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ABSTRACT 

Cancer is one of the leading causes of morbidity and mortality globally. The drawbacks of conventional chemotherapy such as resistance, lack of 
specificity, severe toxicity warrant the need to explore alternative approach for the treatment of cancer. Antimicrobial peptides are part of the 
innate defense mechanism of all organisms and have been developed as potential alternatives in combatting infectious diseases. In addition, 
anticancer effects of many peptides have been reported with remarkable prospects in some in vitro studies especially on breast, cervical and lung 
cancer cell lines, and in vivo murine tumour xenografts. This review summarizes the reports on the activities of some selected anticancer peptides 
on various cancer cell lines. 
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INTRODUCTION 

Antimicrobial peptides (AMPs) are diverse, ancient and evolutionary 
conserved components of the innate immune system present in all 
forms of life  [1] and have been isolated from various species (table 
1). AMPs are also termed as host defense peptides. They are cationic 
and amphipathic in nature; this property played a facilitatory role in 
their binding and insertion into the anionic cell membrane of 
microorganisms. AMPs possess low propensity for developing 
resistance, probably due to their distinguished mode of action  [2]. 
Consequently, they show broad spectrum antimicrobial activities 
against various micro-organisms, including Gram-positive and 
Gram-negative bacteria, fungi and viruses [3]. Over 2000 AMPs, 
mostly cationic, have been reported from the antimicrobial peptide 
database [4] and the number keep increasing with newer research 
discovery. In addition to their antimicrobial function, AMPs also 
exert antitumour effect, immunomodulatory effect, and wound-
healing effect. They also find applications as drug delivery vector, 
contraceptive agent, mitogenic agent and signal molecules in signal 
transduction pathways  [5]. 

Owing to the diversity of functions shown by the antimicrobial 
peptides, they can also be categorized into antibacterial peptides, 
antiviral peptides, antifungal peptides, antiparasitic peptides, anti-
cancer/antitumour peptides, anti-HIV peptides, anti-protist 
peptides, insecticidal peptides, spermicidal peptides and AMPs with 
chemotactic activity  [1]. However, one AMP may have or fall into 
more than one group. Although, AMPs have a certain degree 
of similarity among themselves regarding the biophysical 
properties, their sequence is rarely similar among closely related or 
distinct species [6]. 

Classification of AMPs 

Host defense peptides can majorly be classified based on their 
secondary structure into four different groups or families which are: i) 
alpha (α), ii) beta (β), iii) alpha beta (αβ) and non-alpha beta (non-αβ). 

The α-family consists of AMPs with helical structure, e. g. magainin-
II (fig. 1E). The β-family is composed of AMPs with beta strands; e. g. 
looped than at in and β-sheet polyphemusin (fig. 1B and 1C, 
respectively). The αβ-family comprises both α-helical and β-strands 
in the three-dimensional structure, e. g. human β-defensin-2 and 
rabbit kidney β-defensin-1 (fig. 1A and 1D, respectively). The non-αβ 
family also referred to as extended structure contain neither α-
helical nor β-strand e. g. indolicidin (Fig.1F). While some peptides 

belong to one of the four classes, some, however, defy this 
classification and have a mixed structure [11]. Further to this, AMPs 
can also be categorized based on their charges, disulfide bridges and 
amino acid-rich contents as either cationic or non-cationic. Summary 
of the AMPs based on their structures is shown in table 2. 

 

 

Fig. 1: Structural classes of antimicrobial peptides. Taken from 
Jenssen et al. [28] 

A = mixed structure of human β-defensin-2 (HBD2), B = looped 
thanatin, C = β-sheeted polyphemusin, D = rabbit kidney 

defensin-1, E = α-helical magainin-2, F = extended indolicidin 

 

Mode of action of antimicrobial peptides 

Antimicrobial peptides have been termed “natural antibiotics” due 
to broad spectrum activity against micro-organisms  [8]. Cationic 
peptides interact directly with the negatively charged cellular 
membrane of bacteria cells resulting in enhanced membrane 
permeability and ultimately leading to swift cell lysis.  [29]. So in 
effect the peptide can cause membrane disruption or membrane 
interaction, which may lead to the formation of transient pores and 
transport of the peptide into the cell thereby ensuring contact with 
the intracellular targets  [30]. The four commonly used models to 
describe the mechanism of AMP action include: toroidal, carpet-like, 
barrel-stave and aggregate channel models. 
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Table 1: Diverse sources of antimicrobial peptides 

