiological parameters (e. g., blood flow, organ weight, and 
organ volume), as well as drug-specific parameters (e. g., solubility, 
partition coefficients, permeability, intrinsic clearance, and fraction of 
unbound drug). Both have profound impacts on the biopharmaceutical 
and pharmacokinetic properties of the candidate compounds. As a 
prerequisite step before the application of PBPK modeling, information 
on drug-specific parameters as input parameters is essential to ensure 
accurate results of the modeling [13-15]. PBPK modeling approach 
provides a more precise estimation of the human MRSD of the candidate 
drugs for FIH doses than the conventional animal toxicology approach 
[16]. The present study aimed to investigate the key physicochemical 
parameters (aqueous solubility, lipophilicity, and degree of ionization) of 
atractylodin and β-eudesmol using in vitro testing.  

within 2 h), 
distribution, and elimination of free atractylodin in blood and most 
vital organs [9]. The CMC (Chemistry, Manufacturing, and Control) 
capsule formulation of the standardized extract of A. lancea has been 
developed for the clinical development phase. Recently, a phase I 
clinical trial to evaluate the safety, pharmacokinetics and 
immunomodulatory activity of the CMC capsule formulation of the 
standardized extract of A. lancea has been conducted in 48 healthy 
Thai subjects following 1,000 mg/kg body weight given as a single oral 
dose or as daily doses for 14 d [10]. This starting dose in human (1,000 

mg/kg body weight) is about 50% of the maximum recommended 
starting dose (MRSD) [11] initially estimated from animal toxicology 
data [6, 7]. Capsule formulation of the standardized extract of A. lancea 
was shown to be well tolerated. Atractylodin was rapidly absorbed but 
with low systemic exposure and residence time. A maximum plasma 
concentration of 46-51 ng/ml was achieved at 0.5-2 h of dosing. The 
terminal elimination half-life was approximately 1 h. 

MATERIALS AND METHODS 

Chemicals and reagents 

Atractylodin and β-eudesmol were purchased from Wako Pure 
Chemical Industries (Osaka, Japan). Dimethyl sulfoxide (DMSO) 
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and n-octanol were purchased from Sigma-Aldrich Chemical Co. Ltd. 
(St. Louis, MO, USA). Hydrochloric acid, potassium hydroxide and 
potassium chloride were of analytical grade supplied by JT Baker 
(Phillipsburg, USA). Methanol and acetonitrile (HPLC grade) were 
obtained from Fisher Scientific (MA, USA), and the deionized water 
was generated in-house using a Milli-Q system (Millipore, MA, USA).  

Instrumentation and analytical conditions 

Concentrations of atractylodin and β-eudesmol in media were 
quantified using an Agilent 1200 Quaternary HPLC System (Agilent 
Technologies, Waldbronn, Germany) equipped with a diode array 
detector. The chromatographic separation was performed on 
a Hypersil GOLDTM C18 column (particle size 5 μm, 250 mm × 4.6 
mm I.D., Thermo Scientific, Runcorn, UK) and an isocratic separation 
mode with the mobile phase consisting of 70% acetonitrile and 
30% distilled water (1.0 ml/min flow rate). The column oven 
temperature was maintained at 40 °C. The injection volume was 20 
µl. The effluent was monitored by UV spectroscopy at the 
wavelengths of 203 and 430 nm for atractylodin and β-eudesmol, 
respectively. Calibration curves were constructed from peak area 
ratios using standard solutions of atractylodin and β-eudesmol at 
known concentrations. The retention time of atractylodin and β-
eudesmol was 11.07, and 10.63 min, respectively. Linearity was 
demonstrated at the concentration range of 0.05-200 µg/ml 
(r2 ≥ 0.99) and 0.25-200 µg/ml (r2

Shake-flask method 

 ≥ 0.99 for atractylodin and β-
eudesmol, respectively. The limits of quantification (LOQ) were 0.05 
µg/ml and 0.25 µg/ml, respectively. 

The lipophilicity of the test compounds as reflected by the partition 
coefficient (Log P) and distribution coefficient (Log D) was 
determined by the shake-flask method [17, 18]. Atractylodin and β-
eudesmol were dissolved in DMSO to obtain a stock solution of 200 
µg/ml. The stock solution (10 µl) was diluted with the pre-saturated 
mixture containing 100 µl of n-octanol and 990 µl of aqueous phase 
(water/PBS pH 7.4), and followed by rotary mixing at 30 rpm for 1 h 
at 25 °C. The organic phase (upper layer) and the aqueous phase 
(lower layer) were separated through centrifugation at 10,000×g 
for 20 min. The concentrations of atractylodin and β-eudesmol in 
each layer were analyzed by HPLC. Log P and Log D were calculated 
from the ratio of the logarithm of atractylodin or β-eudesmol 
concentration in aqueous and octanol phase as follows:  

 

 

Results are expressed as mean+SD of three separate experiments.  

