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ABSTRACT 

Objective: To find out the common structural requirement which may be responsible for biological activity of benzofurans as potent N-
myristoyltransferase (Nmt) inhibitors by the generation of ligand based pharmacophore hypothesis and atom-based 3D-QSAR model. 

Methods: A set of 29 compounds were taken from the literature with their in vitro Nmt inhibitory data. A training set of 24 molecules and a set of 
five molecules was arbitrarily set aside as the test set. To generate 3D-QSAR models, training set was used and to validate the quality of the model, 
test set was used. A five-point pharmacophore model has been developed with two hydrogen bond acceptors (AA), one positive ionic atom (P) and 
two aromatic ring residues (RR). This is denoted as AAPRR. 

Results: A statistically significant 3D-QSAR model for training set of 24 compounds was obtained using pharmacophore hypothesis AAPRR, with 
correlation coefficient (r2 = 0.916) and high Fisher ratio (F =113.9). Also, the predictive power of generated model for test set of 5 compounds was 
found to be significant which was confirmed by the high value of cross validated correlation coefficient (q2 = 0.804) and Pearson-R (0.917). 

Conclusion: The results of ligand based pharmacophore hypothesis and atom based 3D-QSAR model explore the detailed structural perceptivities 
and also highlight the important binding features of benzofurans with Nmt. 
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INTRODUCTION 

Fungal infections have increased dramatically in recent years. Life 
threatening infections caused by pathogenic fungi are becoming 
increasingly common, especially in those individuals with immune 
compromised hosts, such as patients undergoing anticancer 
chemotherapy or organ transplants and patients with AIDS [1]. 
Clinically, candidosis, aspergillosis and cryptococcosisare are three 
major fungal infections in immune compromised individuals [2, 3]. 

Currently available antifungal drugs for such infections essentially 
have three molecular targets: cytochrome P-450-dependent 
lanosterol 14α-demethylase, ergosterol, and 1,3-betaglucan 
synthase. The first is a fungistatic target vulnerable to resistance 
development; the second, while a fungicidal target, is not sufficiently 
different from the host to ensure high selectivity; and the third, a 
fungistatic (Aspergillus) or fungicidal (Candida) target, has limited 
activity spectrum and potential host toxicity that might preclude 
dose escalation. However, their use can suffer from limited 
efficiency, narrow antifungal spectrum, drug related toxicity, severer 
drug resistance, non- optimal pharmacokinetics and serious drug-
drug interactions. Therefore, there is an emergent need to develop 
novel fungicidal drugs with a new mode of action.  

Myristoyl-CoA: protein N-myristoyltransferase (Nmt; EC 2.1.3.97) is 
a cytosolic monomeric enzyme that catalyzes the transfer of the 
cellular fatty acid myristate (C14.0) from myristoyl- CoA to the N-
terminal glycine amine of a variety of eukaryotic proteins [4]. 
Genetic studies have established that Nmt is essential for vegetative 
growth and survival of pathogenic fungi such as Saccharomyces 

cerevisiae. Nmt has also been proven to be essential for the viability 
of fungi, including the medically important Candida albicans (C. 
albicans) and Cryptococcus neoformans [5, 6].  

Human Nmt has also been cloned and characterized. C. albicans Nmt 
has 451 amino acid residues, with a sequence identity of 45% to the 
human Nmt enzyme. Clear difference in the peptide–substrate 
specificity between fungal and human Nmts has been exploited, and 
Nmt has been identified as a potential chemotherapeutic target for 

antifungal agents [7, 8]. Hence Nmt is an attractive target for the 
design and development of novel antifungal agents with a new mode 
of action without disrupting host Nmt. Because of its novel 
mechanism of action, Nmt inhibitors are expected to have 
advantages over azole antifungals in terms of activity against azole-
resistant fungal strain and lack of drug–drug interactions, which are 
drawbacks of azole antifungal agents [9].  