Source Scientific name Host defense peptides Reference 
Human Homo sapien Dermicidin (anionic) 

LL-37 
HNP-1 

 [7] 
 [7] 
 [7] 

Insects Hyalophora cecropia 
(Silk moth) 
Apis mellifera 
(honey bee) 
Drosophilia melanogaster 
(fruit fly) 
Lucilia sericata 
(green bottle fly) 

Cecropin 
 
Melittin  
 
Drosomycin  
 
Lucifensin I 

 [8] 
 
 [9] 
 
 [10] 
 
 [11] 
 

Plants Leonurus cardiac 
(Motherwort) 
Viscum album L. 
Benincasa hispida 

Lipid transfer protein 
 
Viscotoxin A1  
 
Hispidalin 

 [12] 
 
 [13] 
 
 [14] 

Fishes Oreochromis mossambicus 
(Freshwater tilapia) 
Chionodraco hamatus 
(Marine icefish) 

Hepcidin TH1-5  
 
Chionodracine 

 [15] 
 
 [16] 

Amphibians Bufo bufo gargarizans 
(Asian toad) 

Buforin-I   [17] 

 Xenopus laevis 
(S/African clawed frog) 

Magainin-II  [18] 

Reptiles Crotalus durissus terrifucus(S/American rattlesnake) 
Bungarus fasciatus 
(Branded krait) 
Emys orbicularis 
(European pond turtle) 

Crotamine  
 
BF-CATH  
 
TBD-1 

 [19] 
 
 [20] 
 
 [21] 

Birds  Gallus gallus 
(chicken) 
Penguin 
Anas platyrhynchos 
(mallard duck) 

Fowlicidin-1 
 
AvBD 103a  
 
AvBD2 

 [22] 
 
 [22] 
 
 [22] 

Microbe Rhizopus microsporus 
(fungus) 
Pseudoplectania nigrella 
(fungus) 
Lactococus lactis 
(bacterium) 
Streptococcus pneumoniae(bacterium) 

Rhimisin-1  
 
NZ2114  
 
Nisin  
 
Pep27 anal2 

 [23] 
 
 [24] 
 
 [25] 
 
 [26] 

HNP-1 human neutrophil peptide1, AvBD avian β-defensin, BF-CATH B. fungarus cathelicidin, TBD-1 turle β-defensin1, NZ2114 plectasin 

 

Table 2: Antimicrobial peptides based on their structural features 

AMP class Structural features Typical examples Structure 
Cationic peptides Peptide forming helical structures 

One disulphide bridge 
Two disulphide bridge 
Three disulphide bridge 
Greater than three disulphide bridges 
Glycine-rich peptides 
Histidine-rich peptide 
Proline-rich peptide 
Tryptophan –rich peptide 

Cecropins  
Thanatin  
Tachyplesin II 
Panaeidins 
Drosomycin  
Pyrrhocoricin  
Diptericin  
Histatin  
Indolicidin 

α-helix 
β-helix 
β-helix 
β-helix 
αβ structure 
N/A 
Rich in H 
αβ structure  
Extended structure 

Noncationic peptides Aspartic acid-rich peptide 
Neuropeptide-derived molecules 
Oxygen binding proteins 
Aromatic dipeptides 
 

Dermicidin 
Secretolytin 
Lactoferricin 
N-alanyl-5-s-glutathionyl 
-3,4-dihydroxylphenylalanine  
& P-hydroxyl cinnamaldehyde 

N/A 
α-helix 
β-turn 
N/A 

Adapted from Pushpanathan et al. [4] N/A = not available 

 

