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ABSTRACT 

In the realm of cancer diagnostics, imaging and therapeutics, nanocarrier-based drug delivery systems have gained extensive importance owing to 
their promising attributes and potential to enhance therapeutic effectiveness. The primary area of research revolves around formulating innovative 
intelligent nanocarriers such as nanoparticles (NPs) which are capable of selectively responding to cancer-specific conditions and efficiently 
delivering medications to target cells. These nanocarriers, whether operating in a passive or active manner, can transport loaded therapeutic cargos 
to the tumor site while minimizing drug elimination from the drug delivery systems. This review primarily focuses on presenting recent 
advancements in the development and utilization of nanoparticles in the treatment of various cancer types, such as pancreatic cancer, prostate 
cancer, colorectal cancer, cervical cancer, and breast cancer. 
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INTRODUCTION 

Cancer is characterized by uncontrolled cell growth, resulting in the 
formation of abnormal cell masses known as tumors. These tumor 
cells have the ability to multiply and spread throughout the 
lymphatic, circulatory, and bone marrow systems [1]. Among the 
various treatment options for cancer, chemotherapy is commonly 
used, employing chemical agents to kill or inhibit the progression of 
tumor cells. As tumor cells tend to proliferate rapidly, chemotherapy 
drugs specifically target these fast-growing cells. However, it should 
be noted that some normal cells in the body also exhibit rapid 
growth, making them susceptible to the effects of chemotherapy 
drugs. Furthermore, cancer medications, including biological, 
chemotherapy, and hormonal treatments, can reach various organs 
in the body through the bloodstream [2, 3]. While radiotherapy and 
surgery are effective treatments for localized and non-metastatic 
malignancies, they become less effective when tumor cells have 
spread to other parts of the body [4, 5]. Additionally, conventional 
medicines often have limited solubility, bioavailability, and 
therapeutic benefits. Moreover, administering them in high doses 
can lead to increased toxicity, which needs to be carefully managed. 
Therefore, the development and advancement of nanotechnology-
based drug delivery systems, such as nanoparticles (NPs), have 
emerged as a significant breakthrough in cancer treatment [6]. An 
attempt has been made to report such advancements over the last 
decade in the area of NPs in this present piece of writing by referring 
to scientific literature and findings from different reputed journals 
by using keywords such as cancer, nanotechnology, nanotechnology 
for different types of cancer, etc. 

Nanotechnology is a rapidly advancing field that involves the 
manipulation of NPs, which are solid supramolecular structures with 
sizes ranging from 10 to 1000 nm. These NPs hold tremendous 
potential in the field of cancer management, as they can encapsulate, 
entrap, dissolve, or attach a wide variety of drugs, serving as a 
reservoir for therapeutic agents. In recent times, NPs have garnered 
significant interest due to their capabilities as drug carriers, their 
potential in biomedicine as targeting systems, their applications in 
bio-imaging, and their ability to facilitate controlled drug release. By 
utilizing nanocarriers, medications can be protected from 
degradation, their half-life in the bloodstream can be extended, and 

renal clearance can be reduced. Nanocarriers also enhance the 
effectiveness of cytotoxic drugs, regulate the release kinetics of 
antitumor medications, and improve the solubility of chemicals [1, 7, 4, 
6]. These intelligent nanocarriers, specifically designed for tumor 
targeting, offer several advantages, including enhanced drug release, 
improved pharmacodynamic and pharmacokinetic profiles, enhanced 
intracellular and internalization delivery, controlled and specific 
targeting, and most importantly, reduced toxicity effects [7-9]. Tumors 
often exhibit characteristics such as leaky blood vessels and poor 
lymphatic drainage. In this context, two key types of drug targeting 
approaches are utilized: active targeting and passive targeting. 

Passive targeting 

Passive targeting of tumor cells can be accomplished through the 
exploitation of the enhanced permeability and retention (EPR) 
effect, which is characteristic of tumor tissues. This effect arises due 
to the presence of leaky endothelium in tumor vasculature, resulting 
in a higher accumulation rate of drug-loaded nanocarriers within the 
tumor compared to healthy tissues. Additionally, the compromised 
lymphatic system in tumors contributes to the retention of 
nanoparticles, and both these phenomena collectively define the EPR 
effect [10]. Passive targeting offers a significant improvement in 
specificity, around 20-30%, when compared to healthy organs. The 
effectiveness of EPR-based passive targeting relies on various 
factors related to nanocarrier properties, such as size, charge, and 
surface chemistry, as well as the challenges associated with 
achieving precise cell targeting within malignant tumors [11, 12]. 
The EPR effect can be further enhanced if smart nanocarriers are 
able to evade immune surveillance and circulate in the bloodstream 
for an extended period. This would allow for relatively high 
concentrations of drug-loaded smart nanocarriers to accumulate at 
the tumor site within 24-48 h, surpassing the levels observed in 
normal cells [13]. 

Active targeting 

Active targeting involves the use of surface-modified targeted 
nanoparticles [14-17]. Tumor cells often exhibit increased 
expression of specific cell surface antigens and molecules like folic 
acid. In active targeting, drug-loaded nanocarriers are coupled with 
ligands that can recognize and bind to these overexpressed targets 
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on the tumor cell surface. Various ligands have been extensively 
studied, including antibodies, peptides, aptamers, transferrin, and 
folate [18]. To overcome the limited water solubility of certain 
organic solutes, functional organic compounds are typically 
encapsulated within nanoparticles. Additionally, hydrophilic 

coatings on the nanoparticle surface can be combined with 
amphiphilic surfactants, enabling the effective delivery and 
distribution of insoluble organic solutes in an aqueous phase [19, 
20]. Fig. 1 depicts a schematic representation of diverse applications 
of NPs in different types of cancer. 

