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ABSTRACT 

Drug-induced cardiotoxicity is a major concern during drug development, prompting the need for reliable experimental models to thoroughly 
assess potential cardioprotective drugs. The review delves into the intricacies of various models for drug-induced cardiotoxicity in experimental 
animals, with a specific focus on streptozotocin, isoprenaline, and antineoplastic drugs like cisplatin, doxorubicin, and 5-fluorouracil in rats and 
mice. Streptozotocin-induced cardiotoxicity is characterized by oxidative stress, inflammation, and mitochondrial dysfunction, resulting in 
myocardial damage and impaired cardiac function. Preclinical studies employing streptozotocin-induced cardiotoxicity models have revealed 
crucial pathways related to diabetic cardiomyopathy, aiding the evaluation of potential cardioprotective interventions. Isoprenaline, a beta-
adrenergic agonist, is known for inducing acute myocardial injury resembling cardiac ischemia and heart failure in animals. Its mechanism involves 
overstimulation of beta-adrenergic receptors, calcium overload, oxidative stress, and apoptosis. Isoprenaline-induced models have offered insights 
into acute myocardial injury pathophysiology and facilitated the screening of cardioprotective agents against Myocardial Infarction (MI) and injury. 
Antineoplastic drugs, such as cisplatin, doxorubicin, and 5-fluorouracil, are linked to significant cardiotoxic effects, including cardiomyopathy and 
heart failure. Animal models have revealed dose-dependent cardiomyopathy, shedding light on underlying mechanisms like oxidative stress, 
Deoxyribonucleic Acid (DNA) damage, and mitochondrial dysfunction. The article aims to consolidate the current understanding of the 
pathophysiology and mechanisms behind drug-induced cardiac damage. Additionally, it underscores the importance of using animal models in 
preclinical evaluations to assess drug safety and efficacy and to develop potential cardioprotective therapies. 
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INTRODUCTION 

This review includes information obtained from various research and 
review articles from the year 2000 to 2023 using multiple electronic 
databases such as ScienceDirect, PubMed, Scopus, repurposed drug 
database, Google Scholar, Web of Science, and Scirus. Search keywords 
used were cardiotoxicity, chemotherapeutics, streptozotocin, drugs-
induced cardiotoxicity, experimental models for cardiotoxicity, 
doxorubicin, and mechanisms involved in the induction of cardiotoxicity. 

Cardiotoxicity refers to the harmful effects on the heart caused by 
certain medications. This can lead to various issues like irregular 
heart rhythms, low blood pressure, rapid breathing, swelling, heart 
muscle damage, and changes in how the heart functions [1]. The 
main processes causing these problems include the formation of 
harmful molecules and an overload of calcium in heart cells, along 
with a lack of protective antioxidant systems and a potential 
immune response triggered by the drug. Cardiovascular diseases 
remain a leading cause of morbidity and mortality globally, 
emphasizing the urgency to develop novel therapies to improve 
patient outcomes. The potential side effects associated with current 
treatments are another concern that prompts the search for 
molecules that can protect without adverse impacts [2-4]. There is a 
growing need for molecules that can specifically target the 
inflammatory pathways revealing the intricate mechanisms 
underlying disease conditions. The evolving landscape of 
cardiovascular research and the continuous emergence of new 
challenges, such as drug-induced cardiotoxicity, also underscore the 
necessity for innovative cardioprotective molecules.  

Experimental animal models serve as crucial tools to test and 
validate these cardioprotective molecules, providing insights into 
their mechanisms of action, potential side effects, and overall 
effectiveness. These models help bridge the gap between laboratory 
findings and clinical applications, offering a platform to assess the 
translational potential of new cardioprotective agents [5]. 
Chemically induced experimental models play a pivotal role in 
unraveling the cardiotoxic effects of specific drugs, including 
doxorubicin, streptozotocin, 5-Fluorouracil, and Cisplatin. Small 

rodents like mice and rats are commonly employed due to their 
genetic similarity to humans and ease of handling. larger animals, 
including rabbits, dogs, and pigs, offer advantages in terms of size 
and physiological relevance. Rabbits are often used to assess both 
acute and chronic effects, while dogs and pigs provide more intricate 
monitoring capabilities [6]. These models entail exposing animals to 
these drugs to systematically examine their repercussions on 
cardiac functions. The detrimental consequences encompass a 
diminished capacity of the heart to efficiently pump blood, 
instigation of oxidative damage, and the induction of irreversible 
injury to cardiac cells. It can also influence the heart's rhythm, 
metabolism, and structure, leading to problems like prolonged QT 
intervals that may cause fainting or dangerous heart rhythms [7]. 
The use of chemical agents can lead to long-term cardiovascular 
complications and, in severe cases, even death. This toxicity is 
associated with issues like blood clot formation due to damage to 
blood vessel linings, heart muscle oxygen depletion leading to 
ischemia, spasms in coronary arteries after ischemia, and reduced 
oxygen transfer by red blood cells, causing further heart ischemia. 
Such experimental models provide a controlled environment to 
meticulously study and comprehend the intricate mechanisms 
underlying drug-induced cardiotoxicity [8-10]. 