In toroidal model, AMPs align perpendicularly into the bilayer 
structure with their hydrophobic regions associated with the central 
part of the lipid bilayer and their hydrophilic regions facing the pore  
[31]. Whereas, in carpet-like mode (also known as detergent-like 

test), the peptide micelle touches the membrane first and coats a 
small area of the membrane. Thereafter, AMP penetrate the lipid 
layer to allow pore formation occur leaving holes behind  [32]. In the 
barrel-stave model, staves are formed first parallel to the cell 
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membrane. Then barrels are formed and AMPs are inserted 
perpendicularly to the plane of the membrane bilayer  [33]. On the 
other hand, AMPs glue themselves to the membrane parallel to the 
surface in an aggregate channel model. Then reorientation of AMPs 
occur and they insert themselves into the membrane vertically to 
form sphere-like structures [32]. The schematic diagram of the 
models is illustrated in fig. 2. 

 

 

Fig. 2: Illustration of the models of lipid membrane 
permeabilization by antimicrobial peptides. Adapted from Silva 

et al. [34] 

 

AMPs as anticancer therapeutics 

Cancer is the most malignant disease threatening the health of man. 
It has been predicted that the number of death from this disease will 
continue to increase with an estimated 11.5 million deaths by the 
year 2030 [35]. Conventional chemotherapeutics has many 
drawbacks such as resistance; lack of selectivity, severe toxicity 
hence the need to explore alternative approach for cancer remission. 
AMPs have emerged as potentially better alternative as they have 
broad anticancer spectrum with low propensity for resistance, 
selectivity for cancer cells, rapid cell kill, ability to destroy and 
prevent metastasis of primary tumours and are harmless to vital 
organs [36]. This review highlights some of the antimicrobial 
peptides that have been reported to possess anticancer properties.  

Anticancer mechanism of AMPs 

Three anticancer mechanisms have been proposed for cytotoxic 
AMPs namely: a) cell membrane lysis; b) inhibition of angiogenesis; 
and c) activation of extrinsic apoptotic pathways [8]. 

Cell membrane lysis 

This mechanism is similar to the mode of action of antimicrobial 
peptides that disrupt the bacterial cell wall and the effect may 
involve selective lysis of the cancer cell membrane. Anticancer 
peptides (ACPs) membranolytic and selective mode of action on 
tumor cells can be due to the increased anionicity of the cytoplasmic 
membrane of these cells  [37]. This follows the same pattern as the 
“carpet” and “barrel-stave” models. According to the carpet 
mechanism  [38], the peptides align themselves parallel to the 
negatively charged membrane surfaces in a carpet-like fashion until 
a critical threshold concentration is attained, after which the peptide 
permeates the membrane. Conversely, for “barrel-stave” model, the 
lytic cationic amphiphilic peptides self-aggregate via hydrophobic 
interactions in the membrane and form transmembrane channels or 
pores  [39]. Other membranolytic activities involve the permeation 
and swelling of mitochondria with release of cytochrome c and 
apoptosis events  [40]. Examples of some oncolytic peptides are 
listed in table 3. 

Inhibition of tumour angiogenesis  

Angiogenesis defined as the process of new blood vessel formation 
is essential during cancer progression [41]. During this process, 
migration and proliferation and entry into tumour surrounding 

tissue, of endothelial cells occur forming a capillary network  [42]. It 
plays an essential role in the growth, invasion and metastasis of 
solid tumours, which could provide necessary nutrients and oxygen 
and discard metabolic wastes  [43]. Present in the tumour cells are 
angiogenic growth factors that stimulate the process of 
angiogenesis. These include vascular endothelial growth factor-
A(VGEF-A), fibroblast growth factor, epidermal growth factor, 
platelet-derived growth factor, placental growth factor, angio poietin 
and other activators [41]. Many peptides could unleash beneficial 
antiangiogenesis and antitumour effects mainly by interrupting the 
interactions between growth factors and their receptors  [44]. 
Attempts at controlling tumourigenesis involve targeting the 
angiogenesis processes  [45]. 

