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ABSTRACT 

Luteolin is a naturally occurring chemical widely found in plants ranging from Bryophyta to Magnoliophyta. It can be obtained from several dietary 
sources such as carrots, olive oil, celery, spinach, oregano, and, fossils of some organisms such as Celtis and Ulmus dating back 36 to 25 million years. 
It is synthesized by the Shikimate pathway. The major qualities and therapeutic benefits of luteolin include cytoprotective abilities, Antioxidant, 
Anti-inflammatory, Anticancer, Antidepressant, Antidiabetic, Antiallergic, Reactive Oxygen Species Scavenging and High radical scavenging. The 
antioxidant and Reactive Oxygen Species scavenging activity of luteolin aids in treating and curing inflammatory skin processes. It has been proven 
to act as a therapeutic drug with a wide spectrum of scope in the prevention and treatment of a vast range of malignant and benign cancers, 
extending from bladder cancer to breast cancer and from oral cancer to glioblastoma, which is achieved by its anticancer, antioxidant properties and 
cytoprotective abilities. Apart from its anticancer properties, it has a great scope in the restoration from neuropsychiatric disease and high-level 
fatigue due to Long COVID syndrome-associated brain fog and Chemo fog. The poor solubility and low bioavailability of luteolin limit its use in food 
and medicine. Synthetic and Natural polymer-based delivery systems have been developed to improve its stability and bioavailability. This review 
will highlight recent research on its nanoencapsulation and provide more information on luteolin to help readers have a better grasp of the 
compound's medicinal benefits. 
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INTRODUCTION 

For this comprehensive review, we conducted a thorough search of 
specialized databases covering the years 1977-2023, including 
renowned sources such as Elsevier and Pubmed. We utilized a range of 
targeted keywords, such as "Luteolin," "Luteolin anti-cancer activity," 
"Luteolin antioxidant," "Luteolin nanoencapsulation," and "Luteolin 
updated review," to ensure a comprehensive and thorough analysis. In 
addition, we also included articles from top-tier journals like Springer, 
reputable internet sources, and online publications from well-known 
journals such as International Journal of Agriculture and Life Sciences, 
Planta Medica, International Journal of Current Pharmaceutical 
Research, The Asian Journal of Pharmaceutical and Clinical Research, 
The International Journal of Pharma and Biosciences, and 
International Journal of Applied Pharmaceutics.  

The great majority of chemical substances utilized daily are found in 
plants. As we are aware of the medicinal advantages that plants 
offer, the bioactive substances in them are being widely investigated 
in the past few decades to treat and prevent a variety of human 
ailments [1]. Flavonoids are polyphenols that have a significant part 
in protecting plant cells from ultraviolet (UV) irradiation, insects, 
and microorganisms [2]. Cell culture, animal, and human population 
research gives an idea that flavonoids are advantageous to both 
animal and human health [3]. Luteolin, also known as 3′,4′,5,7 -
tetrahydroxyflavone, is a naturally occurring chemical that belongs 
to flavonoids, which are extensively distributed in the plant kingdom 
[2]. Luteolin belongs to the flavone group of flavonoids and has a C6-
C3-C6 structure that contains two benzene rings, a third ring that 
contains oxygen, and a double bond between two and three carbon 
atoms fig. 1. It also has hydroxyl groups at carbons 3', 4', 5 and 7 [4]. 
The vast majority of luteolin's bioactivity is caused by the presence 
of a hydroxyl moiety at carbon positions of 3', 4', 5, and 7. Being 
mostly derived from fruits, vegetables, and other edible plant parts, 
luteolin is a flavonoid chemical that is widely distributed.  

The biological importance of Luteolin compounds has been studied in 
recent decades, and these researches have revealed their anti-cancer, 

antioxidant, anti-inflammatory, and neuroprotective properties [5, 6]. 
The luteolin's pharmacological effects may be connected on a 
functional level. For example, luteolin's ability to reduce inflammation 
may be related to its ability to fight cancer. Luteolin's anticancer 
function is connected with initiating apoptosis, which involves DNA 
damage, redox regulation, and protein kinases in limiting cancer cell 
proliferation, reducing angiogenesis and metastasis. Furthermore, 
luteolin makes cancer cells more susceptible to medically induced cell 
toxicity by decreasing cell survival pathways and energizing the 
apoptotic pathways. Notably, luteolin may pass through the blood-
brain barrier, making it useful for treating illnesses of the central 
nervous system, such as brain tumors [7].  
 