 

 

Fig. 1: Schematic presentation of applications of NPs in different types of cancer 

 

Nanoparticles for pancreatic cancer (PC) 

Pancreatic cancer (PC) is a highly lethal solid tumor, causing over 
250,000 deaths annually worldwide. It is predominantly diagnosed 
in individuals aged 40 y and older, with a median age of 71 at 
diagnosis. The incidence of PC varies from 1 to 10 cases per 100,000 
people globally, with higher rates observed in developed countries 
[21]. PC ranks as the eighth leading cause of cancer-related deaths in 
both men and women globally, and according to the American 
Cancer Society, it has become the third leading cause of cancer-
related deaths in the United States [22, 23]. With a five-year survival 
rate of less than 5%, PC is a devastating malignancy primarily 
affecting the exocrine pancreas. The majority (over 90%) of 
pancreatic malignancies are classified as PC, with approximately 60-
70% of cases occurring in the head, neck, or uncinate process of the 
pancreas. Tumor presentations in the body and tail regions are less 
common, accounting for 5-10% and 10-15% of PC cases, 
respectively [24]. At the microscopic level, PC tumors are 
surrounded by a dense stroma composed of intracellular fibroblasts, 
inflammatory cells, and extracellular matrix (ECM). The complex 
interactions between tumor and stromal cells lead to the activation 
of various signaling pathways, such as TGF-β/SMAD, HGF/Met, 
matrix metalloproteinases, Hedgehog, and Wnt, through paracrine 
and autocrine mechanisms. These interactions establish an active 
microenvironment that promotes tumor invasion and growth [25]. 

Moreover, pancreatic cancer (PC) is characterized by its propensity 
for local invasion and distant metastasis. The management of PC is 
primarily determined by the disease stage at the time of diagnosis. 
Despite adjuvant therapies following surgery, most patients 
experience relapse [26-28]. The dismal prognosis of PC can be 
attributed to late-stage diagnosis, limited biomarkers for early 
screening, early metastatic spread, and the development of 
resistance to systemic therapies [28]. While significant progress has 
been made in the treatment of various tumor types, such as breast, 
colorectal, prostate, and cervical cancers, through targeted drug 
delivery strategies that target specific molecular alterations in 
cancer cells [29-31], the management of PC remains challenging and 
outcomes remain poor. Therefore, it is crucial to disseminate the 
latest findings and important conclusions related to PC treatment 
among the scientific, medical, and research communities [32]. 

The progression of PC is strongly influenced by the neural 
microenvironment. In a recent study, researchers focused on 
controlling the neural microenvironment to regulate the progression 
of PC by developing neural drug-loaded ferritin nanoparticles (Ft-
NPs). These Ft-NPs were designed to target PC tumors through 
active targeting mechanisms, such as binding to transferrin receptor 
1 (TfR1), as well as passive targeting utilizing the enhanced 
permeability and retention (EPR) effect exhibited by tumors. The 
researchers loaded carbachol (CAB), an activator of neural activity, 
and atropine (ATO), an inhibitor of neural activity, into Ft-NPs to 
create Nano-CAB NPs and Nano-ATO NPs, respectively. Nano-CAB 
NPs effectively stimulated the neural microenvironment, thereby 
promoting the progression of pancreatic tumors. On the other hand, 
Nano-ATO NPs inhibited the neural niche, impairing neurogenesis 
within tumors and impeding the progression of PC. Consequently, 
Ft-based nanoparticles present an efficient and safe anticancer 
system for the targeted delivery of neural drugs [33]. 

In an alternative approach, researchers investigated the use of 
magnetic nanoparticles (MNPs) and magnetic resonance imaging 
(MRI) to target survivin (SUR), an apoptosis inhibitor, in a mouse 
model of pancreatic tumors. The study involved conjugating survivin 
antisense oligonucleotide (ASON) with chitosan-coated MNPs to 
create SUR-MNPs. The accumulation of targeted nanoparticles, as 
well as non-targeted nanoparticles and nonsense oligonucleotide-
MNPs (NSON-MNPs), was assessed in the spleen, kidney, liver, and 
tumors. The results demonstrated a higher accumulation of targeted 
nanoparticles in PC BxPC-3 cells compared to non-cancerous cells. 
Moreover, in vivo MRI revealed a significant reduction in T2 signal 
intensity in the tumors of mice treated with targeted nanoparticles, 
whereas minor signal changes were observed in tumors of mice 
treated with non-targeted nanoparticles or NSON-MNPs [34]. 

Another study utilizing Prussian blue staining confirmed that SUR-
MNPs exhibited higher accumulation in the tumor mass compared to 
normal kidney, liver, and pancreatic tissues. These findings indicate 
that ASON-functionalized MNPs effectively localized to pancreatic 
tumors, suggesting the potential applicability of SUR-targeted 
nanoparticles for pancreatic tumor detection [35]. Given the high 
mortality rate of PC, with nearly 80% of patients succumbing to the 
disease within the first 6 mo of diagnosis, there is a pressing need 
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for sensitive diagnostic tools capable of detecting even small tumors 
at early stages. To address this, magnetic biodegradable 
nanoparticles were developed using recombinant human serum 
albumin (rHSA) incorporated into iron oxide (maghemite, γ-Fe2O3) 
nanoparticles. The target receptor chosen in this study was galectin-
1, which is upregulated in PC but not in healthy pancreatic tissue or 
pancreatitis. Galectin-1 was covalently attached to the nanoparticle 
surface using tissue plasminogen activator-derived peptides (tPA-
ligands) due to its high affinity for the target moieties. When 
administered to mice, these magnetic biodegradable nanoparticles 
exhibited improved targeting and imaging properties as detected by 
single-photon emission CT and MRI [36]. 