Activation of extrinsic apoptotic pathway  

Multicellular organisms have developed apoptosis to control cell 
metastasis in response to DNA damage, during cell development and 
cellular stress  [46]. In the course of apoptosis, the nucleus and 
cytoplasm shrink, condense and then fragment, releasing small 
membrane-bound apoptotic bodies, which are phagocytosed by 
macrophages or adjacent cells  [47]. The extrinsic apoptotic pathway 
is receptor–mediated and regulated by tumour necrosis factor (TNF) 
super family namely Fas (CD95) and TNF-related apoptosis-inducing 
ligand (TRAIL) receptors. Binding of these receptors with their 
ligands such as Fas ligand (FasL) and TRAIL respectively activate 
this pathway  [48]. Increasing evidence suggest that apoptosis could 
play a significant part in getting rid of cancer cells without eliciting 
damage to the healthy normal cells or surrounding tissues  [49]. 
Targeting apoptosis pathways in premalignant and malignant cells 
will be effective strategies for cancer prevention and treatment  [50]. 
Conventional chemotherapeutic drugs may induce apoptosis by 
enhancing Fas expression  [48]. Peptides that could induce apoptosis 
in tumor cells are slowly becoming important candidates for the 
development of new anticancer drugs  [44]. 

The mode of action for anticancer peptides may not be limited to 
those highlighted above. It is not uncommon, however, to find a 
peptide with multiple mechanisms in exerting their effect  [37]. 

A12L/A20L & Pep27anal2 

Huang et al;  [66] demonstrated the role of helicity on the anticancer 
mechanism of action of cationic helical peptides. The 26-residue 
amphipathic α-helical peptide A12L/A20L was modified by 
replacing the original L-amino acid with the D-form on either polar 
or non-polar face of the helix. This results in improved therapeutic 
index of the peptide against human cervix adenocarcinoma cells 
(HeLa) by 9-fold and 22-fold respectively. The anticancer activity of 
these peptides can also be correlated to their hydrophobicity. When 
challenged with eight different cell lines including HeLa, human 
breast adenocarcinoma cell line (MCF7), human lung carcinoma cell 
line (A549), mouse melanoma cell line (B16), the peptides showed 
greater anticancer activity against cervical carcinoma cells with IC50 

of 2 and 1.2 µmol/l with a necrotic-like membrane disruption 
mechanism. Thus increasing hydrophobicity can lead to increased 
anticancer effect  [67]. Similar phenomenon stem from introducing 
tryptophan in the peptide pep27 analogues with increased 
anticancer activity shown by Pepanal2 against acute myelogenous 
leukaemia cell line (AML-2), acute promyelocytic leukaemia cell line 
(HL-60), gastric cancer cell line (SNU-601), Jurkat T cell leukaemia 
cell line and MCF7  [26]. 

Cecropin A & B 

Cecropin A and B are members of cecropin-family of AMP first 
derived from the giant silk moth Hyalophora cecropia. These 
peptides exerted selective inhibitory and antiproliferative efficacy 
against bladder tumour cell lines namely RT4, 647V, J82, 486P in a 
dose-dependent fashion. However, both peptides remained benign 
to fibroblasts of murine and human origin  [68]. In a related 
research, Wu et al;  [69] reported that another derivative of 
cecropin, synthetic peptide CB1a, showed selective anticancer 
activity against leukemia, stomach carcinoma and lung cancer cells 
but low toxicity against non-cancer cells. The IC50 of this potential 
anticancer agent in leukemia and stomach carcinoma were 2-8 folds 
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lower than the parent peptide cecropin. CB1a also displayed high 
selective toxicity against two lung cancer cells – NCI-H460 and NCI-
H520. The peptide had an interaction time with the target cell (IT50) 
of 7 mins, which suggest that the drug was fast acting. More 
extensive study was done on this peptide where it, at 50mg/kg, 
inhibited the growth of lung tumours in an in vivo mouse model 

xenografted with human tumorigenic NCI-H460 lung cancer cells  
[64]. Comparatively, the peptide was toxic to cancerous cells and 
less toxic to normal cells than conventional antitumour drug, 
docetaxel. The peptide can survive long enough in the bloodstream 
to exert its effect before protease digests it; this longevity is due to 
its design of three repeated amphipathic sequence  [64]. 