We have reported molecular modeling studies on various antifungal 
targets like cytochrome P-450-dependent lanosterol 14α-
demethylase and squalene epoxidase [10, 11] for the rational design 
of new antifungal agents. Also, we have generated a 3D 
pharmacophore model using peptidic Nmt inhibitors and 
successfully utilized it for the design of nonpeptidic inhibitors [12, 
13]. A novel series of benzofuran analogs was reported as 
nonpeptidic Nmt inhibitors [14-16]. Previously, we have reported 
3D-QSAR on series of benzofuran analogs as antifungals using 
comparative molecular field analysis (CoMFA) [17] and Genetic 
function approximation (GFA) [18]. Our interest continues in 
benzofurans because of ease of synthesis of analogs. 

Pharmacophore modeling has been one of the important and 
successful approach for new drug discovery since last few years. A 
pharmacophore model of the target binding site summarizes steric and 
electronic features needed for optimal interaction of a ligand with a 
target. Most common properties that are used to define pharmacophores 
are hydrogen bond acceptors, hydrogen bond donors, basic groups, 
acidic groups, partial charge, aliphatic hydrophobic moieties, and 
aromatic hydrophobic moieties. Pharmacophore features have been 
used extensively in drug discovery for virtual screening, de novo design, 
and lead optimization. A pharmacophore model of the target binding site 
can be used to virtually screen a compound library for putative hits. 
Apart from querying data base for active compounds, pharmacophore 
models can also be used by de novo design algorithms to guide the design 
of new compounds [19].  

To continue our research efforts in the development of 
pharmacophore and 3D-QSAR of various therapeutic agents [20-22] 
we report here studies on pharmacophore generation and atom based 
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3D-QSAR model studies of a series of benzofurans using PHASE 
(Pharmacophore Alignment and Scoring Engine) [23] incorporated in 
Schrodinger Software, USA. The objective of the present study is to 
find out the common features which may be responsible for biological 
activity of benzofurans as potent N-myristoyl transferase inhibitors. 
The generated ligand based pharmacophore hypothesis and the cubes 
generated from atom-based 3D-QSAR model highlights the important 
structural features required for Nmt inhibition which can be useful 
further for design of potent N-myristoyl transferase inhibitors. 

MATERIALS AND METHODS  

Dataset  

In the present study a set of 29 compounds were taken from the 
literature with their in vitro Nmt inhibitory data. [14-16] A training 
set of 24 molecules (molecules 1–24, table 1) were used to generate 
the QSAR models. The training set molecules were selected in such a 
way that they contained information in terms of both their 

structural features and biological activity ranges. The most active 
molecules, moderately active, and less active molecules were 
included, to spread out the range of activities [24]. To assess the 
predictive power of the model, a set of five molecules (molecules 
24–29, table 1) was arbitrarily set aside as the test set. The test 
molecules were selected in such way that they truly represent the 
training set. To generate 3D-QSAR models, training set was used and 
to validate the quality of the model, test set was used. Biological 
activity used in the present study was expressed as:  

= − 1050 50  pIC log IC  (1) 

Where IC50 is the nanomolar concentration of the inhibitor 
producing 50% inhibition. In all the models subsequently developed, 
pIC50 values were used as the dependent variable. Structures and 
related inhibitory activities (IC50 values) are reported in table 1. 
Actual and predicted inhibitory activities (pIC50 values) and residual 
values are reported in table 1. 