Kinetic solubility assay 

The aqueous solubility of the test compounds was determined by 
kinetic solubility assay, which is based on the detection of 
precipitation of the test compounds in aqueous solutions [19-22]. 
DMSO stock solution (10 mg/ml) of atractylodin or β-eudesmol was 
prepared by weighing 10 mg of each compound in 1 ml of DMSO. The 
DMSO stock solution (10 µl) of each compound was diluted with 500 
µl of the solution mixture containing 0.1 N HCl (pH 1.2), 0.01 N HCl, 
and phosphate buffer (pH 4.5, pH 5.8, pH 6.8, and pH 7.4). All samples 
were sonicated for 20 min and filtered through a syringe filter (0.22 
µm). Triplicate aliquots of the medium were analyzed by HPLC. 

Potentiometric titration method  

The degree of ionization of atractylodin and β-eudesmol as 
reflected by acid-base dissociation constant (pKa) was determined 
by the potentiometric titration method [23]. The solutions of each 
compound (30%, 40%, 50% and 60% w/v) was prepared in the 
acetonitrile-water mixture containing 0.15 M KCl. The cosolvent 
dissociation constants (psKa) of the compounds were also 
determined in various acetonitrile-water mixtures at the same 
concentrations. The aqueous solution of each compound (1 mmol, 

10 ml) was acidified to pH 1.8-2.0 with 0.5 mol HCl and titrated with 
0.5 mol KOH to obtain a solution with high pH (usually 12). For 
acidic compounds, the titration was performed in the opposite 
direction. The titration was carried out at constant ionic strength 
(I = 0.15 mol KCl) and temperature t = 25.0±0.5 °C. The Yasuda-
Shedlovsky extrapolation was applied to obtain the accurate 
aqueous pKa  value from the psKa  data. The relationship between 
psKa

p

 and the dielectric constant was established according to the 
equation:  

sKa+log[H2

Where log [H

O] = [a/ε+b] 

2

RESULTS AND DISCUSSION  

O] is the molar water concentration of the given 
solvent mixture. This method is the most widely used procedure in 
cosolvent techniques [24, 25]. The experimental values of the 
dielectric constants of acetonitrile-water mixtures (30%, 40%, 50%, 
and 60%) were obtained, and interpolation was used for the 
calculation of the dielectric constants of other acetonitrile-water 
mixtures [23].  

Lipophilicity 

Lipophilicity is the physicochemical property of the compounds, 
which indicates permeability of the compounds across biological 
membranes to reach the target tissue and estimation of compound 
distribution within the body [26]. The lipophilicity is reflected by the 
partition coefficient (Log P) and distribution coefficient (Log D) 
values. Log P generally refers to the concentration ratio of un-
ionized species of the compound in organic (1-octanol) and aqueous 
phases. On the other hand, Log D is applied for ionizable compounds 
and refers to the equilibrium concentration ratio of the unionized 
compound in the 1-octanol phase [27]. Log D of a compound is 
commonly determined using an aqueous phase buffered to pH 7.4 
(physiological pH), which is referred to as Log D7.4. Several existing 
methods are available for the determination of Log P and Log D, 
including shake-flask, separating funnel, reversed-phase HPLC, and 
pH-metric methods [28, 29]. The traditional shake-flask method is 
considered the gold standard method for determining lipophilicity 
of the compounds with Log P and Log D ranging from-2 to 4 [30]. 
Despite its time-consuming and tedious nature and requirement of 
large amounts of test materials, the method is the most reliable and 
accurate. In this study, the miniaturized shake-flask method (in a 
microcentrifuge tube) was applied to determine Log P and Log D 

Both compounds exhibited moderate lipophilicity with Log P and 
Log D>3 (table 1). The Log P values of both compounds obtained 
from the experiment (observed values) were compared with those 
predicted by the three calculation platforms ACD/labs

of 
atractylodin and β-eudesmol to improve sample throughput.  