 

Table 3: Sequence of some selected oncolytic host defense peptides 

Peptide name Sequence Reference 
Aurein 1.2 GLFDIIKKIAESF   [51] 
Hepcidin TH1-5 GIKCRFCCGCCTPGICGVCCRF   [52] 
Melittin GIGAVLKVLTTGLPALISWIKRKRQQ   [53] 
Epinecidin-1 GFIFHIIKGLFHAGKMIHGLV   [54] 
Tachyplesin  KWCFRVCYRGICYRRCR   [55] 
LL-37 LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES   [43] 
Cecropin (CB1a) KWKVFKKIEK-KWKVFKKIEK-AGPKWKVFKKIEK   [56] 
Lactoferricin FKCRRWQWRMKKLGAPSITCVRRAF  [57] 
TsAP-1/TsAP-2 FLSLIPSLVGGSISAFK/FLGMIPGLIGGLISAFK  [58] 
Buforin-II TRSSRAGLQFPVGRVHRLLRK   [53] 
Magainin-II GIGKFLHSAKKFGKAFVGEIMNS   [59] 
Hepcidin TH2-3 QSHLSLCRWCCNCCRSNKGC   [15] 
Gomesin  ZCRRLCYKQRCVTYCRGR  [60] 
Temporin-1CEa FVDLKKIANIINSIFGK  [61] 
Pardaxin GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE   [62] 
Piscidin-1 FFHHIFRGIVHVGKTIHRLVTG  [63] 
HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC  [53] 
GW-H1 GYNYAKKLANLAKKFANALW   [64] 
Pep27anal2 MWKWFHNVLSWWWLLADKRPARDYNRK   [26] 
Cecropin A KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK  [65] 
Cecropin B KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL  [73] 

 

Magainin-II 

Magainin-II belongs to the magainins AMP family, and the parent 
peptide was initially isolated from the skin of African clawed frog, 
Xenopus laevis  [3]. Magainins and its derivatives have been shown 
to exert anticancer effect on a number of cancer cells. Significant 
cytotoxicity of magainin-II have been reported against cancer cells 
including bladder tumours  [70], HeLa cells  [71], human melanoma  
[72], lung cancer cells  [73]. In vivo, magainins have been shown to 
improve the recovery of animals with ascites-producing tumours  
[74]. In addition, nude mice xenografted with melanoma tumour 
were able to recuperate completely after local treatment with 
magainin-II.  [72]. Selectivity for neoplastic cells over normal cells is 
one of the main positives of magainin peptides  [70], they are also 
reported to resist degradation by proteases [75]. 

Melittin  

Melittin is a 26 amino acid sequence linear peptide that is the 
principal component of bee venom. It is a potent activator of 
phospholipase A2, caspase and matrix metalloproteinase that kill 
tumour cells  [76]. It has been reported as a lytic peptide with broad 
spectrum of anticancer effects, but its toxicity towards normal cells 
has limited its potentials as a therapeutic agent  [9]. However, this 
drawback can be subjugated by introducing proper delivery vehicle 
in the form of melittin nanoparticles that can safely convey the 
peptide in significant amount intravenously to target and destroy 
the cells  [9]. Other AMP and their analogues derived from bees 
venom such as halictin HAL-1 (GMWSKILGHLIR), macropin MAC-1 
(GFGMALKLLKKVL), and lasioglossins LL-III (VNWKKILGKIIKVVK) 
have also been reported to be cytotoxic especially to HeLaS3, a 
clonal derivative of parent HeLa cell line  [77]. 

LL-37/hCAP-18 

Human cationic AMP of 18 kDa is the human cathelicidin-derived 
peptide initially synthesized as a preprotein (hCAP-18) before being 
subsequently converted into its active form LL-37 of 4.5 kDa [78]. A 
COOH moiety of hCAP-18 consisting amino acid residue 109-135 
(hCAP109-135) and which correspond to LL-376-32 residue induce 
apoptosis in human oral squamous carcinoma cell line by 
mitochondrial depolarization without any detectable activation of 

caspase-3  [79]. This finding support the proposition that the 
oncolytic activity of LL-37/hCAP-18 is due to LL-37 (17-29), which 
is a 13-amino acid fragment attached to COOH-terminal region 
corresponding to amino acid residue 17-29  [80].  