The application of ultrashort echo-time (UTE) imaging has proven 
effective in vivo for the detection of tumor-targeted iron oxide 
nanoparticles (IONPs) using molecular MRI. A study focused on 
evaluating the UTE imaging technique to enhance the detection of 
receptor-targeted magnetic nanoparticles in cancer xenograft 
models, specifically employing positive contrast. The IONPs were 
conjugated with ligands that target tumor cells expressing the 
epidermal growth factor receptor. The findings revealed that both 
UTE and longer echo-time (TE) imaging methods exhibited positive 
contrast in pancreatic tumors associated with the epidermal growth 
factor receptor [37]. In terms of transfection agents and their impact 
on tumor cell biology, the utility of polyethylenimine (PEI)-coated 
superparamagnetic iron oxide nanoparticles (SPIONs) was 
investigated. Limited information was available on the effects of PEI-
coated SPIONs on pancreatic tumor cells. The study demonstrated 
that these nanoparticles significantly reduced the expression of 
MT1-MMP and MMP2 metalloproteinases and inhibited Src kinase 
activity, leading to powerful inhibitory effects on the migration and 
invasion of pancreatic tumor cells. Additionally, treatment with PEI-
coated SPIONs resulted in reduced density of the pancreatic tumor 
cell line Pan02. These prepared nanoparticles exhibited promising 
properties, potentially acting as antimetastatic agents for the 
management of pancreatic cancer [38]. 

The influence of different physiological environments on the 
biological properties of nanoparticles has been extensively 
investigated. The characteristics of nanoparticles, such as charge, 
size, and aggregation state, are highly dependent on the biological 
environment and their physicochemical properties. Upon entry into 
the biological environment, proteins bind to the surface of 
nanoparticles, forming a protein coating that confers a biological 
identity and governs their physiological response. The study 
enrolled both healthy subjects and patients with histologically 
confirmed pancreatic cancer. Notably, cancer patients exhibited a 
significant decrease in the levels of clinically relevant proteins. Both 
groups of patients were administered two different types of lipid 
nanoparticles, one positively charged and the other negatively 
charged (plain and PEGylated). The outcomes revealed substantial 
alterations in zeta potential between the healthy and pancreatic 
cancer groups when using plain positively charged lipid 
nanoparticles [39]. 

A mathematical model consisting of three stages was developed to 
explain drug release, degradation, relaxation, and diffusion. The 
model successfully elucidated the release of PHT-427, a kinase 
inhibitor and anticancer molecule, encapsulated in poly(lactic-co-
glycolic acid) nanoparticles (PLGA NPs). The study employed the 
single emulsion-solvent evaporation technique for the encapsulation 
of the AKT/PDK1 inhibitor in nanoparticles. The results 
demonstrated the successful encapsulation of the inhibitor and its 
efficient delivery to the intended site [40]. Furthermore, a novel 
approach involved the development of mesoporous silica 
nanoparticles (MSNPs) loaded with PTX for intraperitoneal delivery. 
An in vivo study was conducted using xenograft mice implanted with 
human pancreatic cancer cells (MIA PaCa-2) in the peritoneal cavity. 
The results demonstrated that PTX-loaded MSNPs exhibited a 3.2-
fold increase in residence time within the peritoneal cavity, along 
with slower absorption into the systemic circulation. Compared to 
free PTX, PTX-loaded MSNPs showed one-third the systemic 
exposure and a 6.5-fold increase in accumulation within peritoneal 
tumors. Moreover, PTX-loaded MSNPs exhibited a 3.5-fold increase 
in cellular uptake by tumor cells. Thus, the intraperitoneal 

administration of MSNPs proved effective in enhancing the 
accumulation of PTX within peritoneal tumors while reducing 
systemic exposure [41]. 

In the context of managing pancreatic cancer, the effects of 
cyclopamine, a potent inhibitor of the hedgehog signaling pathway 
with anti-fibrotic activity, on the penetration and efficacy of 
nanotherapeutics were investigated. For this purpose, cyclopamine 
nanoparticles were prepared, and the results demonstrated that 
they improved tumor perfusion and disrupted tumor extracellular 
fibronectins. These nanoparticles also alleviated tumor vessel 
compression and exhibited enhanced intra-tumoral distribution and 
accumulation. Consequently, cyclopamine nanoparticles hold 
significant potential for enhancing therapeutic efficacy in pancreatic 
cancer patients [42]. Several studies and reviews have highlighted 
the increased mortality rate in pancreatic cancer due to various 
factors, such as the growth of the stromal barrier, multidrug 
resistance, a hypoxic environment resulting from hypoperfusion, 
and the presence of cancer stem cells (CSCs). To address these 
challenges, a nanocarrier system was developed by combining 
quercetin (QUER) and 5-Fluorouracil (5-FU). Both drugs were 
individually and jointly loaded into chitosan nanoparticles. The 
results demonstrated notable entrapment efficiency of the dual-
drug-loaded carrier system with chitosan: QUER: 5-FU ratio of 3:1:2. 
Both drugs exhibited extensive association with the chitosan matrix. 
Additionally, in both 2D and 3D cultures, the dual-drug-loaded 
carrier system exhibited significant toxicity against pancreatic 
cancer cells [43]. 