 

Fig. 1: Diagrammatic representation of luteolin compound 

 

Sources of luteolin 

Luteolin is a flavone that can be found in a variety of vegetables and 
medicinal plants [8]. Plants are the primary source of luteolin and its 
derivatives [9]. However, concentrations are often low when 
compared to other flavonols, such as quercetin or kaempferol [8]. It 
makes up a minimal proportion of our daily diet (less than 1 mg/d) 
when compared to other secondary plant substances [10]. Luteolin 
and its glycosides are found in many different plant families, 
including the Bryophyta, Pteridophyta, Pinophyta, and 
Magnoliophyta, and are widely distributed across the plant world 
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[9]. Some spices, such as thyme, sage, and parsley as well as wild 
carrots and, artichokes, contain significant amounts [8]. Carrots, 
peppers, celery, spinach, lettuce, olive oil, peppermint, thyme, 
rosemary, and oregano are all good sources of luteolin [8, 9]. Even 
while luteolin only makes up a small amount of the flavonoids found 
in food, it can be obtained in large quantities from peanut hulls and 
the plant Reseda luteola L., which is being used as a dyeing agent 
because of its high luteolin concentration for thousands of years 
[11]. Even the fossils of the Celtis and Ulmus species, which date back 
36 and 25 million years, respectively, attest to its existence [12]. 

 

 

Fig. 2: Sources of luteolin [8, 9, 11] 

 

Biosynthesis of luteolin 

Plants contain a diverse set of metabolic substances that let them 
perform basic processes and respond to different stimuli [13]. 
Phenyl propanoids are compounds derived from the phenylalanine 
amino acid that are involved in plant development, cellular 
metabolism, and biotic and abiotic stimuli [13]. The 
phenylpropanoid pathway follows the shikimate pathway, which has 
been investigated for decades [14]. Via the phenylpropanoid and 
flavonoid pathways, which branch off from the principal secondary 
metabolite pathway, the Luteolin molecule is synthesized. 

 

 

Fig. 3: Diagrammatic representation of biosynthesis of luteolin. 
PAL-phenylalanine ammonia lyase; C4H-trans-cinnamate 4-

hydroxylase; 4CL-coumarate 4-ligase; CHS-chalcone synthase; 
CHI-chalcone isomerase; F3’H-flavonoid 3’-hydroxylase; FNS-

flavone synthase [13, 15-20] 

Luteolin biosynthesis starts with the conversion of amino acid 
phenylalanine to trans-cinnamic acid by the enzyme phenylalanine 
ammonia-lyase, followed by the formation of trans-coumaric acid 
from trans-cinnamic acid with the help of the enzyme trans-
cinnamate 4-hydroxylase (C4H) [fig. 3]. Then, p-coumaroyl CoA is 
formed from trans-coumaric acid by the action of enzyme coumarate 
4-ligase (4CL) [13, 15]. It is followed by the conversion of p-
coumaroyl CoA into naringenin chalcone (NC) by chalcone synthase 
(CHS) [16]. The next step is the key to the biosynthesis of Luteolin 
and it happens through the action of the enzyme chalcone isomerase 
(CHI), which converts naringenin chalcone into naringenin [17]. The 
introduction of a hydroxyl group at the 3’ position in the beta ring of 
naringenin occurs through the action of the enzyme flavonoid 3’-
hydroxylase (F3’H), leading to the formation of eriodictyol [18]. 
Eventually, Luteolin is produced from the substrates naringenin and 
eriodictyol by the enzyme flavone synthase (FNS) [19, 20]. 

Qualities of luteolin 

Plants produce luteolin molecule in two different forms: as an 
aglycone without sugar moiety and as a glycoside with sugar moiety 
attached. It has a molecular weight of 286.236 g/mol and with the 
molecular formula of C15H10O6 [21]. It is predominantly found in 
plants as glycosides that are cleaved following nutritional 
absorption. The aglycones are subsequently conjugated and 
processed [22]. Luteolin, like other flavonoids, is a pleiotropic 
compound, which means that its pharmacological properties may 
not be explained by a single biochemical activity [22]. 

Luteolin as an antioxidant 

The most important effect of luteolin includes its effective anti-
oxidative activity, which includes high radical scavenging and 
cytoprotective abilities [23, 24]. It acts as a reactive oxygen species 
(ROS) scavenger by oxidizing itself [25]. As a result, the anti-
inflammatory properties of luteolin may be linked in part with its anti-
oxidative properties. This is especially essential, considering oxidative 
stress plays a significant role in many inflammatory skin processes 
[26, 27]. Other anti-oxidants include vitamins and cellular redox 
mechanisms as well as luteolin interact with one another. Luteolin can 
enhance its anti-oxidative strength in this way [28]. Because of its 
glycosidic group, it has anti-scavenging activity, which aids in the 
eradication of reactive nitrogen and oxygen species [29-33].  