Although LL-37 (17–29) is equally cytotoxic to drug-sensitive and 
drug-resistant variants of the KB human squamous cancer cell line, it 
also kills untransformed human endothelial cells. Native LL-37 is 
similarly cytotoxic to human peripheral blood lymphocytes  [81]. 
This toxicity against normal human cells has limited their 
therapeutic potentials. 

Pardaxin 

Pardaxin is a 33-amino acid sequence amphipathic polypeptide 
neurotoxin originally extracted from the marine fish Pardachirus 
marmoratus. Few studies have reported the anticancer potential of 
this AMP. Wu et al;  [82] reported that pardaxin exhibited 
antitumour activity against murine fibrosarcoma both in vivo and in 
vitro. The synthetic peptide, at 25mg/kg, 0.5mg/day inhibit the 
proliferation of MN-11 cells after 14 d and reduce colony formation 
in a soft agar assay. By caspase-dependent and reactive oxygen 
species (ROS)-dependent apoptotic mechanism, the peptide 
inhibited human fibrosarcoma cells (HT1080) proliferation  [83]. 
Pardaxin induced programmed cell death in HeLa cells but inhibited 
proliferation of HT1080 cells via a different mechanism  [84]. 

Buforin-IIB & Aurein 1.2 

Buforin-IIb is a 21-amino acid peptide derivative of buforin I (a 39-
amino acid peptide first isolated from the Asian toad Bufo bufo 
gargarizan). Both peptides comprise helix-hinged-helix structures 
derived from histone H2A  [85]. Buforin IIb exerts a broad spectrum 
of anticancer activity; the peptide have been reported to exert 
cytotoxicity on a remarkably 62 cancer cell lines by explicitly 
targeting cancer cells through interaction with cell surface 
gangliosides. It stimulates apoptosis by mitochondria-dependent 
pathway as authenticated by caspase-9 activation and cytochrome c 
release to cytosol besides DNA laddering and annexin V-FITC double 
staining  [86]. Aurein 1.2, another peptide of anuran origin showed 
anticancer effect in 50 out of 60 cancer cell lines tested against by 
National Cancer Institute (NCI) tumour line testing program  [87]. 
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NRC-03 & NRC-07 

Pleurocidin-family cationic AMPs – NRC-03 & NRC-07 were shown 
to be cytotoxic to multiple breast cancer cells including MCF7-TX400 
cells that overexpress p-glycoprotein and slow-growing breast 
adenocarcinoma (SKBR3) cells by binding to the negatively charged 
molecules on the cancer cells  [88]. NRC-03 substantially reduces the 
median effective concentration EC50 of cisplatin for breast cells 
implying its use as a chemosensitizer. Both peptides killed breast 
cancer cells grown as xenografts in non-obese diabetic, severe 
combined immunodeficiency (NOD SCID) mice strains  [88]. 

AMP containing the CisoDGRC (CDAK) motif displayed cytotoxicity in 
aminopeptidase (CD13) negative breast cancer cells MCF7 & MDA-
MD-231 in vitro. The peptide reduced mitochondrial membrane 
potential, promoted caspase-3 and inhibited Bcl-2 expression in the 
breast cancer cell lines. Moreover, the peptide inhibited the 
progression of the xenograft tumour and the generation of 
neovascularization in nude mice in vivo [89]. 

Temporin-1CEa 

Temporin-1CEa is a 17-residue amphipathic α-helical AMP isolated 
from the skin secretion of the Chinese brown frog Rana chensinensis 
and have been reported to exert rapid cytotoxicity against human 
breast cancer cell lines  [90]. The anticancer mechanisms of the 
peptide against two human breast cancer cell lines, MCF7 and MDA-
MB-23, have been investigated. Temporin-1CEa trigger rapid cell 
death in breast cancer cells by intracellular Ca2+ leakage, over-
generation of reactive oxygen species (ROS), collapse of 
mitochondrial membrane potential [90]. Further study of temporin-
1CEa on ERα negative human breast cancer cell line Bcap-37 yielded 
the same cytotoxic mechanisms in line with previous report  [61]. 