Gemcitabine (GEM)-loaded human serum albumin nanoparticles 
(GEM-HSA-NPs) were synthesized and evaluated for their in vivo 
effectiveness against the pancreatic cancer cell line BxPC-3. The study 
revealed that GEM-HSA-NPs exhibited increased encapsulation and 
drug-loading rates, demonstrating superior efficacy compared to free 
GEM [44]. Moreover, doxorubicin-loaded gold nanoparticles (DOX-
GNPs) were synthesized using a green chemistry approach and 
evaluated for their anticancer potential against human pancreatic 
cancer cell lines. The synthesized DOX-GNPs were characterized and 
subjected to an in vitro anticancer assay, which demonstrated no 
significant difference in percentage cell viability compared to free DOX 
in the pancreatic cancer cell lines [45]. 

Nanoparticles for prostate cancer (PC) 

Prostate cancer (PC) is a prevalent and recurrently diagnosed cancer 
among men worldwide, ranking as the second most common cancer 
and a leading cause of mortality with 258,000 deaths reported in 
2008 [30]. In the United States alone, approximately 230,000 and 
280,000 cases of PC were estimated in 2014 and 2015, respectively, 
while Europe reported around 417,000 cases [47, 48]. Over the past 
20 y, the survival rate for various stages of PC has significantly 
increased from 69% to approximately 99% due to earlier detection, 
public awareness, and advancements in treatment. However, the 
death rate for PC is more than twice as high for African-American 
men compared to Caucasian men [49, 50]. Key risk factors include 
family history, age, and racial origin, although the development of PC 
involves interactions between environmental and endogenous 
factors [51]. Treatment options for PC vary depending on the type of 
cancer. Localized prostate cancer can be successfully treated with 
radiotherapy or surgery, but metastatic PC remains incurable. 
Chemotherapy becomes the treatment of choice after the 
development of castration resistance, extending the lifespan of 
patients by a few months [52]. 

Nanotechnology plays a critical role in the management of prostate 
cancer. In one study, thermosensitive poly(N-isopropylacrylamide-
acrylamide-allylamine)-coated magnetic nanoparticles (PMNPs) 
were synthesized for active targeting and imaging of PC. These 
nanoparticles were further conjugated with prostate cancer-specific 
R11 peptides (R11-PMPs). The nanoparticles exhibited 
superparamagnetic properties, and in vitro analysis demonstrated 
their compatibility with normal prostate epithelial cells and human 
dermal fibroblasts at concentrations up to 500 μg/ml after 24 h of 
incubation. Moreover, prostate cancer cells PC3 and LNCaP showed 
higher uptake of R11-PMNPs compared to PMNPs. In vivo 
biodistribution studies confirmed increased accumulation of R11-
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PMNPs in tumors compared to other vital organs, unlike PMNPs 
without R11 conjugation [53]. 

Another approach aimed to protect curcumin from oxidative 
degradation by encapsulating it in a nanoparticulate system with 
radical scavenging capabilities. pH-sensitive redox nanoparticles 
loaded with curcumin (RNPN) were prepared using self-assembling 
amphiphilic block copolymers conjugated with nitroxide radicals, 
which act as reactive oxygen species (ROS) scavengers. The 
developed curcumin-loaded RNPN system demonstrated suppressed 
tumor growth in vivo, attributed to enhanced bioavailability and 
significant ROS scavenging at the tumor sites [54]. Poly(lactic-co-
glycolic acid)-curcumin nanoparticles (PLGA-CUR NPs) were 
evaluated for their therapeutic potential in prostate cancer. These 
nanoparticles effectively internalized into PC cells and released 
active curcumin in the cytosolic region, leading to improved 
therapeutic action. In cell proliferation studies, the prepared NPs 
demonstrated a significant role in inhibiting proliferation and colony 
formation capability of PC cells compared to free curcumin [55]. 

Docetaxel (DTX) is a highly effective agent for extending survival and 
improving the quality of life in patients with metastatic castration-
resistant prostate cancer (mCRPC). However, its long-term use is 
limited by cumulative toxicity and the development of drug resistance. 
To overcome these limitations, DTX was evaluated by superficial 
conjugation to carboxymethylcellulose nanoparticles. Remarkably, a 
single dose of these synthesized nanoparticles resulted in a complete 
regression of PC3 tumor xenografts in mice [56]. 

Snake venom from Walterinnesia aegyptia (WEV) was demonstrated 
to have anti-tumor activity against prostate cancer and multiple 
myeloma cell lines. In this study, the isolated venom was treated 
with silica nanoparticles (WEV+NP) and its therapeutic efficacy was 
evaluated in vivo using mouse models. Treatment with WEV+NP 
significantly reduced prostate tumor volumes, increased reactive 
oxygen species (ROS) levels, and dynamically decreased chemokine 
levels. These findings highlight the potential of the developed 
nanoparticulate system for the sustained delivery of snake venom to 
prostate cancer cells [57]. 