 

Table 1: Structure and activities of the molecules in the training (1–24) and test (25–29) sets 

R

O O

O

 

Comp. R Observed activity Predicted activity 

pIC50 

Residuals 

IC50 (µM) pIC50 (Log1/IC50) 

1 O(CH2)2NHC(CH3)3 50 -1.698 -1.490 -0.208 
2 OCH2CH(OH)CH2NHCH(CH3)2 0.98 0.008 0.08 -0.072 
3 O(CH2)3NHC(CH3)3 1.7 -0.230 0.020 -0.250 
4 O(CH2)4NHC(CH3)3 4.4 -0.643 -0.620 -0.023 
5 

 

1.6 -0.204 -0.070 -0.134 

6 O(CH2)5NHC(CH3)3 15 -1.176 -1.470 0.294 
25* O(CH2)2CH(OH)CH2NHCH(CH3)2 4.4 -0.643 -0.030 -0.613 
26* O(CH2)2CH(OH)CH2NHC(CH3)3 1.2 -0.079 0.001 -0.080 

 

 

Comp. R R1 X Observed activity Predicted activity 

pIC50 

Residuals 

IC50 (µM) pIC50 (Log1/IC50) 

7 CH2CH2Ph CH3 N 1.2 -0.079 -0.190 0.111 
8 CONHPh CH3 N 2.2 -0.342 -0.250 0.092 
9 CH2SPh CH3 N 0.62 0.207 -0.030 0.237 
10 COOC2H5 c-C3H5 N 4.4 -0.643 -0.520 -0.123 
11 COOC2H5 CH3 CH 3.3 -0.518 -0.520 0.002 
12 COOC2H5 CH3 N 1 1.000 -0.380 1.380 
21 COOC2H5 Et N 10 -1.000 -0.650 -0.350 
22 COOC2H5 i-propyl N 83 -1.919 -1.520 -0.399 
29* COOC2H5 H N 79 1.897 -1.532 3.429 
23 

N

N

O  

CH3 N 0.001 3.000 2.760 0.240 

24 

O

O

 

CH3 N 0.003 1.522 1.400 0.122 

 

Ligand preparation  

All molecules were built in Maestro and were prepared using Lig Prep 
[25] to convert 2D structure to 3D, generate stereoisomer, determine 
the most probable ionization state at user defined pH, neutralize 

charged structures, add hydrogen and to generate the possible 
number of energy minimized bioactive conformers using Conf Gen by 
applying OPLS-2005 force field [26]. Conformational space was 
explored through combination of Monte-Carlo Multiple Minimum 
(MCMM) / Low Mode (LMOD) with maximum number of conformers 
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1000 per structure and minimization steps 10000 [27, 28]. Each 
minimized conformer was filtered through a relative energy window 
of 50 kJ/mol and redundancy check of 2Å in the heavy atom positions. 

Generation of Common Pharmacophore Hypothesis (CPH) 

PHASE provides a standard set of six pharmacophoric features, 
hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic 
group (H), negatively ionizable (N), positively ionizable (P), and 

aromatic ring (R) to define chemical feature of ligands. A five point 
common pharmacophore hypothesis (CPH) was identified from all 
the conformations of the active ligands having identical set of 
features with very similar spatial arrangement keeping minimum 
intersite distance of 2.0 Å.  

Hypotheses were generated by a systematic variation of number of 
sites and the number of matching active compounds. CPH was 
considered, which indicated at least five sites common to all molecules. 

 

O

O

N
H

N

O R  

Compd R Observed activity Predicted activity 

pIC50 

Residuals 

IC50 (µM) pIC50 (Log1/IC50) 

13 2-Cynophenyl 0.017 1.769 2.070 -0.301 
14 Phenyl 0.072 1.142 1.880 -0.738 
15 3-Flurophenyl 0.11 0.958 1.640 -0.682 
16 2,3-Diflurophenyl 0.0037 2.431 2.070 0.361 
17 2-Flurophenyl 0.0083 2.080 1.970 0.110 
18 2,3,4-Triflurophenyl 0.0057 2.244 2.130 0.114 
19 2,4-Diflurophenyl 0.0075 2.124 2.030 0.094 
20 4-Flurophenyl 0.0052 2.283 1.950 0.333 
27* 4-Chlorophenyl 0.073 1.366 1.840 -0.474 
28* 4-Cynophenyl 0.0094 2.026 1.480 0.546 