TH1-5 & TH2-3 

Hepcidins are cysteine-rich peptides that have been identified in 
many vertebrates including humans, amphibians, reptiles and fish  
[91]. Fish hepcidin have been shown to exert cytotoxicity activity 
against cancer cells. Tilapia hepcidin TH2-3, a synthetic 20-mer AMP 
from Oreochromis mossambicus, inhibited the growth and migration 
of HT1080 in a concentration-dependent manner. The peptide also 
caused lethal membrane disruption in HT1080 cancer cells. Real-
time PCR and migration assay suggest that the peptide possess 
cytolytic activity and downregulatesthe c-jun gene in cancer cells  
[92]. TH1-5, another peptide from O. mossambicus inhibited the 
proliferation of HeLa, HepG2 (human hepatocellular carcinoma), and 
HT1080 tumour cells by altering membrane disruption and inducing 
apoptosis at low dose. In addition, TH1-5 also expressed modulation 
of immune-related genes  [52]. 

Epinecidin-1 and Piscidin-1  

Epinecidin-1 is asynthetic 21-mer peptide originally gotten from the 
grouper Epinephelus coioides. It displayed cytotoxic activity against 
several cancerous cell lines including A549, HT1080, HepG2, HeLa, 
human kidney cell (WS-1), mouse fibroblast cell (NIH3T3), murine 
hepatocyte cell (AML-12), human hepatic tumor-derived cell 
(HA59T/VGH) and mouse macrophage from Abelson murine 
leukaemia virus-induced tumour (RAW264.7) [54]. Epinecidin-1 
increased the cytotoxicity of these cancer lines in a dose and time-
dependent manner, which suggest that cell death occurred by 
membrane disruption [54]. Again it inhibited the proliferation of 
human leukemia cells U937 and induce apoptosis in response to 
cytokine reproduction  [93]. Piscidin-1 is a 22-residue peptide with a 
cationic α-helical structure isolated from the mast cells of hybrid 
striped bass Morone saxatilis x M. chrysops [94]. Lin et al. showed 
that Piscidin-1 at low doses induce both apoptosis and necrosis in 
HT1080 cells. It also triggers a necrotic cell death pathway in a short 
period of high-dose treatment. In addition, piscidin-1 also inhibits 
the migration of HT1080 cells in a dose-dependent manner [94]. 

A9K & GW-H1 

Resembling conventional surfactants, A9K is a short designed 
amphiphilic peptide that comprises a hydrophilic lysine residue as 
the C-terminus, followed by nine consecutive hydrophobic alanine 
residues  [95]. The peptide exhibited high selectivity and dual modes 

of antitumour effects on the cancerous cells by membrane cell 
disruption and induction of cell apoptosis. It inhibited the growth of 
HeLa and human promyelocytic leukemia cells (HL60). One unique 
feature of this synthetic peptide is that it is not degraded by protease  
[95]. GW-H1 is a synthetic cationic amphipathic AMP with α-helix 
conformation. It inhibited the viability of three hepatocellular 
carcinoma cell line (J5, Huh7 and Hep3B) [64]. GW-H1 exerts high 
selective cytotoxicity against J5 cell line via caspase-dependent 
apoptosis. Also, in vivo it inhibited the growth of J5 xenografts in 
nude mice suggesting its potential antitumour capacity  [64]. 

TsAP-1 & TsAP-2 

TsAP-1 and TsAP-2 are two novel peptides obtained from the venom 
of the yellow Brazilian scorpion Tityus serrulatus. Both peptides are 
17-mer amidated linear and non-disulfide bridged peptides.  [58]. 
Lysine residue substitution of these two peptides enhanced their 
potency against five human cancer cell lines namely human 
squamous adenocarcinoma cell line (NCI-HI57), human lung 
adenocarcinoma cell line (NCI-H838), human androgen-independent 
prostate adenocarcinoma cell line (PC-3), human glioblastoma cell 
line (U251) and MCF7. TsAP-2 is more potent of the two; has IC50 
values ranging between 0.83 and 2.0µM  [58]. 