Gold nanoparticles (AuNPs) serve as a versatile nanomaterial 
platform in biomedical research. In the context of prostate cancer, 
AuNPs were synthesized and functionalized to target the prostate-
specific membrane antigen (PSMA) expressed in prostate cancer 
cells. Streptavidin-coated AuNPs conjugated with a PSMA inhibitor 
exhibited high and selective binding to PSMA-expressing LNCaP cells 
compared to non-targeted AuNPs. This designed system 
demonstrated its potential for targeted delivery in prostate cancer 
therapy [58]. Casein nanoparticles (CASNPs) were synthesized for 
encapsulating flutamide (FLT) to develop FLT-loaded CASNPs. The 
aim was to control drug release, enhance anti-cancer activity, and 
reduce hepatotoxicity. CASNPs exhibited sustained drug release for 
up to 4 d and demonstrated higher anti-tumor activity in PC-bearing 
rats when administered intravenously for 28 d. These NPs resulted 
in a significant decrease in prostate-specific antigen (PSA) serum 
levels and reduced relative weights of prostate tumors. 
Furthermore, they exhibited enhanced anti-proliferative, anti-
angiogenic, and apoptotic effects compared to the drug solution [59]. 
Overall, nanoparticles have shown significant potential in the 
management of prostate cancer, providing improved drug delivery, 
enhanced therapeutic efficacy, and reduced side effects. 

Nanoparticles for colorectal cancer 

Cancer is a devastating disease that continues to claim numerous 
lives each year [60]. With a global increase in cancer cases, it has 
become one of the most significant challenges to human health, 
accounting for 1.8 million reported new cases and 9.6 million deaths 
in 2018 [61]. Colon cancer, ranking as the third most common 
cancer worldwide, stands as a leading cause of mortality, 
particularly in the United States [62, 63]. The development of colon 
cancer is attributed to the accumulation of genetic and epigenetic 
modifications, which contribute to its progression. However, early 
symptoms of colon cancer are often subtle and may include blood in 
the stool, anemia, and weight loss, manifesting predominantly in 
middle and advanced stages [64]. Lifestyle factors such as improper 
diet, smoking, and lack of physical activity also play a significant role 

in promoting tumor growth. Furthermore, various factors, including 
cytokines, growth factors, and certain chemicals, contribute to the 
progression of colon cancer [65]. The lack of early detection 
methods and effective drug delivery strategies has made colorectal 
cancer a deadly disease globally. In this context, nanotechnology has 
emerged as a promising approach, particularly in drug delivery, 
targeting pathological sites with higher success rates. Nanoparticles 
(NPs) have gained considerable attention for their applications in 
the therapy and imaging of colon cancer [66-68]. 

In a particular study, researchers encapsulated 5-FU within 
biodegradable polycaprolactone nanoparticles (NPs) and discovered 
its effectiveness in inhibiting the proliferation of colorectal 
carcinoma cells compared to other NPs and the drug solution [69]. 
Another study demonstrated the efficacy of wheat germ agglutinin-
mediated chitosan-based NPs loaded with 5-FU and 
epigallocatechin-3-gallate against colon cancer. These NPs exhibited 
prolonged circulation time and enhanced drug localization at the 
tumor site [70]. Magnetic NPs have also shown promise as 
nanocarriers in biomedical applications due to their 
biocompatibility and unique physicochemical properties that 
facilitate targeted interactions with cells. For instance, dextran-
coated superparamagnetic iron oxide solid lipid NPs loaded with 
DOX and decorated with folate residues selectively accumulated 
DOX at colon tumor sites after oral administration, utilizing external 
stimuli driven by the tumor microenvironment [71]. Another 
formulation involved magnetic solid lipid NPs containing iron oxide 
cores embedded within a glyceryl tri myristate solid matrix, which 
exhibited a decrease in cell viability in human HT29 colon 
adenocarcinoma cells upon exposure to alternating electromagnetic 
fields [72]. 

Inhibition of colon cancer cells by 20% was achieved through the 
use of biocompatible polymer/carbohydrate-coated magnetic NPs, 
which disrupted cellular interactions and the cell cycle [73]. Gold 
NPs containing radio-labeled resveratrol showed enhanced targeting 
efficacy on colon adenocarcinoma cells in rats compared to radio-
labeled resveratrol alone [74]. Hyaluronic acid (HA) and SN38-
loaded gold NPs demonstrated site-specific targeting effects through 
the photothermal properties of gold NPs, effectively inhibiting 
cancer cell proliferation [75]. NPs composed of chitosan and 
PEGylated chitosan, prepared using the ionic gelation technique and 
encapsulated with anti-catenin siRNA, successfully decreased 
catenin protein levels in colon cancer cell cultures [76]. Additionally, 
gold nanoparticles stabilized by polyphenol and encapsulating 
green-synthesized Abutilon indicum leaf extract exhibited potent 
cytotoxic properties against cancer cells [77]. Combinatorial NPs 
encapsulating the well-known anticancer phytochemical curcumin 
(Cur) and 5-FU were developed using N, O-carboxymethyl chitosan, 
resulting in increased efficacy for colon cancer treatment and higher 
drug levels in the bloodstream [78]. 

In a recent study, researchers developed mesoporous silica 
nanoparticles (NPs) encapsulating the anticancer drug DOX and 
functionalizing them with an aptamer targeting the epithelial cell 
adhesion molecule. This modification allowed for the targeted 
delivery of DOX to colon cancer cells, resulting in an improved 
therapeutic index and reduced side effects [79]. The field of 
simultaneous cancer diagnosis and treatment, known as 
theranostics, is rapidly evolving. One notable advancement is the 
utilization of multi-functional branched glycopolymer-PTX-DOTA-
gadolinium ion nanoparticles, which exhibit great potential for 
cancer theranostics. These nanoparticles demonstrate significant 
inhibition of tumor progression, enhanced MRI contrast intensity, 
and excellent biocompatibility [80]. 

