

Print ISSN: 2656-0097 | Online ISSN: 0975-1491

Vol 15, Issue 9, 2023

Erratum

A MASS COMPATIBLE UPLC METHOD FOR THE QUANTIFICATION OF IMPURITIES IN FLUTICASONE PROPIONATE NASAL SPRAY

MUGADA RAVI PRASADA RAO^{1*}, RAMA KRISHNA THOTA¹, MAHIBALAN SENTHI¹, PAUL MOGADATI², SRINIVAS ARUTLA³

^{1*}Analytical Research and Development, Integrated Product Development, Dr. Reddy's Laboratories Ltd., Bachupally, Hyderabad 500090, India, ²AR and D Consultant, Innovative Scientific Services Inc., Rutgers University, East Greenbush, New York, USA, ³Head Product Development, Apotex Research Pvt. Ltd., Bengaluru, India Email: ravipr@drreddys.com

https://innovareacademics.in/journals/index.php/ijpps/article/view/38750

ABSTRACT

Objective: The objectives of the present study were to develop and validate a mass-compatible ultra-performance liquid chromatography (UPLC) method to quantify the impurities in fluticasone nasal spray, and to establish a suitable container-closure system for the formulation.

Methods: A gradient method was optimized with a flow rate of 0.5 ml/min, detector wavelength-240 nm, run time-25 min and 0.1% Trifluoroacetic acid (TFA) in water as solvent A and Methanol as solvent B.

Results: The developed method was linear over the range of 0.07-1.10 μ g/ml for impurity-I, 0.16-2.47 μ g/ml for impurity-II, 0.67-10.0 μ g/ml for impurity-III, and 1.29-19.3 μ g/ml for impurity-IV. The limit of quantification (LOQ) and limit of detection (LOD) were established as 0.07 and 0.02 μ g/ml, 0.14 and 0.05 μ g/ml, 0.59 and 0.19 μ g/ml, 1.06 and 0.35 μ g/ml for impurities I-IV respectively. The percent relative standard deviation (%RSD) of the replicate analysis for impurities I-IV, was within the acceptance criteria (0.4, 0.2, 0.3, and 0.1% respectively) that proved the precision of the method. The accuracy of the method was studied from 50%-150% of test concentration and the results ranged from 100.3% to 109.4%. The container-closure compatibility study revealed that the solution stored in the glass container system did not generate any additional peaks in the chromatogram.

Conclusion: Hence, the developed method can be employed by quality testing laboratories to quantify impurities in fluticasone propionate nasal spray. The study also suggests that glass containers could serve as a compatible system for the storage of fluticasone propionate nasal solution.

Keywords: Fluticasone propionate, UPLC, Nasal spray, Impurities, Method validation

International Journal of Pharmacy and Pharmaceutical Sciences, Doi: http://dx.doi.org/10.22159/ijpps.2020v12i11.38750.

Sub: Change of author order.

Thank you for publishing the paper.

Now I am moving to use this publication for my research work. While submitting the publication to the university, as per university guidelines order of author names are not meeting the criteria. I apologise for it and and request you to change the author names order as mentioned in below table 1.

The author sequence should be read as follows

Table 1

Author order in the published manuscript	Corrected order of Authors	
MUGADA RAVI PRASADA RAO1*	MUGADA RAVI PRASADA RAO1*	
RAMA KRISHNA THOTA ¹	PAUL MOGADATI ²	
MAHIBALAN SENTHI ¹	SRINIVAS ARUTLA ³	
PAUL MOGADATI ²	RAMA KRISHNA THOTA ¹	
SRINIVAS ARUTLA ³	MAHIBALAN SENTHI ¹	

Publication details:

International Journal of Pharmacy and Pharmaceutical Sciences, Vol 12, Issue 11, 2020,

A MASS-COMPATIBLE UPLC METHOD FOR THE QUANTIFICATION OF IMPURITIES IN FLUTICASONE PROPIONATE NASAL SPRAY