The necessity of animal models in the realm of cardiotoxicity is 
rooted in the rigorous scientific demands of developing new drugs, 
encompassing both herbal and synthetic cardioprotective agents. 
These models serve as indispensable tools for elucidating the 
intricate interplay between novel compounds and the 
cardiovascular system [11, 12]. Through systematic studies in 
animals, researchers can meticulously assess the safety profile of 
emerging drugs, delineate their mechanisms of action, and ascertain 
their potential efficacy in preventing or mitigating heart damage 
[13]. Furthermore, animal models facilitate the optimization of 
dosage regimens, enabling the identification of the most effective 
and tolerable concentrations. Importantly, the translation of 
preclinical findings to human relevance is a critical aspect addressed 
by animal models, aiding in the anticipation of potential risks and 
therapeutic benefits in clinical settings. Regulatory bodies mandate 
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comprehensive preclinical testing, including animal studies, to 
ensure the validity of safety and efficacy claims, thereby 
contributing to the eventual approval of new drugs. The 
incorporation of animal models in the investigation of cardiotoxicity 
aligns with rigorous scientific principles and serves as an 
indispensable step in the development and evaluation of new drugs 
and cardioprotective agents [14-16]. 

Drug-induced cardiotoxicity models in experimental animals 

Drug-induced cardiotoxicity is a significant concern in drug 
development and safety evaluation. Experimental animal models 
play a crucial role in understanding the mechanisms of 
cardiotoxicity and assessing the potential cardiovascular risks of 
new drugs. Several chemotherapeutic agents, including 5-
fluorouracil, streptozotocin, cisplatin, and doxorubicin, are known to 
cause cardiotoxicity and are frequently used to induce cardiac injury 
in animal models. 

Doxorubicin-induced cardiotoxicity model 

Doxorubicin is frequently employed to induce cardiotoxicity in rats 
or mice as a standardized model for evaluating cardioprotective 
drugs. This anthracycline chemotherapeutic agent is known to cause 
adverse effects on the heart, closely mirroring clinical 
manifestations observed in cancer patients [17-19]. Researchers 
utilize doxorubicin-induced cardiotoxicity due to its well-established 
and reproducible nature, allowing for consistent evaluation of 
potential cardioprotective interventions. The dose-dependent effects 
of doxorubicin enable researchers to modulate the severity of 
cardiac damage, facilitating the study of both acute and chronic 
cardiotoxicity [20, 21]. The multifactorial mechanisms involved, 
such as oxidative stress, mitochondrial dysfunction, and apoptosis, 
provide a comprehensive platform to assess the efficacy of 
cardioprotective drugs targeting specific pathways [22]. 
Additionally, the quantifiable endpoints, including changes in 
cardiac function, histopathological alterations, and molecular 
markers, offer objective measures for evaluating the effectiveness of 
interventions. However, the clinical use of doxorubicin is limited due 
to its dose-dependent progressive cardiotoxicity, including DNA 
damage, formation of free active oxygen radicals, apoptosis, etc [97]. 
The use of doxorubicin in rodents provides a clinically relevant 
and robust model to advance the understanding of 
cardiotoxicity, fostering the development of novel therapeutics 
for mitigating damage induced by chemotherapy and other 
cardiac toxicities [23-26].  

The mechanism involved in doxorubicin-induced cardiotoxicity 
model 

Oxidative stress in response to doxorubicin  

Doxorubicin induces oxidative stress, a primary contributor to 
cardiotoxicity, by disrupting the balance between Reactive Oxygen 
Species (ROS) and Reactive Nitrogen Species (RNS). This imbalance 
results in damage to subcellular structures, ultimately leading to 
regulated cell death. NADPH Oxidase (NOX) enzymes, particularly 
NOX2, play a role in ROS production during doxorubicin stimulation. 
Inhibition of NOX4 has shown promise in mitigating doxorubicin-
induced cardiac injury. Doxorubicin also induces the expression of 
Inducible Nitric Oxide Synthase (iNOS), leading to the production of 
nitric oxide and superoxide anions, contributing to oxidative stress 
and DNA damage [27-34]. 