In Wister rats, luteolin (50 mg/kg orally) pre-treatment protects 
from renal failure via a detoxifying mechanism mediated by 
antioxidation activity, as well as anti-inflammatory and anti-
apoptotic mechanisms [34]. It aids in minimizing the impact of 
intestinal mucositis-related mucosal damage brought on by cancer 
treatment [35]. Furthermore, Luteolin antioxidant activity has been 
shown to cause apoptosis through increasing antioxidant activity 
[36]. By enhancing the activity of several antioxidant enzymes, the 
rat model's hepatotoxicity caused by carbon tetrachloride (CCl4) was 
minimized [37]. Due to its antioxidant properties, it also functions as 
a chemoprotective molecule while treating patients with 
doxorubicin, a medicine that damages the hepatorenal system and 
increases the effectiveness of treatment by removing the drug's 
adverse effects [38]. Thus, flavonoids, which function as primary 
antioxidants or free radical scavengers, aid in numerous health 
ailments [39].  

Luteolin as an anti-cancer agent 

Each year, over 18 million new cases of cancer are recorded 
worldwide. Cancer has a greater impact on vulnerable groups and 
strains health and the economy [40]. Epidemiological 
research shows that flavonoids provide a variety of health 
advantages. Dietary flavonoids' anticancer abilities have been 
demonstrated by several studies [41]. According to research by 
Sabzichi et al., luteolin packed in phytosomes increases the passive 
targeting of breast cancer cells in MDA-MB 231 cells. On the other 
hand, the treatment of cells with doxorubicin and luteolin-containing 
nanoparticles resulted in the highest percentage of cells dying. To a 
larger extent than luteolin alone, nanoparticles loaded with luteolin 
reduced the expression of downstream Nrf2 gene genes at the 
messenger Ribonucleic acid (mRNA) level in cells. Likewise, these 
nanoparticles loaded with luteolin strongly decreased the 
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expression of Nrf2 downstream genes, including heme oxygenase 1 
(Ho1) inhibition and multi-drug resistance gene (MDR1), and 
significantly increased cancer cell mortality [42].  

Luteolin’s efficient inhibition of cancer cell progression when 
examined in vivo at doses of 3 to 50 µM and in vitro at doses of 5 to 
10 mg/kg demonstrated its effectiveness [43]. In another study, 
luteolin was administered to MCF-7 cells at a dose of 60 mol/l for 48 
h, which inhibited the growth of cancer in a dose and time-
dependent manner by lowering the expression of Bcl-2 protein, 
lowering the migration rate by 71.07% and lowering the expression 
of AEG-1 and MMP-2 by 82.34% and 85.70% respectively [44]. 

It has the benefit of treating skin cancer due to its capacity to 
penetrate the skin. Its action against stomach cancer was 
demonstrated in studies using human carcinoma cells at an IC50 
value of 7.1 g/ml. Its effective action against lung cancer was seen at 

an IC50 value of 11.7 g/ml and it was effective against bladder 
cancer at IC50 value of 19.5 g/ml [45].  

Leukaemia, a type of blood cancer that generates abnormal 
white blood cells and frequently results in fatalities, is another 
serious illness that affects people. This Luteolin substance 
inhibited the growth of the human leukemic cell lines CEM-C7 
and CEM-C1 [46, 47].  

Epidemiological research suggests that human lung, prostate, 
stomach, and breast cancer risk is inversely correlated with 
dietary intake of flavonoids [48-50]. In human breast cancer 
treatment, Luteolin and paclitaxel, when combined with MDA-MB-
231 cells, reduced tumor size and weight, activated caspases-8 
and-3, and improved Fas ligand expression. In an orthotropic 
tumor model, the rise in Fas expression was also ascribed to the 
inhibition of STAT3 [51]. 

