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ABSTRACT 

Objective: This study focuses on designing potential antimicrobial agents, evaluating their binding affinity against target proteins, and assessing 
their Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties using computational methods. 

Methods: This study employed six target proteins from the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) 
and utilized Biovia Discovery Studio 2021 for their preparation. Marvin Sketch is used to draw the ten potential candidates and subjected to 
molecular docking using Python Prescription (PyRx) software. The Biovia Discovery Studio 2021 was used to visualize the docking outcomes, and 
ADMET properties were determined using Swiss ADME software. 

Results: Docking experiments conducted on ten derivatives against six protein targets, specifically Sortase-A, Clumping factor A, Undecaprenyl 
diphosphate synthase, Dehydrosqualene synthase, Tyrosyl tRNA synthetase, and Dihydrofolate reductase. Out of the ten derivatives, compounds 1, 
2, 3, 5, and 7 demonstrated a significant binding affinity for one or two target proteins. Notably, compound 8 exhibited exceptional docking scores 
against five of the six protein targets, establishing itself as the most potent ligand among the compounds tested. These results highlight the 
paramount significance of compound 8 for subsequent investigation. Furthermore, comprehensive documentation of the physicochemical 
properties of the potent derivatives was carried out. 

Conclusion: The findings indicate that the examined compounds have the potential to effectively inhibit various microbial protein targets. In silico 
ADMET studies suggest that these compounds possess desirable drug-like properties. Therefore, these compounds hold promise as lead molecules 
for further research, potentially leading to the development of novel antimicrobial drugs. 

Keywords: Antimicrobial, Benzimidazole quinoline derivatives, Molecular docking, PyRx, Swiss-ADME, Discovery studio 2021, ADMET, 
Staphylococcus aureus, Drug discovery 
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INTRODUCTION 

The extensive use of antimicrobial drugs in various domains, such as 
human medicine, veterinary practises, and agriculture, has led to the 
emergence of microbial resistance as a significant issue. Microbes 
develop resistance through various mechanisms, including impeding 
drug access to their targets, genetic mutations affecting antibacterial 
targets, and direct modification of drugs [1]. The growing prevalence 
of microbial resistance to current antimicrobial treatments and its 
impact on global healthcare highlight the ongoing need for research 
and advancements in the field of anti-infective drugs [2, 3]. 
Consequently, there is a compelling need to continue exploring and 
developing novel antimicrobial medications [4]. The escalating 
global problem of antimicrobial resistance has necessitated the 
application of machine learning techniques and artificial intelligence 
in the field of computational chemistry. These advancements 
contribute to the design of new antimicrobial agents, aiding in the 
fight against antimicrobial resistance [5-7]. 

The field of computational chemistry has revolutionised the process 
of drug design by enabling the rapid screening of molecules based on 
their binding affinity and facilitating Absorption, Distribution, 
Metabolism, Excretion, and Toxicity (ADMET) studies. In silico 
methods have significantly expedited these tasks, contributing to a 
more efficient and streamlined drug discovery process [8]. 

Benzimidazole, a highly valuable and extensively studied chemical 
scaffold in medicinal chemistry, serves as a crucial pharmacophore 
due to its diverse range of activities across various therapeutic areas 
[9]. It has demonstrated efficacy as an antidiabetic, antiulcer, anti-
inflammatory, anticancer, antiviral, and antimicrobial agent [10]. 
Numerous studies have underscored the antimicrobial potential of 
benzimidazole derivatives against various microorganisms [11-14]. 

The structural versatility of benzimidazole allows for modifications, 
leading to the creation of a wide array of derivatives with distinct 
properties. These modifications can exert a profound impact on the 
physicochemical properties, target specificity, and pharmacokinetic 
profiles of the compounds, ultimately enhancing their antimicrobial 
activity [15]. 

Similarly, the quinoline nucleus also serves as a crucial 
pharmacophore and is found in numerous antifungal agents. 
Quinoline derivatives exhibit a diverse range of pharmacological 
activities, including antimalarial, anticancer, antibacterial, and 
antifungal properties [16].  

Hence, the current study highlights the importance of designing and 
conducting molecular docking investigations on newly developed 
compounds that incorporate both benzimidazole and quinoline 
rings, with the goal of assessing their antimicrobial potential. 
Furthermore, the study aims to evaluate the ADMET properties of 
these promising compounds using the SwissADME software. By 
combining the structural features of benzimidazole and quinoline, it 
is anticipated that the resulting compounds will exhibit enhanced 
therapeutic potential and versatility, making them potential 
candidates for further development as antimicrobial agents. 

MATERIALS AND METHODS 

Selection of target proteins 

For this investigation, six protein targets from Staphylococcus 
aureus were chosen, including Sortase-A (PDB ID: 1T2P), Clumping 
Factor A (PDB ID: 1N67), Undecaprenyl diphosphate synthase (PDB 
ID: 4H8E), Dehydrosqualene synthase (PDB ID: 2ZCO), Tyrosyl tRNA 
synthetase (PDB ID: 1JIJ), and Dihydrofolate reductase (PDB ID: 
3FYV) [17]. The X-Ray Diffraction structures of these proteins were 
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obtained from the Research Collaboratory for Structural 
Bioinformatics (RCSB) Protein Data Bank in PDB format [18]. 