Doxorubicin-induced cell death during cardio-toxicity 

Apoptosis, autophagy, pyroptosis, and ferroptosis are among the 
genetically characterized cell death mechanisms that are implicated 
in doxorubicin-induced acute cardiotoxicity.  

Apoptosis 

Activation of p53 is essential for the induction of apoptosis in response 
to doxorubicin. Additionally, the enzyme Poly ADP-Ribose Polymerase 
(PARP) is implicated in doxorubicin-induced cardiac apoptosis. The 
oxidative stress provoked by doxorubicin leads to the cleavage of 
PARP, releasing fragments that contribute to apoptosis and eventual 

cell loss. This cascade of events underscores the intricate molecular 
mechanisms involved in doxorubicin-induced cardiotoxicity [36-37].  

Pyroptosis 

Another type of cell death that contributes to the development of 
doxorubicin-induced cardiotoxicity is pyroptosis. In cardiomyocytes, 
doxorubicin causes cleavage of Gasdermin E (GSDME) and activation 
of caspase-3, leading to membrane rupture and pyroptosis. This is 
achieved by upregulating the production of the BH3-only protein 
Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) in 
myocytes [38-39]. Moreover, doxorubicin-induced the production of 
NLRP3 inflammasomes and activated Toll-Like Receptor 4 (TLR4), 
which in turn activated caspase-1 and gastrin D (GSDMD), 
facilitating the pyroptosis event [40]. 

Ferroptosis 

Ferroptosis, a recently identified form of cell death, emerges as a 
contributor to the cardiotoxicity induced by doxorubicin. Upon 
doxorubicin treatment, there is a release of Fe2+and the formation 
of a doxorubicin-Fe2+complex within mitochondria, leading to an 
elevation in ROS levels and triggering ferroptosis, a process 
dependent on lipid peroxidation. Additionally, doxorubicin 
treatment inhibits the activity of Acyl-Coa Thioesterase 1 (Acot1), a 
key enzyme in lipid metabolism [41]. This dual impact of 
doxorubicin on mitochondrial function and lipid metabolism 
highlights the intricate interplay of molecular events leading to 
ferroptotic cell death in the context of cardiotoxicity.  

Doxorubicin therapy also causes the immune system to release an 
assortment of pro-inflammatory facilitators such as interleukin-1, 6, 
7, Tumor Necrosis Factor (TNF) receptor 2, vascular endothelial 
growth factor/VEGF, matrix metalloproteinases/MMP2); it also 
hinders the maturation of macrophages, stops Natural Killer (NK) 
cells from activating, and initiates responses from cytotoxic T 
lymphocytes [50]. Cardiomyopathy develops when doxorubicin 
elevates oxidative stress, which is linked to an increase in Toll-like 
receptors 2. Additionally, the TLR4 causes a rise in the amount of 
TNF-α [42, 43]. 

Animal models of doxorubicin-induced cardiotoxicity 

Dulf et al., (2023) investigated autophagy and oxidative stress 
indicators as potential mechanisms of myocardial toxicity induced 
by doxorubicin, utilizing echocardiography and electrocardiography 
for assessment. The findings revealed disturbances in autophagy 
and oxidative homeostasis as early as 7 d post-doxorubicin 
administration, preceding a significant increase in N-Terminal Pro-
B-Type Natriuretic Peptide (NT-proBNP), a clinical marker of heart 
failure. Additionally, notable changes were observed in the 
electrocardiograms and echocardiograms of treated rats. 
Doxorubicin-induced cardiac cell injury was revealed as congested 
blood vessels, edema, a decrease in several nuclei, and 
fragmentation with necrosis. These results suggest that doxorubicin-
induced myocardial toxicity may represent an initial stage in the 
progression of heart damage early in the therapy course [44]. 

Qi et al., (2020) study showcased the induction of cardiotoxicity in 
male C57BL/6 J mice through a four-week protocol of 
intraperitoneal injections of doxorubicin administered at a dosage of 
5 mg/kg per week. The cardiotoxic effects of doxorubicin were 
evident in the observed apoptosis and inflammatory response in 
cardiomyocytes. This was characterized by the upregulation of 
Caspase-3 and Bax expression, accompanied by a decrease in Bcl-2 
expression levels.  