 

 

Fig. 4: Luteolin-mediated extrinsic and intrinsic apoptosis in breast cancer [52] 

 

 

Fig. 5: Potential therapeutic targets for luteolin in psoriasis and dermatitis [53] 

 

Table 1: Luteolin affections in different types of cancer [54] 

Cancer type  Cell 
proliferation  

Cell survival 
signaling 

Apoptosis  Angiogenesis  Metastasis  Dose of luteolin Reference 

Breast cancer  Inhibit MAPKs, 
PI3K-Akt, CDK2 

Inhibit PI3K-Akt, 
EGFR, NF-κB, 
MAPKs 

Activate DR5, 
caspases-8 and-9, 
Fas, Bax 

Inhibit VEGF, 
MMP-9, PI3K/Akt 

Inhibit PI3K/Akt 10 mg/kg 60μmol/l for 
48 h, suppressed the 
proliferation of cancer  

[54] 

Colon cancer  - - - Inhibit MMP-9 - 1.2 mg/kg b. w [54] 
Pancreatic 
cancer  

- Inhibit EGFR, NF-
κB 

Activate Bax Inhibit NF-κB Inhibit NF-κB - [54] 

Prostate cancer  - - Inhibit FASN Inhibit VEGF, 
MMP-9 

Inhibit IL-6 - [54] 

Glioblastoma  Inhibit  Inhibit  Activate P53,  Inhibit NF-κB, Inhibit NF-κB, - [54] 
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Cancer type  Cell 
proliferation  

Cell survival 
signaling 

Apoptosis  Angiogenesis  Metastasis  Dose of luteolin Reference 

P13K-Akt P13K-Akt, PKC Inhibit XIAP PI3K/Akt PI3K/Akt 
Oral cancer  - - Activate Fas, P53  Inhibit IL-6 - [54] 
Lung cancer  Inhibit MAPKs Inhibit  

NF-κB, MAPKs 
Activate caspases-
3 and-9, Bax, JNK 
Inhibit Bcl-XL 

Inhibit VEGF, 
MMP-9, NF-κB, 
HIF-1α 

Inhibit IL-6, FAK, 
NF-κB 

50μM [54] 

Kidney cancer - - Activate DR5, 
Capsases, Bax, p53, 
JNK 

- - - [54] 

Cervical and 
placental cancer  

Inhibit  
P13K-Akt 

Inhibit  
P13K-Akt 

Activate DR5 
Inhibit Bcl-XL 

Inhibit  
P13K-Akt 

 - [54] 

Ovarian cancer  - - - - Inhibit FAK - [54] 
Skin cancer  - - - Inhibit MMP-9  - [54] 
Liver cancer  Inhibit  

PI3K-Akt 
Inhibit  
PI3k-Akt, NF-κB 

Activate Bax, P53  
Inhibit Bcl-XL 

Inhibit NF-κB Inhibit NF-κB - [54] 

Gastric cancer  - - Activate Bax, P53 Inhibit VEGF, 
MMP-9 

- 40 mg/kg [54] 

Oesophageal and 
bladder cancer 

- - Activate p53, JNK - - - [54] 

 

 

Fig. 6: Luteolin can alter macrophage polarization from M1 to M2 phenotype [55] 

 

Anti-diabetic activity of luteolin 

Diabetes is a serious health issue that exists worldwide. Every 
developed nation as well as a developing one is affected by its 
prevalence. According to the International Diabetic Federation (IDF) 
estimate of 2017, about 451 million people are affected by it, and by 
2045, that number is expected to rise to 693 million. Additionally, it 
has negative socioeconomic effects. Type 2 diabetes among the 
growing younger population alarmed society. Diabetes is one of the 
most common illnesses that influence the health of the global 
population and can result in a number of life-threatening conditions 
[56]. As a result of oxidative stress, diabetes damages heart muscles 
and results in myocardial ischemia/reperfusion (I/R). The 
redirection of the oxidation reaction caused by activating the sestrin 
2-Nrf2-based feedback loop during Luteolin therapy lowers 
oxidative stress and cardiac damage [57].  

Long-term diabetes damages the neurons in the cerebral cortex; the 
treatment of luteolin greatly reduces diabetic symptoms such as 
peroxidation of lipids, which rises in diabetic rat brains. In addition, 
it lowers GS4, superoxide dismutase, and catalase activity which 
sharply declines in the hippocampus and cerebral cortex of rats after 
luteolin administration. It is believed that luteolin's antioxidant 
effect enhances CA1 neurons by minimizing neuronal apoptosis 
since ChE activity is a result of diabetes and leads to progressive 
cognitive decline and neurological dysfunction. Luteolin inhibits the 
ChE activity, which improves the situation in diabetic rats [58]. 