* Test Set Compounds 

 
Scoring pharmacophore hypothesis 

Scoring procedure helps in ranking of the different hypotheses to 
yield the best alignment of the active ligands using an overall 
maximum root mean square deviation (RMSD) value of 1.2Å with 
default options for distance tolerance. Thus, it helps in making 
rational choice regarding which hypothesis is more appropriate 
for further investigation. The quality of alignment was measured 
by a survival score, [29, 30] defined as: 

= + + + + ∆ +      –    m
site site vec vec vol vol sel sel rew E actS W S W S W S W S W W E W A ..(2) 

where W’s are weights and S’s are scores; Ssite represents alignment 
score, the RMSD in the site point position; Svec represents vector 
score, and averages the cosine of the angles formed by 
corresponding pairs of vector features in aligned structures; 
represents volume score based on overlap of van der Waals models 
of non-hydrogen atoms in each pair of structures; and represents 
selectivity score, and accounts for what fraction of molecules are 
likely to match the hypothesis regardless of their activity toward the 
receptor. ,  ,  ,   s it e v e c v o l r e wW W W a n d W  have default values of 1.0, 
which has a default value of 0.0. In hypothesis generation, default 
values have been used. selW  represents reward weights defined by 
m-1, where m is the number of actives that match the hypothesis. 
Hypotheses for which the reference ligand has a high energy relative 
to the lowest-energy conformer for that ligand are less likely to be 
good models of binding, because of the energetic cost hence a 
penalty for high-energy structures can be included by subtracting a 
multiple of the relative energy from the final score, ∆EEW . Similarly, for 
the hypothesis in which the reference ligand activity has relatively 
low energy than the highest activity can be penalized by adding a 
multiple of the reference ligand activity to the score, actW A  where A is 
the activity [29, 30]. The generated hypothesis were scored and 
ranked to find out the best possible hypothesis. Further, the best 
CPH was selected depending on the adjusted survival score, until 
one hypothesis was found and scored successfully.  

Building QSAR models 

Pharmacophore based QSAR do not consider ligand features beyond 
the pharmacophore model, such as possible steric clashes with the 
receptor. This requires consideration of the entire molecular 

structure, so an atom-based QSAR model is more useful in explaining 
structure activity relationships. In atom-based QSAR, a molecule is 
treated as a set of overlapping Vander Waals spheres. Each feature is 
grouped according to a simple set of rules: hydrogen attached to 
polar atoms are classified as hydrogen bond donors (D); carbons, 
halogens, and C–H hydrogen are classified as hydrophobic/non-
polar (H); atoms with an explicit negative ionic charge are classified 
as negative ionic (N); atoms with an explicit positive ionic charge are 
classified as positive ionic (P); non-ionic atoms are classified as 
electron-withdrawing (W); and all other types of atoms are 
classified as miscellaneous (X). 

Validation of Pharmacophore Model 

The main purpose to develop QSAR model was to predict biological 
activities of new compounds whereby the generated model will be 
statistically robust both internally as well as externally. The dataset 
was divided into training set and a test set. Atom-based 3D-QSAR 
models were generated for hypotheses using the 24 compounds in 
training set. The best QSAR model was externally validated by 
predicting activities of the 5 test set compounds. 

The robustness of the developed pharmacophore hypotheses was 
internally validated by statistical parameters like squared 
correlation coefficient (r2), q2 (r2 for test set), Standard deviation of 
regression (SD), Pearson correlation coefficient (Pearson-R), 
Statistical significance (P) and variance ratio (F). The predicted pIC50 
at 2nd PLS factor is given in table 3. Further increase in the number 
of PLS factors did not improve the statistics or predictive ability of 
the model [31, 32].  

RESULTS AND DISCUSSION 

Pharmacophore modeling and QSAR studies were performed using 
PHASE module of Schrodinger suite. The study is performed to 
generate 3D pharmacophoric features of benzofurans responsible 
for binding to target and to predict biological activity as N- myristoyl 
transferase inhibitors using atom based 3D-QSAR model.  