Preparation of protein 

The protein structures were prepared using the Biovia Discovery 
Studio 2021 Client. This involved removing water molecules, 
unwanted residues, and other inhibitors present in the proteins. 
Repeated chains were also eliminated. After preparation, the 
proteins were saved in PDB format [19].  

Preparation of ligands 

Ten derivatives were sketched using Marvin Sketch [20] and saved 
in SDF format. Furthermore, a standard drug, Penicillin G [21], was 
chosen for comparison. The structure of the standard drug was 
obtained from the PubChem Compound Database and saved in a 
three-dimensional (3D) conformer as an SDF file [22]. 

Assigning a grid box 

In PyRx software, the protein structures were imported and assigned 
Kollmann and Gasteiger charges. Subsequently, the protein structures 
were converted to the PDBQT file format. The ligands were also loaded 
into the software, subjected to energy minimization, and converted to 
the PDBQT file format. To define the binding site, a grid box was 
positioned within the protein structure [23]. 

Molecular docking study and Visualization of docking poses 

Molecular docking was performed using AutoDock Vina in the PyRx 
software. All ligands were subjected to docking, resulting in the 
generation of nine poses accompanied by their respective docking 
scores. Among the ligands docked, the one with the highest score for 
each of the six proteins, as compared to the standard drug, was 
selected. The docking interactions of these selected ligands were 
then visualized in a two-dimensional (2D) conformation using Biovia 
Discovery Studio 2021. 

Pharmacokinetic studies using swiss ADME 

To assess the ADMET parameters of the potent molecules, the Swiss 
ADME software was utilized. The smile notations of the molecules 
were provided, and the software generated the corresponding 
ADMET properties [24]. 

 

 

Fig. 1: Structure of benzimidazole derivative 

 

RESULTS AND DISCUSSION 

Ligand design 

A series of benzimidazole-quinoline derivatives were designed, 
featuring a 1, 3-benzimidazole-2-carboxamide core with a 3, 6-
disubstituted quinolin-1-yl group attached (fig. 1). The 
incorporation of the benzimidazole-2-carboxamide scaffold serves 
as a structural foundation with established antimicrobial activity. 
Additionally, the introduction of the 3, 6-disubstituted quinolin-1-yl 
group introduces further structural variations and the potential for 
antimicrobial activity. The specific characteristics of the substituents 
present on the quinoline ring greatly influence the antimicrobial 
properties of the compounds, including their potency and the range 
of microorganisms they can target [25]. The substitutions occurring 
at the nitrogen atom of the 1, 3-benzodiazole-2-carboxamide moiety, 
as well as the substitution at the carbon atoms of the quinoline ring, 
play crucial roles in modifying the physicochemical properties of the 
compounds [26]. These modifications encompass factors such as 
lipophilicity [27], hydrogen bonding capacity [28], and overall 

molecular interactions with microbial targets [29]. Consequently, 
these alterations can impact the compounds' ability to penetrate 
microbial cell membranes, interact with target enzymes or 
receptors, and disrupt vital microbial processes, ultimately resulting 
in antimicrobial activity [30, 31]. A total of ten derivatives based on 
the designed scaffold were sketched using Marvin Sketch, and their 
structures are depicted in fig. 2 and fig. 3. 

 

 

Fig. 2: Structures of the newly designed ligands 

 

 

Fig. 3: Structures of the newly designed ligands (Contd.) 

 

A docking study was conducted to examine the molecular 
interactions and binding affinity of the test and standard compounds 
with microbial proteins. The study assessed parameters such as the 
binding energies of the molecules, the number of hydrogen bonds 
formed, and the root mean square deviation (RMSD) values. Notably, 
the RMSD values were determined to be zero, indicating a high degree 
of structural similarity and favourable binding conformation. All ten 
derivatives were subjected to docking against the selected target 
proteins. Sortase A showed the most favourable binding scores, with 
compounds 2, 3, and 5, all yielding a value of-9 kcal/mol. Clumping 
Factor A, on the other hand, exhibited the highest binding scores with 
compounds 5 and 8, both at-10.3 kcal/mol. Notably, Compound 8 
displayed impressive binding scores against multiple targets, including 
Dehydrosqualene synthase (-9.7 kcal/mol), Tyrosyl tRNA synthetase (-
10.4 kcal/mol), Dihydrofolate reductase (-10.8 kcal/mol), and 
Undecaprenyl diphosphate synthase (-8.6 kcal/mol). Compound 1 
showed the best binding score against Tyrosyl tRNA synthetase (-10.4 
kcal/mol), while Compound 7 exhibited the highest binding score 
against Dihydrofolate reductase (-10.8 kcal/mol). Comparing these 
findings to the standard drug Penicillin G, it is evident that the tested 
compounds yield superior results. 