Nanoparticles for cervical cancer 

Cervical cancer stands as the second leading cause of death among 
women worldwide [29]. Developing countries, alongside Africa and 
America, face a significant burden of breast and cervical cancer due 
to the absence of well-established screening and early detection 
programs. Initially, human papillomavirus (HPV) infection was 
believed to be the primary predisposing factor for cervical cancer. 
However, it was later confirmed, after 2000, that HPV is indeed the 
key etiological factor. The HPV virus functions by inhibiting 
programmed cell death (apoptosis) and producing proteins that 



R. R. Bhosale et al. 
Int J Pharm Pharm Sci, Vol 15, Issue 11, 1-10 

5 

suppress the activity of crucial genes involved in cell growth 
regulation, such as P53 and retinoblastoma genes. Factors such as 
early sexual activity, multiple sexual partners, and HIV infection 
contribute to the increased risk of cervical cancer [81-83]. 

Additionally, smoking poses a risk as it negatively impacts the 
immune system, thus promoting the development of cancer. Various 
types of cervical carcinoma exist, including squamous cell 
carcinoma, adenocarcinoma, adenosquamous carcinoma, 
villoglandular adenocarcinoma, small cell carcinoma, glassy cell 
carcinoma, neuroendocrine carcinoma, and melanoma. Typically, 
cervical cancer progresses gradually, starting with the growth of 
abnormal cells on the cervical surface. A significant number of 
cervical cancers arise from squamous cells, leading to a 
precancerous condition known as dysplasia [84]. Women with 
persistent HPV infections are particularly vulnerable to developing 
precancerous lesions and/or cervical cancer [85-87]. Therefore, it is 
crucial to widely disseminate the most recent advancements and 
significant findings in cervical cancer treatment to scientific and 
research communities. Nanoparticles (NPs) have the potential to 
revolutionize cancer treatment by serving as a reservoir for drugs, 
allowing for their encapsulation, entrapment, dissolution, or 
attachment to a nanoparticle matrix [88, 89]. 

Cisplatin, when trapped within folic acid-conjugated gelatin 
nanoparticles, exhibited enhanced drug delivery capabilities for 
cancer treatment, resulting in a higher cellular uptake of 81% 
compared to plain gelatin nanoparticles, which had an uptake of 
51% [90]. Nanoparticles loaded with the bioflavonoid naringenin, 
prepared using the nanoprecipitation technique, demonstrated 
increased cytotoxic efficacy in human cervical cancer cells. This was 
accompanied by elevated levels of intracellular reactive oxygen 
species (ROS), lipid peroxidation, and a decrease in glutathione 
(GSH) levels, surpassing the effectiveness of free naringenin 
treatment [91]. Oligonucleotide intercalator phenanthridinium-
functionalized mesoporous silica nanoparticles exhibited potent 
inhibition of cell growth by binding to cytoplasmic oligonucleotides, 
particularly in HeLa cells, due to the presence of phenanthridium 
groups on the nanoparticle's surface. These nanoparticles showed 
good biocompatibility, cellular trafficking properties, and potential 
for various biomedical applications [92]. 

Silver nanoparticles synthesized using green leaf extract from 
Podophyllum hexandrum selectively induced DNA damage and 
caspase-mediated cell death in human cervical cancer cells [93]. 
Crystalline gold nanoparticles synthesized using Podophyllum 
hexandrum L demonstrated effective anticancer activity by inducing 
oxidative stress, cell cycle arrest, DNA damage, and activation of the 
caspase cascade, ultimately leading to mitochondrial dysfunction 
and apoptosis in cancer cells [94]. Nanostructured lipid particles 
loaded with bleomycin sulphate enhanced the oral bioavailability of 
the drug by preventing first-pass metabolism and increasing 
intestinal lymphatic uptake. This resulted in improved toxicity and 
apoptosis against cervical cancer cells [95]. Curcumin-loaded 
polylactic-co-glycolic acid nanoparticles, designed to improve 
solubility and stability, were conjugated with anti-P-glycoprotein 
antibody. These nanoparticles showed promise as either multidrug 
resistance modulators or anticancer drugs, providing benefits for 
cancer patients [96]. 

Extensive research has been conducted on the use of doxorubicin 
(DOX) for treating cervical cancer. One study focused on the 
preparation of long-circulating self-assembled nanoparticles 
encapsulating DOX. These nanoparticles were made using an 
amphiphilic block copolymer composed of polynorbonene-
cholesterol and poly(ethylene glycol). The findings revealed that 
these nanoparticles exhibited significantly greater inhibition of 
tumor growth compared to free DOX. It was concluded that these 
nanoparticles could serve as valuable carriers for improving the 
delivery of hydrophobic anticancer drugs to tumors [97]. Another 
study explored the use of pH-responsive charge-reversal polymer-
coated mesoporous silica nanoparticles loaded with DOX 
hydrochloride. These nanoparticles effectively delivered and 
released DOX hydrochloride to the nucleus of HeLa cells, as observed 
through confocal laser scanning microscopy [98]. Additionally, DOX-
loaded nanoparticles were prepared using cyclodextrin-containing 

pH-sensitive poly(2-(dimethylamino)ethyl methacrylate) star 
polymer. These nanoparticles exhibited higher cytotoxicity and 
cellular uptake and were able to effectively suppress tumor growth 
without significant side effects [99]. 