Additionally, the Nuclear Factor-Κb (NF-κB) signaling pathways 
were enhanced, further contributing to the inflammatory response 
in the heart tissue of mice subjected to the doxorubicin-induced 
animal model of cardiotoxicity. The study demonstrated that the 
drug, through the suppression of the Nrf2 signaling pathway, 
heightened oxidative stress by promoting the production of ROS and 
elevating malondialdehyde levels. This increase in oxidative stress 
correlated with an augmentation in apoptosis and inflammatory 
responses within the hearts of the mice [45]. 
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Desai et al., (2012) developed a mouse model of chronic 
cardiotoxicity induced by doxorubicin to identify early predictive 
indicators of cardiac tissue damage incidents. Male B6C3F1 mice 
received weekly intravenous injections of doxorubicin for 4, 6, 8, 10, 
12, and 14 weeks at a body weight-based dose of 3 mg/kg, resulting 
in cumulative doses ranging from 12 to 42 mg/kg. Mice exposed to 
doxorubicin for at least one week exhibited a significant decrease in 
body weight growth. Moreover, mice receiving cumulative 
doxorubicin doses of 24 mg/kg and higher displayed a dose-related 
increase in the severity of heart lesions. Mice with cumulative 
doxorubicin doses of 30 mg/kg and above showed a significant 
decrease in heart rate, suggesting potential drug-induced cardiac 
dysfunction. These findings collectively demonstrate the 
development of doxorubicin-induced chronic cardiotoxicity in 
B6C3F1 mice, providing valuable insights into the progression and 
severity of cardiac lesions in response to cumulative doxorubicin 
exposure [46]. 

Streptozotocin-induced cardiotoxicity model 

Streptozotocin is a compound known to induce Diabetic 
Cardiomyopathy (DCM) in experimental models, particularly in both 
type I and type II diabetes. DCM is characterized by morphological 
and functional changes in the left ventricle, leading to left ventricular 
collapse, especially in diabetic individuals [47]. The pathogenesis of 
streptozotocin-induced cardiotoxicity involves various mechanisms 
that contribute to the development of DCM. One notable effect of 
streptozotocin is ventricular hyperplasia, a condition characterized 
by abnormal growth and development of heart tissue. Metabolic 
disorders and deviations in the extracellular matrix further 
contribute to the structural and functional alterations in the left 
ventricle. Coronary microvascular dysfunction is another 
consequence of streptozotocin-induced cardiotoxicity [48]. This 
dysfunction impairs the blood flow to the heart muscle, exacerbating 
the overall cardiac impairment. Oxidative stress, a condition where 
there is an imbalance between the production of ROS and the ability 
of the body to detoxify them, is a crucial factor in streptozotocin-
induced cardiotoxicity. This oxidative stress can lead to tissue 
necrosis and damage. Myocardial injury caused by streptozotocin 
results in the release of Cardiac Troponins (cTn) from damaged 
myocytes. These troponins serve as biomarkers for cardiac damage 
and are indicative of the extent of myocardial injury. Streptozotocin-
induced cardiotoxicity is also associated with the production of free 
radicals. Free radicals are highly reactive molecules that can cause 
damage to cells and tissues [49]. In the context of diabetes and 
streptozotocin-induced cardiotoxicity, free radicals are implicated in 
heart disease and can contribute to cell autophagy, a process of 
programmed cell death. Researchers have observed that 
hyperglycemia induces the cardiac muscle to generate excessive 
amounts of ROS. This increased oxidative stress plays a role in 
triggering apoptosis (programmed cell death) in the diabetic heart, 
contributing to the progression of diabetic cardiomyopathy. 
Streptozotocin-induced cardiotoxicity involves multiple 
interconnected processes, including ventricular hyperplasia, 
metabolic disorders, extracellular matrix deviations, coronary 
microvascular dysfunction, oxidative stress, tissue necrosis, and 
apoptosis. Understanding these mechanisms is crucial for 
developing potential therapeutic strategies to mitigate the adverse 
effects of DCM and other cardiac disorders [50-52]. 

The mechanism involved in the streptozotocin-induced 
cardiotoxicity model 

Role of MAPK pathway in streptozotocin-induced cardiotoxicity 

The Mitogen-Activated Protein Kinase (MAPK) pathway plays a 
pivotal role in the complex mechanism underlying streptozotocin-
induced cardiotoxicity. Activation of the MAPK pathway is 
implicated in several key aspects of streptozotocin-induced 
cardiotoxicity. MAPK activation is linked to the inflammatory 
response observed in this condition. Streptozotocin-induced 
inflammation activates MAPK signaling, leading to the release of pro-
inflammatory cytokines that contribute to myocardial damage [53]. 
Additionally, the MAPK pathway is intertwined with oxidative stress, 
a hallmark of streptozotocin-induced cardiotoxicity. ROS generated 
in response to streptozotocin can activate MAPK signaling, initiating 

a cascade that exacerbates oxidative damage to cardiac tissues. 
Moreover, the MAPK pathway is implicated in the regulation of 
apoptosis and cell death. Streptozotocin-induced cardiotoxicity is 
characterized by increased apoptosis in cardiac cells, and MAPK 
activation has been associated with the modulation of apoptotic 
pathways. Therefore, the MAPK pathway appears to play a critical 
role in mediating the inflammatory responses, oxidative stress, and 
apoptotic processes that contribute to the overall pathogenesis of 
streptozotocin-induced cardiotoxicity [54]. 