TM, EPISuiteTM, 
and XLogP3TM (table 1). Comparison of Log D values obtained from 
experimental data and the in silico platforms was possible only with 
the ACD/labsTM. Results suggested that certain platforms 
underestimated or overestimated the Log P and/or Log D values of 
the test compounds. Log P of β-eudesmol estimated from all 
platforms were generally in good agreement with the experimental 
values (3.70-4.88), of which that predicted by the ACD/labsTM 
platform providing the most accurate prediction. The predicted Log 
D of β-eudesmol by ACD/labsTM platform (4.18) was higher than the 
experimental value (3.92). For atractylodin, the predicted Log P 
values from the EPISuiteTM platform provided the closest estimation. 
Both ACD/labsTM and XLogP3TM platforms did not provide an 
accurate prediction of the Log P value of atractylodin (6.38 and 3.5, 
respectively, compared with the mean experimental value of 4.89). 
The predicted Log D of atractylodin by ACD/labsTM platform (4.79) 
was comparable with the experimental value (mean value of 4.91). It 
has recently been argued that the accuracy of the available in silico 
lipophilicity predictions is unacceptably poor, with an average error 
above 1 log unit [31]. Log P and Log D values of other sesquiterpene 
lactones predicted by the ACD/labsTM

 

 platform have also been 
reported, i.e., hinesol (4.67 vs. 4.74) [32], zingiberene (6.60 vs. 5.63) 
[33], δ-cadinene (6.54 vs. 5.89) [34], humulone (5.14 vs. 0.79) [35], 
and artemisinin (2.27 vs. 2.79) [36]. 
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Table 1: Experimental Log P and Log D values of atractylodin and β-eudesmol determined by shake-flask method and comparison with 
the available predicted values from the three in silico platforms ACD/labsTM, EPISuiteTM, and XLogP3

Analyte 

TM 

Experimental values Predicted values 
ACD/labsTM EPISuite [37, 38] TM XLogP3 [37, 38] TM [39, 40] 

Log P (man±SD) Log D (mean±SD) Log P Log D Log P Log D Log P Log D 

Atractylodin  4.89±0.04 4.91±0.02 6.38 4.79 4.51 ND 3.50 ND 
β-Eudesmol 4.38±0.04 3.92±0.04 4.68 4.18 4.88 ND 3.70 ND 

Experimental data are summarized as mean+SD of three independent experiments. ND = No data available 
 

Aqueous solubility 

Aqueous solubility is one of the important physicochemical 
properties that influence the bioavailability and systemic exposure 
of the compounds in the body and, thus, their therapeutic effects. 
The establishment of appropriate pharmaceutical formulation and 
route of administration (especially with oral dosing) are challenging 
for poorly water-soluble drugs, as it limits the absorption of the 
compound from the gastrointestinal tract [41]. The conventional 
method for the determination of compound aqueous solubility, 
where a solid compound is allowed to equilibrate with an aqueous 
medium, is time-consuming and requires a large amount of sample. 
In this study, the kinetic solubility assay was applied to measure the 
aqueous solubility of atractylodin and β-eudesmol in seven selected 
media with different pH that mimic the gastrointestinal tract 
environment. Due to the poor water-solubility nature of both 
compounds, the DMSO solution of each compound was gradually 
added to an aqueous medium and the solubility determined as the 
concentration at which precipitation is formed as detected by light 
scattering. The advantages of the kinetic method are its relative 
rapidity, the requirement of a small amount of sample, and 
simplicity of automated adaptation [42]. The disadvantages include 
the presence of DMSO in the final medium (frequently 0.5-5% v/v) 
and the potential formation of supersaturated solutions [43]. Results 
indicated low solubility of both compounds in all media (table 2). 
The relationship between the pH of the medium and the solubility of 
each compound was investigated (fig. 1). Atractylodin provided the 
highest solubility at pH 5.8 and 6.1 (0.93 and 0.87 µg/ml, 
respectively), while providing the lowest solubility at other pH (1.1, 

1.8, 4.5, 6.8, and 7.4). β-Eudesmol provided the highest solubility at 
the intestinal pH environment (28.64 and 32.48 µg/ml for pH 5.8 
and 6.1, respectively), while providing the lowest solubility at the 
gastric pH environment (1.97 µg/ml at pH 1.1). Based on the TGSC 
Information System database, the aqueous solubility of atractylodin 
and β-eudesmol were reported at 7.541 µg/ml [44] and 7.29 µg/ml 
[45], respectively. The aqueous solubility of atractylodin observed in 
the present study at various pH was markedly lower than the reported 
value, while that of β-eudesmol was higher than the reported value. It 
was noted that the experimental aqueous solubility of both 
compounds could be improved by the addition of DMSO. The aqueous 
solubility of atractylodin predicted by EPISuiteTM