Anti-inflammatory and anti-allergic properties of luteolin 

One of the body's defense mechanisms, inflammation, aids in the 
healing of wounds and protects against infection. However, 
persistent inflammation can lead to dangerous conditions like 
cancer, chronic obstructive pulmonary disease, and arthritis [59-61]. 
The inflammation action is necessary to lessen the influence of the 

stimuli, which would otherwise disrupt the normal cells, but it must 
be minimized because chronic inflammation interferes with proper 
functioning. Anti-inflammatory molecules are introduced to treat it 
in order to safeguard cells from negative effects [62]. During 
inflammation, macrophages are triggered by a variety of chemicals, 
including cytokines from the host and pathogen toxins. 
Lipopolysaccharide (LPS), a part of Gram-negative bacteria's outer 
membrane, is frequently used as an endotoxin and inflammatory 
trigger. Tumor necrosis factor (TNF), free radicals-ROS and reactive 
nitrogen species (RNS), and interleukins (ILs) are vigorously 
produced by the activated macrophages, which attract inflammatory 
cells like neutrophils and lymphocytes to the site of infection and 
clear the pathogens [61, 63, 64]. Luteolin, which is a flavonoid, is 
said to possess an anti-allergic effect [65]. Persistent synthesis of 
these chemicals during the time of chronic inflammation can lead to 
illnesses such as cancer. Luteolin exhibits an anti-inflammatory 
effect as it blocks the synthesis of such cytokines and their signal 
transduction pathways [66-68]. Luteolin reduces oxLDL-activated 
inflammation in vitro by blocking STAT3, a signal transducer as well 
as an activator of transcription. Its interaction with STAT3 was 
primarily demonstrated in one study by hydrogen bonding [69]. 

Luteolin as a neuroprotector 

Important disorders with a high global occurrence are anxiety and 
depression [70]. The most ubiquitous neurodegenerative diseases 
are Parkinson's disease (PD) and Alzheimer's disease (AD). Although 
oxidative stress is thought to play a significant part in the 
development of both illnesses, other variables such as the buildup of 
misfolded proteins, also play a role [71]. Some of their symptoms 
can be alleviated by antidepressant medications, but they are 
accompanied by many negative effects. Luteolin was given to male 
129 Sv/Ev mice along with palmitoylethanolamide in a trial to 
determine its possible antidepressant impact. The results 
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demonstrated a strong antidepressant effect at low doses, 
suggesting that this combination could be considered a new 
approach to treating depressive symptoms [70]. 

Luteolin as protection against alzheimer’s disease 

The most prevalent cause of memory loss in the world's population 
is Alzheimer's disease. The disease's primary symptom is the 
buildup of amyloid peptides within the brain's extracellular matrix 
[72]. There is currently no cure known for the illness. The search for 
an Alzheimer's disease cure is still ongoing worldwide. According to 
this theory, the secondary metabolite Luteolin may be able to 
decrease the impact of the disease. Due to the (direct) interaction 
between the gene expression of an antioxidant enzyme involved in 
free radical scavenging and ROS, Luteolin efficiently lowers the signs 
and symptoms of Alzheimer's disease as well as the formation of 
A42 aggregation in transgenic drosophila. This is shown by the 
concentration-mediated reduction of AchE activity, which delays the 
emergence of symptoms like those of Alzheimer's disease [73]. 
Luteolin prevents ER (Endoplasmic Reticulum) stress, which impairs 
learning and memory in mice, from causing neuro-inflammatory 
aggravation. As a result, it enhances 3XTg's brain histomorphology 
and minimizes protein plaques in mice with Alzheimer's illness [74]. 

 

 

Fig. 7: Luteolin’s action in ER stress. Unfolded proteins are 
created as a result of ER stress in the cells. The UPR leads to 

neuroinflammatory aggravation, which leads to memory and 
learning impairment in mice. Luteolin suppresses 

neuroinflammation [74] 

 

Additionally, it boosts the expression of Bcl2 and significantly 
decreases the expression of Bax and caspase-3. High concentrations 
of Luteolin may be hazardous, blocking A25-35 and causing cell 
death. Additionally, it causes apoptosis by selectively acting on ER to 
protect Bcl2 cells from A-25-35 and stimulates the ER/ERK/MAPK 
transmission pathway [75]. Insulin resistance in the brain may be 
reduced by luteolin. The current research discovered that the 
Luteolin therapy enhanced hepatic insulin sensitivity and tightly 
controlled cell function, which boosted glucose metabolism and 
potentiated insulin signaling in the hippocampus [76]. 