Role of ROS formation in streptozotocin-induced cardiotoxicity  

Streptozotocin, commonly employed to induce diabetes in 
experimental models, elicits a robust generation of ROS in cardiac 
tissues, contributing significantly to the pathogenesis of 
cardiotoxicity. Elevated levels of ROS, including superoxide radicals 
and hydrogen peroxide, instigate oxidative stress, a condition 
marked by an imbalance between the production of these reactive 
molecules and the ability of cellular antioxidant defenses to 
neutralize them. ROS directly targets cellular components, including 
lipids, proteins, and DNA, inducing oxidative damage. lipid 
peroxidation, protein carbonylation, and DNA strand breaks are 
among the detrimental consequences of ROS accumulation. Such 
oxidative modifications compromise the structural integrity and 
functional capacity of cardiac cells, ultimately contributing to 
myocardial injury [55, 56].  

Animal models of streptozotocin-induced cardiotoxicity 

In a study conducted by Sabahi et al., in 2021, diabetes was induced 
in rats through a single intraperitoneal dose of streptozotocin at 60 
mg/kg. This induction of diabetes led to elevated levels of Creatine 
Kinase Isoenzyme (CK-MB) and lactate Dehydrogenase (LDH) in the 
serum, along with changes in Cardiac Catalase (CAT) and Superoxide 
Dismutase (SOD) activity. Additionally, diabetes prompted an 
increase in cardiac Thiobarbituric Acid Reactive Substances (TBARs) 
and carbonylated protein. Despite a slight increase in ROS 
production associated with diabetes, this stimulated the elevation of 
CAT and SOD activities in the cardiac tissue [57]. 

Alshehri et al., (2021) delved into the potential of kaempferol in 
mitigating oxidative, inflammatory, and fibrotic damage in the left 
Ventricles (LVs) of streptozotocin-induced diabetic rats. The 
administration of streptozotocin significantly disrupted both systolic 
and diastolic functions in the lVs, leading to notable increases in 
ventricular collagen deposition, infiltration of inflammatory cells, 
and expression of pro-apoptotic proteins such as Bcl2-associated X 
protein (Bax) and cytochrome-C. Streptozotocin-induced diabetes 
was associated with a decline in body weight, elevated fasting 
glucose levels, and suppressed fasting insulin levels. Additionally, 
streptozotocin exposure heightened the levels of ROS, 
malondialdehyde, TNF-α, and interleukin-6. The study also revealed 
upregulation of Transforming Growth Factor-β1 (TGF-β1) and 
increased nuclear levels of NF-kB p65. Kaempferol attenuated DCM 
in streptozotocin-treated rats through its hypoglycemic and insulin-
releasing effects, as well as a cardiac-independent mechanism that 
involves the activation of sirtuin 1 (SIRT1) [58]. 

In their study, Moore et al., (2014) hypothesized that injections of 
streptozotocin were utilized to induce diabetes in CD1 mice of both 
sexes. Within 8 weeks of streptozotocin-induced diabetes, diastolic 
dysfunction was seen in female diabetic mice that were measured 
using echocardiography for functional and dimensional 
characteristics. Significantly higher levels of pro-apoptotic Caspase-
3, microRNA-1, and microRNA-208a, and significantly lower levels of 
pro-survival Pim-1 were linked to this. At this moment, there were 
no significant alterations seen in male diabetic mice (P<0.05 
compared to female diabetic mice) [68]. Furthermore, after 12 and 
16 weeks of streptozotocin-induced diabetes, female diabetic mice 
showed a substantial dilatation of the left ventricle, a lower ejection 
fraction, and poor contractility (P<0.05) compared to male diabetic 
mice. These results indicate a speedier beginning of ventricular 
remodeling in these mice. Molecular examination of human diabetic 
heart tissues validated pre-clinical study findings, demonstrating a 
significant downregulation of Pim-1 in the female diabetic heart 
(P<0.05 compared to the male diabetic). In diabetic cardiomyocytes, 
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the female disadvantage was finally restored by the in vitro 
restoration of Pim-1 [59].  