Lactoferricin 

Lactoferrricin is a 25-amino acid AMP obtained by acid-pepsin 
hydrolysis of mammalian lactoferrin  [57]. The amphipathic cationic 
peptide has been reported to be cytotoxic to murine and human 
cancer cell lines including leukemia, fibrosarcoma, various 
carcinomas and neuroblastoma cells  [96–99]; this cytotoxicity occur 
at concentrations that do not significantly affect normal cells such as 
normal fibroblasts, lymphocytes, epithelial cells, endothelial cells or 
erythrocytes  [98,100]. In vivo, LfcinB also exerts potent antitumour 
effect on mice inoculated with L5178-ML25 murine lymphoma and 
B16-BL6 murine melanoma cells  [96]. Limitations of this peptide as 
a potential anticancer therapeutic is its susceptibility to enzymatic 
digestion as well as inactivation by anionic serum components. 

Gomesin 

Gomesin is a potent 18-amino residue AMP isolated from 
haemocytes of the spider Acanthoscurria gomesiana; its anticancer 
activity both in vitro and in vivo has been tested  [60]. Gomesin 
exerted direct cytotoxicity on murine and human tumour cells in 
vitro with an estimated IC50 for the murine melanoma B16F10-Nex2 
being 3.5µM and <10 µM for the human tumour cell lines (HeLa, 
SKBR3, LS180). In vivo, local treatment with gomesin-containing 
cream significantly increased the survival time of murine melanoma-
challenged mice as shown by delayed growth  [60]. 

BMAP-27 & BMAP-28 

Bovine myeloid antimicrobial peptides (BMAP) are α-helical cationic 
peptides of the cathelicidin family. Despite their narrow therapeutic 
range, few studies have evidenced that they possess cytotoxic 
activity on certain human leukemic cells by apoptotic induction  
[101–103]. At high doses, they cause the hemolysis of benign 
erythrocytes and leukocytes  [101,103]. 

Tachyplesin  

Isolated from the haemocytes of the horseshoe crab Tachypleus 
tridentatus, the 17-amino acid peptide is characterized by two 
antiparallel β-sheets rigidly held in place by two disulphide bonds. 
Its antitumour mechanism involve a multistep model in which the 
peptide binds to hyaluronan on the surfaces of target cells and forms 
a membrane attack complex (MAC) at the final stage. This complex 
consequently disrupt the plasma membrane integrity and thereby 
kill the target cells  [55]. Preferential expression of hyaluronan on 
the surface of malignant and endothelial cells involved in cancer 
vascularization suggests that the peptide inhibit the proliferation of 
cells relative to other non-tumorigenic cell lines that express less of 
hyaluronan on their surfaces  [104]. Tachyplesin has been shown to 
inhibit malignant growth in the presence of normal serum even 
against cells that over express the multiple-drug resistant gene  [55]. 
A synthetic version of tachyplesin conjugated to the integrin homing 
domain RGD blocked the growth of tumor cells both in vitro and in 
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vivo  [104]. RGD-tachyplesin has been shown to inhibit the 
proliferation of both cultured malignant and endothelial cells and 
reduced the colony formation of TSU prostate cancer cells. In vivo, it 
has been reported to inhibit the growth of neoplasms via induction 
of apoptosis in both malignant and endothelial cells evidenced by 
activation of several caspases in both the mitochondrial and Fas-
dependent pathways  [55]. 

CONCLUSION  

Anticancer antimicrobial peptides hold promise to yielding novel 
drugs for the treatment of cancer that could replace the traditional 
neoplastic agents or used in combination therapy. Several studies 
have documented the remarkable activities of these molecules in 
several cancers; this is evident in the number of the ACPs in the 
database and documented literature. Nevertheless, further studies 
into this emerging field of anticancer peptide need to be embraced. 
More in vitro studies need to be conducted correlating with the 
effects reported on numerous cancer cell lines. Understanding the 
detailed and precise mechanisms of this class of agents and 
structure-activity relationship will provide a knowledge platform for 
answering some of unanswered questions about AMPs and 
designing superior peptides. Instability and proteolytic degradation 
of the peptides need to be further studied as bypassing this ‘hostility’ 
allow these agents to exert their full therapeutic potentials and 
perhaps decipher some activities yet unknown. 
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