Pharmacophore generation and 3D-QSAR model analysis 

Common pharmacophore hypothesis (CPH) was developed using a 
set of 7 active ligands in “pharmset” as they contain important 
structural features crucial for binding to the receptor binding site. 
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We have used four minimum sites in find pharmacophore step and 
five maximum sites to generate optimum combination of features 
common to the most active compounds. The three and four featured 
pharmacophore hypothesis was rejected due to low value of survival 
score, as they were unable to define the complete binding space of 
the selected molecules. Five featured pharmacophore hypotheses 
were selected and subjected to stringent scoring function analysis.  

CPH were generated with different combination of variants: AAPRR, 
AAHRR, AAARR, AARRR and 2455 CPH were generated with the 
variant AAPRR which was further considered for QSAR model 
generation and the results are given in table 2.  Among the various 
generated pharmacophores, best hypothesis was identified by aligning 
the active compounds on hypothesis and calculating the survival score 
which helps in ranking all the hypotheses. The selected hypothesis 
distinguishes between the active and inactive molecules. Further, to 
confirm that the pharmacophore hypothesis maps with more active than 
inactive features, they were aligned to inactive compounds and scored. 
Hypothesis showing poor score were rejected. Therefore, adjusted 
survival score was calculated by subtracting the inactive score from 
survival score of this hypothesis (Table 2).  
 

 

Fig. 1: Pharmacophore hypothesis and distance between 

pharmacophoric sites, all distances are in A0 unit 

 

 

Fig. 2: Pharmacophore hypothesis AAPRR.5605 aligned on the 

all training set ligands 
 

 

Fig. 3: Pharmacophore hypothesis AAPRR.5605 aligned on the 

all test set ligands 
 

Finally the hypothesis with maximum adjusted survival score and lowest 
relative conformational energy was selected for generating atom-based 
3D-QSAR model. The best model with good predictive power was found 
to be associated with the five points which consist of two hydrogen bond 
acceptor (AA), one positive ionic atom (P) and two ring feature (RR). 
This is denoted as AAPRR. The pharmacophore hypothesis showing 
distance between pharmacophoric sites is depicted in Fig. 1. As observed 

in Fig. 2, among the two hydrogen bond acceptor groups(AA) one feature 
is mapped to ‘O’ of benzofuran ring, second one is observed on C=O 
attached to benzofuran ring. One positive ionic atom mapped to –NH 
group of side chain and two aromatic rings (RR) are present on benzene 
ring attached to side chain and in benzofuran ring. 

 

 

 

 

Fig. 4: Correlation graph of Experimental versus predicted pIC50 

of training (a) and test sets (b) 

 

The alignment generated by best pharmacophore hypothesis AAPRR 
is used for generation of 3D-QSAR model. From Fig. 2 and Fig. 3 it 
can be observed that active ligands have better alignment than 
inactive ligands. 

Atom-based 3D-QSAR model was generated with 2nd PLS factor 
having good statistical significance and predictive power. PLS factor 
was increased up to two since up to second factor there is 
incremental increase in predictive power and statistical value of 
model. 

A statistically significant 3D-QSAR model was obtained using this 
pharmacophore hypothesis with correlation coefficient value (r2 = 
0.916) and high Fisher ratio (F =113.9) for the training set of 24 
compounds. Also, the predictive power of generated model was 
found to be significant which was confirmed by the high value of 
cross validated correlation coefficient (q2 = 0.804) and Pearson-R 
(0.917) for the test set of 5 compounds.  

The high value of F (113.9) indicates a statistically significant 
regression model, which is also supported by the low value of the 
variance ratio (P) indicating a high degree of confidence. The 
summary of atom based 3D-QSAR results is shown in table 3. Graphs 
of observed versus predicted biological activity of training and test 
set molecules are shown in fig. 4a and 4b respectively.  