According to Wang et al., 2020, the goal of their current study was to 
evaluate piperine's effects on rats that had streptozotocin-induced 
diabetic cardiomyopathy. Sprague-Dawley rats were divided into 
seven distinct groups after intraperitoneal administration of 
streptozotocin was used to develop diabetes in the animals. Piperine 
treatment substantially (p<0.05) reversed hemodynamic changes, 
suppressed cardiac markers, and repaired abnormal myocardial 
functions. Piperine therapy effectively (p<0.05) reduced the high 
degree of cardiac oxido-nitrosative stress and lowered cardiac Na-K-
ATPase concentration following streptozotocin delivery. 
Additionally, piperine significantly (p<0.05) raised the activity of 
mitochondrial enzymes in the heart. Piperine therapy significantly 
(p<0.05) corrected the streptozotocin-induced modification in 
cardiac mRNA expression of Atrial Natriuretic Peptide (ANP), Brain 
Natriuretic Peptide (BNP), cTn-I, Bcl2, Bax/Bcl2, and caspase 3. The 
histopathological abnormalities caused by streptozotocin were 
reduced by piperine treatment. In conclusion, the current study 
indicates that piperine modulates the caspase-3, Bcl2, and Bax/Bcl2 
pathways to attenuate streptozotocin-induced DCM [60]. 

5-Fluorouracil-induced cardiotoxicity 

5-Fluorouracil is a widely used chemotherapeutic agent primarily 
employed in the treatment of various solid tumors, including 
colorectal, breast, and head and neck cancers. While effective against 
cancer cells, 5-fluorouracil is associated with cardiotoxic side effects 
that have led to increased interest in studying its impact on the 
cardiovascular system using rodent models. To investigate 5-
fluorouracil-induced cardiotoxicity in rodents, researchers typically 
utilize mice or rats. The experimental design involves administering 
5-fluorouracil to rodents through various routes, such as 
intravenous or intraperitoneal injection, to mimic clinical 
treatment scenarios. The dosage and duration of 5-fluorouracil 
administration are critical factors influencing the severity of 
cardiotoxic effects [61, 62]. 

5-Fluorouracil-induced cardiotoxicity involves a complex interplay 
of various cellular and molecular mechanisms, elucidating the 
intricate processes that lead to adverse effects on the cardiovascular 
system. One significant facet is endothelial dysfunction, whereby 5-
fluorouracil impairs the function of the inner lining of blood vessels, 
compromising NO bioavailability and causing vasoconstriction. 
Concurrently, the drug induces oxidative stress by generating ROS 
within cardiac tissues, resulting in damage to lipids, proteins, and 
DNA. Furthermore, 5-fluorouracil triggers an inflammatory response 
in the heart, marked by the release of pro-inflammatory cytokines 
like TNF-α and interleukin-1β, exacerbating cardiotoxic effects. 
Thrombogenic effects are evident, increasing the risk of 
thromboembolic events [63]. Direct myocardial toxicity is also a key 
aspect, with 5-fluorouracil inducing apoptosis and cell death in 
cardiomyocytes, contributing to myocardial injury. Additionally, the 
drug disrupts mitochondrial function, impairs calcium homeostasis, 
interferes with DNA synthesis and repair, and activates programmed 
cell death pathways in cardiac cells. The potential interference with 
cardiac ion channels and electrophysiological properties adds 
another layer of complexity, possibly leading to arrhythmias. 
Understanding these multifaceted mechanisms is pivotal for the 
development of cardioprotective drug interventions designed to 
alleviate 5-fluorouracil-induced cardiotoxicity [64]. 

The mechanism involved in 5-fluorouracil-induced cardiotoxicity 
model 

Role of 5-fluorouracil on cardiac functions and inflammatory 
markers 

Currently, the primary mechanisms underlying 5-fluorouracil 
cardiotoxicity are believed to involve coronary artery spasm, 
endothelial injury-induced thrombosis, and oxidative stress. 
However, these proposed mechanisms are mainly derived from 
limited experimental studies, and there is a lack of standardized 
criteria for diagnosing and preventing 5-fluorouracil cardiotoxicity. 
Therefore, further in-depth research using animal models is 
necessary [65]. A single or several intravenous injections have been 

used by the majority of researchers to produce 5-fluorouracil 
cardiotoxicity in animal models, according to the literature currently 
available which closely resembles clinical application but may 
increase the risk of phlebitis. Commonly used experimental animals 
include rabbits and rats, as they allow for better observation of 
cardiac changes. 

Some studies have employed multiple intravenous or 
intraperitoneal injections of 5-fluorouracil at varying cumulative 
doses to induce cardiotoxicity in rat models. These studies have 
reported symptoms such as depression, severe diarrhea, and loss of 
appetite in rats, along with extensive separation and distortion of 
myocardial fibers, accompanied by inflammatory cell infiltration 
around the cells. Additionally, markers of myocardial injury, 
including Creatine Kinase (CK), C-Reactive Protein (CRP), TNF-α, 
and interleukin-1β, were found to be elevated, indicating myocardial 
injury induced by 5-fluorouracil. Other investigations have utilized 
single intravenous or multiple injections of 5-fluorouracil in rabbit 
models to induce cardiotoxicity. These studies have observed large 
areas of hemorrhagic infarction in the rabbit left ventricular wall, 
multifocal necrosis of myocardial cells, and increased thickness of 
the left ventricular wall, indicating left ventricular dysfunction [66]. 