 

 platform was lower 
than other sesquiterpene lactones (hinesol = 2.22 µg/ml [32], 
zingiberene = 0.01 µg/ml [33], δ-cadinene = 0.05 µg/ml [34], 
humulone = 2.09 µg/ml [35], and artemisinin = 51.85 µg/ml [36]. The 
predicted values of most of these compounds, except artemisinin, 
were lower than β-eudesmol. In the previous study [46], the 
dissolution profile of the CMC capsule formulation of the standardized 
extract of A. lancea was found to be an acceptable limit according to 
the US Pharmacopoeia. Atractylodin dissolution in phosphate buffer 
pH 6.8 range of about 87.1% was achieved within 45 min. In another 
study, the solubility and pharmacokinetic profile of atractylodin were 
shown to be significantly improved with PLGA-loaded atractylodin 
nanoparticle [9, 47]. The experimental pKa values obtained from the 
study could be used together with Log P/log D and other 
physicochemical properties, including molecular weight, the number 
of hydrogen bond donors and acceptors, and polar surface area (PSA) 
for the prediction of the ADME properties of both compounds [48]. 

Table 2: Buffer effects on the aqueous solubility of atractylodin and β-eudesmol 

Media pH of media Aqueous solubility (µg/ml) 
Atractylodin β-Eudesmol 

1. 0.1 N HCl 1.1 0.08±0.005 1.97±0.318 
2. 0.01 N HCl (SGF) 1.8 0.26±0.005 17.78±0.257 
3. PBS pH 4.5 4.5 0.13±0.004 17.76±1.699 
4. PBS pH 5.8 5.8 0.93±0.002 28.64±0.232 
5. water 6.1 0.87±0.001 32.48±0.387 
6. PBS pH 6.8 (SIF) 6.8 0.11±0.003 20.29±0.065 
7. PBS pH 7.4 7.4 0.14±0.004 18.76±0.227 

Data are presented as mean+SD of three independent experiments. 
 

  

(a)      (b) 

Fig. 1: Effects of pH on the aqueous solubility of (a) atractylodin and (b) β-eudesmol, data are presented as mean+SD of three independent 
experiments 
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Degree of ionization  

The degree of ionization of the acidic or basidic compounds is 
reflected by the acid-base dissociation constant (pKa). The 
experimental determination of the pKa is generally performed by the 
mean of the test compound in a medium of high ionic strength and at 
constant temperature [49]. Due to the poor water-solubility of 
atractylodin and β-eudesmol, the pKa of both compounds were 
evaluated in this study using potentiometric titration with Yasuda–
Shedlovsky extrapolation. The estimates of the psKa values, which are 
the apparent ionization constants of the compounds in the mixed 
solvent were obtained from the titration curve fitting. The pKa of each 

compound was then obtained using the Yashuda-Shedlovsky 
extrapolation to pure water solvent by plotting psKa+log [H2O] vs. 
100/dielectric constant. The extrapolation resulted in a linear straight-
line graph with relatively accurate pKa values [24, 25]. The aqueous 
pKa was estimated using log 55.5 and 100/78.5 (the logarithm of the 
molar concentration and the inverse of the dielectric constant of pure 
water). The Yasuda-Shedlovsky plots of atractylodin and β-eudesmol 
are presented in fig. 2. The pKa values of atractylodin and β-eudesmol 
were 9.63 and, 9.12, respectively. These experimental pKa values were 
markedly overestimated by ChemAxonTM platform (pKa =19.32) [50]. 
Estimation of the pKa of hinesol by this in silico platform also yielded a 
high pKa

 
 value (15.14) [51]. 

 

(a)     (b) 

Fig. 2: Yasuda–Shedlovsky extrapolation plots for determination of the pKa

 

 values of (a) atractylodin and (b) β-eudesmol in various 
concentration ratio of acetonitrile-water mixtures. Each point represents the mean value obtained from three independent experiments 

Compounds with Log D ranging from 3 to 5 have been shown to 
significantly impact their solubility (low) and permeability (high) [52]. 
Both compounds are, therefore, classified as BCS II (biopharmaceutic 
classification scheme II) with low solubility and high permeability 
characteristics. Dissolution is pH-dependent. The rate-limiting step of 
drug absorption of such compounds is solubility-limited. Examples of 
commercially available drugs include ibuprofen, naproxen, ketoprofen, 
and carbamazepine [53]. Oral absorption of actractylodin and β-
eudesmol are expected to be relatively poor and erratic and are 
influenced by drug pharmaceutical formulations as well as in vivo 
factors [54]. The in vitro-in vivo relationship is predictable, which is 
supported by the results of phase I pharmacokinetic study of 
atractylodin by compartmental analysis (1-compartment) [10]. The 
absorption rate constant (Ka) was approximately 0.8 l/h, and the 
membrane permeability obtained from back-calculation of the Ka

CONCLUSION 

 
suggested compounds to be moderately permeable.  

Results of the study suggested that both actractylodin and β-eudesmol 
are basidic compounds with pKa 
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