Luteolin in Parkinson's disease treatment 

Coherently, drugs that can trigger autophagy, the process by which 
intracellular trash is degraded, may aid in the removal of harmful 
chemicals from neurons, having a neuroprotective impact. According 
to this theory, injection of luteolin into male C57/BL6 mice with 
palmitoylethanolamide as an endogenous autophagic promoter 
improved tissue structure stimulated autophagy, and improved 
neurobehavioral functioning [71]. The luteolin generated during 
defense in the in vitro effect on oxidation is connected to the erratic 
amplification of endogenous free radical repression of the 
mitochondrial viability of membrane potential of mitochondria and a 
decrease in glutathione content. The catalyzing activity suggests that 
the multilayer modulatory route contributes to the neuroprotective 
effects of luteolin. The possible maintaining of the antioxidation or 
pro-oxidation ratio leads to protection.  

Additionally, the neuroprotective pathway aids in reviving the ROS 
scavenging activity, a depleted endogenous enzymatic and non-

enzymatic antioxidative defense system [77]. Luteolin improves 
mouse behavior in the traction and pole trait test, suggesting its 
potential in applied Parkinson’s disease therapy by boosting the 
Bcl2/Bax ratio by lowering caspase-3 and also preventing the loss of 
TH+ve neurons in the substantia nigra (SN) and neural fibers in the 
striatum [78]. 

Luteolin in obesity treatment 

Obesity acts as a major public health risk and contributes 
significantly to the burden of non-communicable diseases in the 
world, such as type 2 diabetes, hypertension, cardiovascular disease, 
and some malignancies. It is believed to cause premature mortality 
[79]. It is characterized by an abnormal buildup of body fat and 
associated with a significant risk of metabolic comorbidities, such as 
non-alcoholic fatty liver disease, type 2 diabetes, and cardiovascular 
disease. Adipose tissue is an essential immunological and endocrine 
organ as well as a key regulator of energy storage and metabolism in 
lean individuals. A persistent energy imbalance causes Adipose 
tissue remodeling, adipocyte hypotrophy and hyperplasia, chronic 
low-grade inflammation, and adipocyte malfunction in Adipose 
tissue. These changes eventually result in ectopic lipid accumulation 
and systemic insulin resistance [80].  

Luteolin has been shown to help manage obesity when taken as a 
dietary supplement. By altering the Toll-like receptor signaling 
pathway, luteolin supplementation reduced macrophage 
infiltration and adipokine/cytokine dysregulation in rat models 
[81]. It has been shown to help combat obesity and related 
metabolic illnesses by increasing Adipose tissue thermogenesis 
and systemic energy expenditure. It has also been shown to reduce 
Adipose tissue lipogenesis, inflammation, and ectopic lipid 
deposition [80]. 

In a study, luteolin was found to be involved in the regulation of 
efflux genes of cholesterol, such as liver ATP-binding cassette 
transporter G1 (ABCG1), X receptor (LXR-), and scavenger receptor 
class B member 1 (SRB1). It demonstrated that luteolin lowers 
cholesterol by controlling the different genes associated with the 
cholesterol export process [82]. By lowering proinflammatory 
mediators in macrophages like tumor necrosis factor (TNF), 
monocyte chemoattractant protein (MCP-1), and NO while co-
cultivating with 3T3-L1 adipocytes and RAW264 macrophages, 
luteolin reduces the obesity-related adipocyte inflammation that is 
observed after administration. The ability of luteolin to lessen 
inflammation in adipose tissue serves as proof of this [83]. 

Luteolin in cardiac health 

Any condition, abnormality, or poor function linked to the heart, 
blood vessels, or circulation is referred to as cardiovascular disease 
(CVDs) [84]. The most effective approach for preventing the start of 
this illness is to improve dietary and lifestyle uses and make them 
affordable and accessible to the general public. Diet is a significant 
external factor in the development of CVDs [85, 86]. The luteolin 
molecule mitigates the likelihood of myocardial infarction as 
integrating it into food may help lower the risk of CVD. In a study 
using rats with myocardial ischemia/reperfusion (I/R) (MIRM) 
damage, treatment with luteolin decreased the damage to the heart 
valves by downregulating the Src homology 2 domain-containing 
protein tyrosine phosphatase 1 (SHP-1) regulation and upregulating 
the STAT3 pathway, which reduced the inflammatory response [87]. 