Studies of the myocardial antioxidant system in 5-fluorouracil-
induced cardiotoxicity 

Durak et al. conducted a study to investigate the impact of 5-
fluorouracil treatment on the antioxidant system in myocardial 
tissue. They observed decreased activities of superoxide dismutase 
and glutathione peroxidase, along with increased CAT activity in 
female guinea pigs treated with 5-fluorouracil. In 5-fluorouracil-
treated rats, the capacity for antioxidants was lower than in control 
animals, despite an increase in malondialdehyde levels. Reduced α-
hydroxybutyrate dehydrogenase activity and a marginally elevated 
intramuscular malondialdehyde level were found. One study noted a 
20% increase in iron levels in 5-fluorouracil-treated rat myocardial 
tissue compared to controls, while another study on open-chest 
guinea pigs did not find elevated iron levels in the myocardium 
following 5-fluorouracil infusion. Despite employing similar 
methods for iron content determination, the two studies utilized 
different species and dosages. Additionally, both studies found that 
copper levels in myocardial tissue remained unaffected by 5-
fluorouracil treatment [67]. 

5-Fluorouracil-induced vasoconstriction 

Three studies have demonstrated 5-fluorouracil-induced 
vasoconstriction. In two of these studies, vasoconstriction of the 
brachial artery was observed in patients immediately after 5-
fluorouracil infusion. This vasoconstriction was transient, recurred 
with repeated injections of 5-fluorouracil, and was reversed by 
glycerol nitrate. Three out of the 31 patients treated with 5-
fluorouracil had chest pain, according to Salepci et al., but Südhoff et 
al. stated that none of the patients had signs of cardiotoxicity. The 
study by Salepci et al. found abnormalities in the electrocardiogram 
of five out of thirty-one individuals; however, the study by Südhoff et 
al. did not record electrocardiogram data. Mosseri et al., used 
isolated rabbit aorta rings to study 5-fluorouracil-induced 
vasoconstriction in vitro [68]. They found that the prevalence and 
magnitude of vasoconstriction correlated with the molar 
concentration of 5-fluorouracil, regardless of the endothelial 
function of the aorta rings. Moreover, nitroglycerin abolished 5-
fluorouracil-induced vasoconstriction, and acetylcholine-induced 
endothelium-dependent relaxation remained unaffected by 5-
fluorouracil treatment. It appears from these data that endothelial 
relaxation pathways have no role in the vasoconstriction caused by 
5-fluorouracil. Furthermore, pre-treatment with the Protein Kinase-
C (PK-C) inhibitor staurosporine decreased the amount of 5-
fluorouracil-induced vasoconstriction, but pre-treatment with the 
PK-C activator phorbol-12,13 dibutyrate enhanced the amount of 5-
fluorouracil-induced vasoconstriction [69]. 

Animal models of cardiotoxicity using 5-fluorouracil 

Studies by Safarpour et al., (2022) and Refaieet al., (2022) 
respectively demonstrated that administration of 5-fluorouracil 
(100 mg/kg) on the first day of a 14 d investigation and 5-
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fluorouracil at a dose of 150 mg/kg on the 5th day of a 7 d 
experiment through intraperitoneal injection resulted in significant 
cardiotoxic effects in rats. Both studies found elevated levels of 
cardiac injury biomarkers, including aspartate aminotransferase 
(AST), Alanine Aminotransferase (ALT), lDH, CK-MB, and troponin I 
following 5-fluorouracil treatment, indicating damage to myocardial 
tissues [70, 71]. Oxidative stress markers such as malondialdehyde 
were increased, while antioxidants, like Reduced Glutathione (GSH) 
and Total Antioxidant Capacity (TAC), were diminished after 5-
fluorouracil administration, suggesting the presence of oxidative 
damage. Refaie et al. also reported increases in inflammation 
markers like TLR4, MyD88, and NFκB. Apoptotic markers, including 
caspase 3 and endothelin receptors, were heightened, pointing to 
increased cardiomyocyte death. Histopathological examinations 
uncovered multifocal myofiber necrosis, pericarditis, hemorrhage, 
hyperemia, and other structural abnormalities, especially in the left 
ventricle. Overall, these findings from both studies demonstrate that 
5-fluorouracil treatment induces oxidative damage, inflammation, 
apoptosis, and functional impairment in rat hearts, underlining the 
cardiotoxicity of this commonly used chemotherapeutic agent. In a 14 
d study by Safarpour et al., (2022), a single intraperitoneal injection of 
5-fluorouracil (100 mg/kg) on the first day induced substantial 
cardiotoxicity, evidenced by elevated cardiac enzyme levels and 
increased expression of cyclooxygenase-2 and TNF-alpha. 
Histopathological examinations revealed notable degenerations, 
including high levels of cardiac intoxication, necrosis, and hyperemia. 
Furthermore, the treatment with 5-fluorouracil resulted in a decrease 
in body weight, TAC, CAT values, blood cells, and hemoglobin levels. 
Electrocardiographic parameters were also affected, displaying an 
increased elevation in the ST segment and prolonged QRS duration 
[72].  