According to the findings, compound 8 exhibited the highest docking 
scores among the ten derivatives against five out of the six target 
proteins. Notably, it displayed the most favourable binding scores 
against Dehydrosqualene synthase, Tyrosyl tRNA synthetase, 



M. Chakrabarti 
Int J Pharm Pharm Sci, Vol 15, Issue 8, 28-35 

30 

Dihydrofolate reductase, Undecaprenyl diphosphate synthase, and 
Clumping factor A. These results strongly suggest that compound 8 
possesses significant potential as a potent inhibitor for these specific 
target proteins. 

Table 1 provides the docking scores for all the ligands, indicating 
their binding affinity to the target protein. Additionally, in fig. 4 to 
fig. 14, the two-dimensional (2D) interactions of potent ligands with 
the corresponding protein are illustrated. 

  

Table 1: Molecular docking scores of ligands with different target proteins of Staphylococcus aureus 

Ligands Sortase a 
(1T2P) 

Clumping factor 
a (1N67) 

Undecaprenyl diphosphate 
synthase (4H8E) 

Dehydrosqualene 
synthase (2ZCO) 

Tyrosyl tRNA 
synthetase (1JIJ) 

Dihydrofolate 
reductase (3FYV) 

1 -8.7 -9.3 -8.3 -8.9 -9.3 -10.8 
2 -9 -9.9 -8 -9.2 -9 -10.2 
3 -9 -9.6 -8.3 -9 -8.4 -9.9 
4 -8.9 -9.7 -7.9 -9.5 -8.7 -10.7 
5 -9 -10.3 -8.2 -8.5 -8.4 -10.4 
6 -8.1 -10 -7.6 -8.9 -9.8 -9.8 
7 -8.1 -10.2 -8.5 -9.1 -10.4 -10 
8 -8.3 -10.3 -8.6 -9.7 -10.4 -10.8 
9 -8.4 -10.1 -8.5 -9 -10.3 -10 
10 -8.2 -10.2 -8.4 -8.7 -8.6 -10.7 
Penicillin G -6.8 -6.8 -6.9 -7.5 -7.4 -9.3 

 

2D representation of the interactions between ligands and target proteins 

 

Fig. 4: Interactions of compound 2 with sortase-A 

 

 

Fig. 5: Interactions of compound 3 with sortase-A 
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Fig. 6: Interactions of compound 5 with sortase-a 

 

 

Fig. 7: Interactions of compound 5 with clumping factor-a (ClfA) 

 

 

Fig. 8: Interactions of compound 8 with clumping factor-A (ClfA) 
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Fig. 9: Interactions of compound 8 with undecaprenyl diphosphate synthase (UPPS) 

 

 

Fig. 10: Interactions of compound 8 with dehydrosqualene synthase (CrtM) 

 

 

Fig. 11: Interactions of compound 7 with tyrosyl tRNA synthetase (TyrRS) 
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Fig. 12: Interactions of compound 8 with tyrosyl tRNA synthetase (TyrRS) 

 

 

Fig. 13: Interactions of compound 1 with dihydrofolate reductase (DHFR) 

 

 

Fig. 14: Interactions of compound 8 with dihydrofolate reductase (DHFR) 
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The physicochemical properties of the potent molecules were 
assessed using the SwissADME software, and the corresponding 
findings are displayed in table 2. The results reveal that the 
selected potent molecules conform to Lipinski’s Rule of Five 

without any violations, indicating their drug-like characteristics. 
Given these encouraging outcomes, it is highly recommended to 
proceed with additional investigations aimed at optimizing the 
lead compounds. 

 

Table 2: Physicochemical properties of potent molecules 

Physicochemical properties 1 2 3 5 7 8 
Molecular weight 409.91 389.49 430.33 454.36 454.36 468.39 
No. of Rotatable Bonds 4 4 4 4 4 4 
Hydrogen Bond Donor 2 2 2 2 2 2 
Hydrogen Bond Acceptor 3 3 3 3 3 3 
Log P 3.75 3.48 3.75 3.86 3.59 4.06 
Molar Refractivity 123.06 123.02 123.05 125.75 125.75 130.56 
Central Nervous System (CNS) Permeability Yes Yes Yes Yes Yes Yes 
Blood Brain Barrier (BBB) Permeation Yes Yes Yes Yes Yes Yes 

 

CONCLUSION 

The molecular docking study suggests that the benzimidazole-
quinoline derivatives (Compounds 1, 2, 3, 5, 7, and 8) have the 
potential to act as effective inhibitors of the selected microbial target 
proteins. Compound 8, in particular, yielded high docking scores 
against five out of six target proteins. Moreover, in silico ADMET 
studies indicate that these compounds possess drug-like 
characteristics. Therefore, these compounds can be considered lead 
molecules for further research that may aid in developing novel 
drugs to combat microbial diseases. 
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