The anti-apoptosis property proves essential in avoiding harm to 
cardiac tissue. In one study, giving luteolin prevented apoptosis by 
enhancing AKT signaling in the simulated ischemia/reperfusion 
(sI/R) paradigm [88]. Luteolin serves to avoid cardiac abnormalities 
such as Ca+2 transport and contractile dysfunction, which worsen in 
failing cardiomyocytes and are stopped by controlling the SERCA2a 
gene. As a result, it improves cardiac health [89]. The SERCA 
proteins are important for maintaining heart health. By triggering 
the p38 MAPK pathway in the cardiomyocytes and simulated 
ischemia/reperfusion rat models, luteolin aids in upregulating its 
expression [90]. 
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Fig. 8: Schematic diagram for the cardioprotection of luteolin against I/R injury in the diabetic heart [91] 

 

 

Fig. 9: By up-regulating AKT, up-regulating BCL-2, and down-regulating BAX, lut reduces I/R injury by suppressing apoptosis. The main 
protein involved in Ca2+ absorption from the cytosol into the SR is called SERCA2a. Following PI3K/AKT signaling pathway activation, 

SERCA2a activity is increased. At the same time, luteolin functions as a p38 mapk pathway inhibitor to prevent the phosphorylation of 
PLN, increasing SERCA2a activity and decreasing Ca2+ overload. Through HO-1, lut prevents oxidative damage and improves nrf2's ability 

to bind to the ARE. Lut inhibits JNK and raises p-ERK1/2 to promote cardiomyocyte contraction. to shield the heart from I/R injury, lut 
activates the myocardial eNOS pathway and suppresses the mitochondrial permeability transition pore [92] 

 

Luteolin for Long-COVID syndrome-associated brain fog and 
chemo fog 

SARS-CoV-2 infection causes COVID-19, whose severity is a result of 
the host's inflammatory response and the release of a cascade of 
pro-inflammatory cytokines [93]. As a result of COVID-19, auto-
immune and inflammation-related diseases are in particular, 
becoming increasingly prevalent [94]. Additionally, multiple 
"mystery" illnesses have been attributed to cytokine storms [95]. 
One such illness called "brain fog", affects survivors of COVID-19 and 
is linked to extremely high levels of fatigue and neuropsychiatric 
symptoms [89]. The terms "chronic COVID syndrome," "post-COVID 
syndrome," and "long haulers COVID syndrome" are also used to 
describe this condition [96]. Patients with long-COVID syndrome 
report symptoms that are strikingly similar [97] to those of those 
with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) 

[98, 99], mast cell activation syndrome (MCAS) [100, 101], or 
systemic mastocytosis (SM) [102], conditions in which stress, 
pathogens, and environmental stimuli activate the body's special 
tissue immune cells called mast cells.  
 

 

Fig. 10: Symptoms of long-COVID syndrome [93] 
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Patients receiving chemotherapy are more prone to getting COVID-
19 infection [103]. Additionally, cognitive dysfunction, often 
considered a sign of long-COVID syndrome, is experienced by more 
than 50% of patients undergoing or finishing chemotherapy [93]. 
Cognitive dysfunction, also known as "chemofog" [104, 105] or 
"chemobrain," [106-110] has been linked to specific neuroimaging 
findings [89]. Several medications, including doxorubicin [111-113], 
methotrexate [114, 115], lenalidomide [116], rituximab [116], and 
trastuzumab [117], have been associated with "chemobrain". The 
hypothalamic-pituitary-adrenal (HPA) axis, normally stimulated by 
stress and has the ability to further impair the emotional stability of 
those affected by COVID-19 [118, 119], is also susceptible to being 
impacted by COVID-19 [120]. 

It seems that long-COVID syndrome does not have any clinically 
viable treatments [121, 122]. Furthermore, since T cells and 
antibody production seem to be protective but proinflammatory 
cytokines appear to be harmful, it is difficult to determine whether it 
would be preferable to stimulate or repress the immune system 
[123, 124]. Inhibition of mast cell-related neuroinflammation would 
be a reasonable strategy, particularly for brain fog linked with long-
COVID syndrome, MCAS, ME/CFS, and chemotherapy-induced 
"chemobrain" [93]. The COVID-19 or long-COVID syndrome might be 
helped by mast cell inhibition; however, there are currently no known 
potent inhibitors of mast cells [125, 126]. Alternatively, the commonly 
accessible and generally well-regarded safe [127-131] natural 
flavonoids quercetin and luteolin [132-136], which have structurally 
similar properties, could suppress mast cells [132-136]. Both 
flavonoids have wide anti-viral characteristics, inhibiting virus entry 
into host cells, inhibiting neuroinflammation [137], and reducing 
cognitive loss [138]. In addition, luteolin has been shown to have 
improved brain penetration, inhibit microglia and mast cells, and 
lessen neuroinflammation as well as cognitive impairment, including 
Alzheimer's disease, in both people and animal models [93]. 