Researchers also synthesized magnetic iron oxide nanoparticles 
using aqueous extract from brown seaweed. These nanoparticles 
demonstrated cytotoxic effects on cervical cancer cells by inducing 
apoptosis [100]. Targeted nanoparticles based on transferrin-
conjugated amphiphilic copolymers loaded with paclitaxel (PTX) 
showed increased activity, thanks to the presence of transferrin, and 
facilitated tumor-specific therapy [101]. 

Biocompatible amphiphilic pentablock copolymeric nanoparticles 
loaded with docetaxel (DTX) were prepared using poly(lactide-co-
glycolide) and pluronic F68 through emulsion solvent evaporation 
and simple dialysis. These nanoparticles exhibited significant 
cytotoxicity against cervical cancer cells [102]. Nanoparticles 
incorporating methotrexate and 5-FU together showed enhanced 
anticancer efficacy compared to free individual drugs or their 
nanoparticle formulations alone [103]. 

Nanoparticles for breast cancer (BC) 

Breast cancer (BC) is a highly prevalent and fatal disease affecting 
women worldwide, according to the International Agency for 
Research on Cancer (IARC) [104]. Despite advancements in 
diagnosis and treatment, BC remains one of the deadliest cancers. 
The main source of BC originates from the epithelial cells lining the 
terminal duct of the lobule unit in the breast. These cancer cells can 
be categorized as non-invasive or in situ when they are confined 
within the basement membrane of the ducts and lobules. Invasive BC 
occurs when cancer cells spread beyond the basement membrane 
into the surrounding normal tissues [105]. 

Ductal carcinoma, lobular carcinoma, and inflammatory mammary 
cancer are some of the different types of BC. The TNM (tumor, node, 
metastasis) staging system is used to classify the various stages of 
breast carcinoma. TNM stages I, II, and IIIA are considered operable, 
and patients in these early stages who receive appropriate treatment 
have a 5-year survival rate exceeding 75% [106]. However, there is a 
need for more effective treatment options for BC patients. Novel 
delivery systems offer promising approaches for early detection and 
treatment. Current cancer research focuses on improving BC 
treatment through the use of various novel drug delivery systems, 
including nanoparticles. Commonly used polymers for nanoparticle 
preparation include poly(lactic-co-glycolic acid) (PLGA), 
polyethylene glycol (PEG), and modified PLGA. In one study, star-
shaped copolymer-based nanoparticles loaded with docetaxel (DTX) 
were prepared using a modified nanoprecipitation method. These 
nanoparticles exhibited significantly higher cytotoxicity compared to 
commercially available Taxotere® formulation, possibly due to 
increased encapsulation efficiency and drug loading. In vivo studies 
also demonstrated the superior antitumor efficacy of these 
nanoparticles [107]. 

A novel polymeric nanocarrier was developed using cholic acid-core 
star-shaped PLGA-based nanoparticles to achieve controlled and 
sustained delivery of simvastatin. These nanoparticles exhibited 
significantly higher cytotoxicity and effectively inhibited tumor 
growth by internalizing into MDA-MB-231 human breast cancer 
cells. They also demonstrated a notable reduction in the expression 
of the cell cycle protein cyclin D1 compared to pristine simvastatin 
and linear PLGA nanoparticles loaded with simvastatin [108]. 

Additionally, nanoparticles have been utilized to enhance the 
solubility of poorly water-soluble drugs like curcumin. 
Encapsulation of curcumin in PLGA nanoparticles improved its 
bioavailability by protecting it from the environment and enabling 
its release in the cytoplasm, leading to G2 receptor-blocking action 
on MCF-7 cancer cell lines [109]. Smart nanoparticles stabilized with 
dendrimers and loaded with the hydrophobic drug paclitaxel (PTX) 
demonstrated pH-dependent drug release for targeted delivery. 
These nanoparticles exhibited stability at physiological pH and 
efficiently suppressed cancer cell growth while inducing apoptosis. 
They also displayed excellent biocompatibility compared to PTX 
alone [110]. 
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Dual drug-loaded silica nanoparticles, incorporating PTX and 
suramin, were synthesized using triple targeting ligands specific to 
neoangiogenesis and cancer. These nanoparticles exhibited 
enhanced uptake and superior therapeutic efficacy against breast 
cancer cells. They effectively immobilized the activated endothelial 
cells, preventing their migration [111]. Antioxidant nanoparticles 
loaded with Vitamin C and E were prepared using extracts from 
Hibiscus rosa-sinensis petals and chitosan, a biocompatible, 
biodegradable, and cationic polymer with targeting ability. These 
nanoformulations showed excellent hemocompatibility, high 
encapsulation efficiency (around 76%), and significantly increased 
anticancer activity against breast cancer cell lines (MCF-7) [112]. 

Trastuzumab, a human monoclonal antibody, was utilized to 
specifically target cancer cells that overexpress human EGFR-2. 
Lipid-based nanoparticles (NPs) loaded with rapamycin (an imaging 
agent) were developed for targeted therapy of breast cancer (BC). 
The results demonstrated enhanced therapeutic efficacy of the drug 
when formulated in NPs compared to the pure drug [113]. Gold 
nanoparticles can be directed to the mitochondria of BC cells, 
inducing apoptosis and promoting cell death. These nanoparticles 
hold potential for use in photothermal therapy for BC [114]. 
Enzyme-sensitive amphiphilic peptide dendritic copolymer-based 
nanoparticles loaded with DOX exhibited efficient apoptosis of 
cancer cells in vitro. They demonstrated prolonged retention and 
accumulation within tumor cells while reducing DOX-induced 
toxicities, making them a promising drug delivery system for 
enhanced BC therapy [115]. An enzyme-responsive peptide 
dendrimer DOX conjugate-based nanoparticles exhibited 
significantly high antitumor activity, inducing cell death in the 4T1 
breast tumor model [116]. pH-responsive nanoparticles composed 
of dendronized heparin DOX conjugate showed strong 
antiangiogenic effects, potent antitumor activity, and induced 
apoptosis in BC cells, making them suitable for cancer therapy [117]. 