In order to visualize the generated 3D-QSAR model and to study its 
correlation with inhibitory activity one or more ligands from the 
series having diverse inhibitory activity were taken into 
consideration. The cubes were generated which represents 
important structural features required for interaction of ligand with 
active site of receptor which is shown in fig. 5 and 6 respectively for 
the most active and least active compounds in the series. In these 
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representations, the blue cubes indicate favorable regions while red 
cubes indicate unfavorable regions for biological activity. By using 
3D-QSAR model the comparison was done to study favorable and 
unfavorable interaction using most active (compound 23) and least 
active (compound 22) as shown in Fig. 5 and 6 respectively. 

On comparing fig. 5 and 6 it is observed that blue cubes are seen on 
C=O group and imidazole ring attached to benzofuran ring of 
compound 23 which suggest that highly polar groups are favored in 
this region. While, in compound 22 the imidazole ring is replaced by 
less polar ethoxy group and red cubes were seen in this region, 
which leads to tremendous decrease in the activity of compound 22. 
 

 

Fig. 5: Visual representation of atom-based 3D-QSAR model on 

most active ligand 23. 

 

Fig. 6: Visual representation of atom-based 3D-QSAR model on 

least active ligand 22 
 

Hence, this suggests that more electronegative and polar groups are 
needed in this region and replacement with bulky groups will lead to 
decrease in activity. This is confirmed from the activities of 
compounds 13-20, 24, 27, and 28 which are having more polar and 
electronegative groups in this region hence they are active. While, 
the compounds 1-12, 21-22, 25-26, 29 have less polar and less 
electronegative groups, hence they are less active compounds. Also, 
blue cubes were observed around nitrogen and benzene ring which 
suggest that presence of nitrogen and aromatic residue is essential 
for activity which is revealed from the activities of compounds 13-
20, 23-24 and 27-28. 

 

Table 2: Best Pharmacophore hypothesis according to scoring values 

S. No. Hypothesis Survival Active Survival  

Inactive  

Post-hoc 

Score 

#Matches 

1 AAPRR.6469 6.985 4.689 3.871 7 
2 AAPRR.3639 6.931 4.604 3.933 7 
3 AAPRR.946 6.919 4.553 3.937 7 
4 AAPRR.5606 6.896 4.718 3.814 7 
5 AAPRR.6467 6.881 4.676 3.779 7 
6 AAPRR.5605 6.88 4.731 3.799 7 
7 AAPRR.2729 6.87 4.539 3.933 7 
8 AAPRR.2730 6.87 4.539 3.933 7 
9 AAPRR.3633 6.862 4.655 3.836 7 
10 AAPRR.3706 6.861 4.726 3.826 7 
 

Table 3: Statistic parameters for best pharmacophore hypothesis 

PLS Factors SD r2 F P RMSE q2 Pearson-R 

1 0.9058 0.6132 34.9 6.068e-006 0.5091 0.7752 0.9142 
2 0.433 0.9156 113.9 5.313e-012 0.4758 0.8036 0.9168 

 

CONCLUSION  

A five point pharmacophore was generated by ligand based 
approach for benzofuran derivatives which reveals the importance 
of steric and electronic features of the ligand necessary for binding 
with target and responsible for activity. A highly predictive atom 
based 3D-QSAR model was generated using a training set of 24 
molecules which consists of five point pharmacophore (AAPRR): two 
hydrogen bond acceptor (A), one positive ionic atom (P) and two 
aromatic ring feature (RR). Further, the developed model was 
visualized with cubes to identify the important structural features. It 
was observed that polar and electronegative groups attached to 
benzofurans ring are necessary for activity. Hence, the results of 
pharmacophore studies and atom based 3D-QSAR model shall 
further help in designing benzofurans analogues with better activity 
prior to synthesis and may show potent N-myristoyltransferase 
inhibition activity. 
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