Nanoencapsulation of luteolin 

Flavonoids have a variety of biological effects and may be utilized to 
treat or prevent disease. Because they showcase a remarkable range 
of biochemical and pharmacological actions, including anti-
inflammatory, anti-oxidant, cytostatic, apoptotic, and estrogenic 
activities, flavonoids have attracted considerable interest for 
research and application in functional foods, nutraceutical products, 
and pharmaceuticals [139, 140]. Among the flavonoids, luteolin 
(3',4',5,7-tetrahydroxyflavone) is capable of improving insulin 
sensitivity and is present in a variety of plants, including celery, 
green peppers, perilla leaves, chamomile tea, broccoli, and carrots. 
Additionally, because luteolin can pass through the brain-blood 
barrier, it can be used to treat ailments of the central nervous 
system [141-144]. Due to luteolin's low oral bioavailability and the 
need for high bioavailability for it to demonstrate pharmacological 
activity in vivo, the development of innovative formulations may be 
useful in maximizing luteolin's pharmacological activity [145]. The 
stability, bioactivity, and bioavailability of these substances must, 
therefore, be preserved by product formulators in order to ensure 
that they are delivered to consumers in their active molecular form. 
The main objective of nanoparticle systems is to have these 
characteristics [146, 147]. By enhancing bioavailability, solubility, 
and retention duration, biodegradable nanoparticles are widely 
employed to enhance the beneficial value of diverse water-
soluble/insoluble medical medicines and bioactive compounds. 
These drug-nanoparticle compositions improve the therapeutic 
index, specificity, tolerability, and efficacy of the related medications. 
They also lower costs for the patient toxicity risks and have a 
number of benefits, such as preventing premature degradation and 
interaction with biological systems and enhancing intracellular 
penetration [148]. 

The use of luteolin in food and medicine is severely constrained by 
its poor solubility and low bioavailability. Some delivery systems 
based on synthetic polymers, such as hyaluronic acid/poly (N-
isopropyl acrylamide) polymer network hydrogels and 
monomethoxy poly (ethylene glycol)-poly (-caprolactone) (MPEG-
PCL) micelles, have been advanced to increase the stability and 
bioavailability of the compound luteolin. However, there are few 
reports of the nano-delivery system made from plant-based 
polymers for encapsulating luteolin [149].  

Due to their tiny size, high surface-to-volume ratio, and potent 
dispersibility, many nanoscale delivery methods, including 
emulsifiers and liposomes have been extensively exploited in recent 
years to increase the bioavailability and stability of bioactive 
chemicals. When designing delivery systems for nanoparticles with 
great encapsulating capacity, high penetration of biological barrier, 
and well-controlled release property, starch is frequently used 
because of its accessibility, availability at a lesser cost, renewability, 
and biodegradable quality. According to reports, molecular 
modification may be able to give starch the physiochemical 
characteristics it needs for use in encapsulating systems [149]. 

The usage of oxidized lotus root starch nanoparticles, which are 
utilized to encapsulate luteolin, has amylopectin (70%–80%) and 
amylose (20%–30%). Currently, traditional meals are frequently 
prepared using lotus root starch as a food additive. However, due to its 
limited solubility in water at ambient temperature (25 °C), the 
potential applications of this starch have undergone little research. 
According to earlier research, oxidation may increase starch's 
solubility and have an impact on its capacity to encapsulate substances. 
Sodium hypochlorite (NaClO)-mediated 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO) can oxidize lotus root starch. Because of its low 
cost, easy operating conditions, and low possibility of sample 
contamination, the resulting oxidized lotus root starch (OLRS) was 
subsequently utilized to create luteolin-OLRS nanoparticles [149]. This 
nanoencapsulation of luteolin may enhance its various properties, 
including its free radical scavenging property [150]. 

CONCLUSION 

This article covers almost every aspect of luteolin's biological, 
physical, and chemical properties, including its anti-oxidant, anti-
cancer, anti-diabetic, anti-inflammatory, neuroprotective, 
cardioprotective, anti-depressant, and aid in long-covid syndrome 
effects. The nano-encapsulated luteolin in synthetic and bio-
polymers, with increased bioavailability and activity, was also 
reviewed. However, there has to be further investigation done on 
how to integrate luteolin alongside additional therapeutic 
compounds and treatments. 
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