Triple-negative breast cancer (TNBC) is a highly invasive cancer 
with an increasing number of cases each year, necessitating the 
development of effective therapeutic strategies. Nanoparticles were 
designed to enhance accumulation and penetration deep into tumor 
tissues. To improve cancer targeting, angiopep-2 was anchored on 
the surface of nanoparticles to facilitate binding with low-density 
lipoprotein receptor-related protein (LRP) overexpressed in TNBC. 
Additionally, particle size-reducible nanoparticles were developed 
using gelatin nanoparticles loaded with dendrigraft poly-lysine 
(DGL) and DOX to achieve high penetration and prolonged tumor 
retention [118]. 

A novel multistage system with targeting capabilities and size-
changeable properties was developed to inhibit tumor growth and 
metastasis. The system consisted of small gold nanoparticles 
(AuNPs) attached to matrix metalloproteinase-2 (MMP-2) 
degradable gelatin nanoparticles (GNPs). DOX, an anticancer agent, 
was linked to AuNPs via a pH-sensitive hydrazone bond and 
decorated with a tandem peptide of arginyl glycyl aspartic acid 
(RGD) and octarginine to enhance tumor targeting efficiency. The 
developed nanoparticles (G-AuNPs-DOXRRGD) exhibited pH-
dependent DOX release and demonstrated shrinking behavior after 
24 h of incubation with MMP-2. Excellent penetration efficiency was 
confirmed through collagen diffusion and tumor spheroid 
penetration studies. In vivo evaluation in mice bearing 4T1 
xenografts revealed active targeting of the 4T1 tumor, interstitial 
matrix penetration, and deep tumor accumulation [119]. 

Mesoporous silica nanoparticles (MSNPs) have emerged as a 
promising nanotechnology for the targeted delivery of anticancer 
drugs. These nanoparticles possess desirable properties for 
biomedical applications, such as excellent chemical stability, a large 
surface area, and customizable pore sizes and volumes, enabling the 
efficient incorporation of significant drug quantities [120]. Magnetic 
nanoparticles (MNPs) have revolutionized the diagnosis and clinical 
treatment of cancer by enabling the identification of cancerous 
lesions. At the cellular level, MNPs exhibit specific magnetic 
characteristics and biological interactions. Methotrexate (MTX) 
conjugates coated with glycine-functionalized MNPs (F-Gly-MTX 
MNPs) were synthesized via an amidation reaction using the co-

precipitation method. The biocompatibility of these MNPs was 
assessed through haemolysis assays and cytotoxicity studies on HFF-
2 and HEK-293 cell lines. Drug delivery in these MNPs relies on the 
release of MTX triggered by peptide bond cleavage within the 
lysosomal compartment [121]. Arginine-functionalized iron oxide 
MNPs were conjugated with MTX and evaluated for cell cytotoxicity 
on normal cell lines (HFF-2) and through haemolysis assays, 
confirming their biocompatibility. Release studies conducted under 
low pH conditions, with and without proteinase K, demonstrated 
that MTX was released through peptide bond cleavage by proteinase 
K at acidic pH [122]. 

An inverse microemulsion system was developed for the synthesis 
of monodisperse magnetic mesoporous silica nanoparticles with a 
core-shell structure. This preparation method involves a water-in-oil 
(w/o) microemulsion system where the silica precursor is dispersed 
in cyclohexane as the continuous phase, and magnetic seeds (Fe3O4 
nanoparticles) with urea are contained within water droplets as the 
aqueous phase. The surfactant and co-surfactant used in this system 
are cetyltrimethylammonium bromide (CTAB) and 1-butanol, 
respectively. The results demonstrated that the magnetic 
mesoporous silica nanocomposites prepared through this method 
hold great potential for applications in cancer drug delivery [123]. 

Along with the active pharmaceutical agents many natural products 
such as phytochemicals, including camptothecin, vincristine, 
vinblastine, quercetin, epigallocatechin galette, etc. can also be used 
to design drug delivery systems to treat different types of cancer 
[124]. Nanotechnology holds significant and promising potential to 
design, develop and innovate novel and advanced drug delivery 
systems for managing cancer by offering numerous opportunities 
[125]. 

CONCLUSION 

Nanocarriers have emerged as a groundbreaking scientific 
development, playing a vital role in various biological applications, 
particularly in the field of anticancer drug delivery. In comparison to 
traditional cancer chemotherapy, nanocarriers have demonstrated 
significant advancements in terms of drug efficacy, prolonged 
circulation time, repeated administration, and controlled and 
targeted drug release in response to specific stimuli. Consequently, 
nanocarriers, such as nanoparticles (NPs), can be precisely 
engineered to release drugs at the desired site within the body. The 
utilization of NPs in diagnostic and therapeutic approaches holds 
immense potential for enhancing cancer therapy. With further 
progress and innovation, these nanosystems are poised to be widely 
adopted for effective cancer treatment. 
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