Gui et al., (2023) conducted a 10 d study involving male Wistar rats, 
where a dose of 150 mg/kg body weight of 5-fluorouracil was 
administered via intraperitoneal injection on the 8th d. The 
researchers found that 5-fluorouracil exposure led to marked 
increases in serum and cardiac levels of cTn-I, CK, malondialdehyde, 
TNF-α, interleukin-1β, 6, NO, inducible iNOS, NF-κB and caspase 3 
compared to control rats. Histological analysis revealed myocardial 
hemorrhage, cardiomyocyte necrosis, and infiltration of 
inflammatory cells. In another 5 d study, Rafai et al., (2004) 
administered a single peritoneal injection of 5-fluorouracil at 150 
mg/kg to male albino rats on day 1. They reported substantial 
increases in serum levels of cardiac enzymes, and tell-like receptors. 
IL16, Myeloid Differentiation Factor 88 (MYD88), heart weight to 
body ratio, malondialdehyde, and Sodium-Glucose Cotransporter 2 
(SGLT2). Meanwhile, reduced GSH and TAC were markedly 
decreased. These observations collectively demonstrate that 5-
fluorouracil induced extensive cardiac damage involving 
inflammation, oxidative stress, apoptosis, and compromised 
antioxidant defenses as evidenced by biochemical, histopathological, 
and physiological alterations [73]. 

Cisplatin-induced cardiotoxicity 

Cisplatin, a widely employed chemotherapeutic agent effective 
against various cancers, is recognized for its efficacy in treating solid 
tumors. Despite its clinical success, the use of cisplatin is linked to 
notable side effects, including nephrotoxicity, ototoxicity, and 
cardiotoxicity. Given its potential for inducing cardiac toxicity, 
researchers have delved into drug-induced experimental 
cardiotoxicity in rodents to comprehend the underlying mechanisms 
and investigate potential protective strategies. In these experimental 
models, rodents such as mice or rats receive cisplatin via 
intraperitoneal administration, mirroring the clinical context. The 
parameters of cisplatin administration, encompassing dose, frequency, 
and duration, play a pivotal role in determining the extent and severity 
of cardiotoxic effects. Understanding these factors is crucial for 
elucidating the mechanisms at play and exploring interventions that 
could mitigate cisplatin-induced cardiotoxicity [74]. 

Cisplatin-induced cardiotoxicity involves intricate mechanisms that 
contribute to significant cardiac damage and dysfunction. A key 
factor is oxidative stress, culminating in lipid peroxidation of cardiac 
membranes and the degeneration and necrosis of cardiac tissue. 

Another critical aspect is the upregulation of transmembrane 
calcium transport by cisplatin, disrupting cardiac function. 
Additionally, cisplatin-induced DNA damage instigates apoptosis 
and necrosis of cardiac cells, with ensuing inflammation intensifying 
cardiac damage. Furthermore, the impact of cisplatin on neuregulin-
1β signaling can lead to myofibrillar disarray, contributing to cardiac 
toxicity. Understanding these mechanisms is vital for developing 
strategies to mitigate cisplatin-induced cardiotoxic effects [75]. 

Mechanism involved in cisplatin-induced cardiotoxicity model 

Studies have revealed that cisplatin cardiotoxicity arises from its 
cytotoxic effects, oxidative stress, and inflammatory processes. 
However, the precise mechanisms remain poorly understood, and 
there is currently no established protective agent against cisplatin-
induced cardiotoxicity, necessitating further research using animal 
models. Despite limited literature on the establishment of animal 
models for cisplatin cardiotoxicity, additional studies are warranted 
for refinement [76]. 

Some researchers have mimicked cisplatin cardiotoxicity in animal 
models by administering intraperitoneal injections of the drug 
multiple times, with cumulative doses ranging from 12 mg/kg to 120 
mg/kg, or by administering the injection once with a cumulative 
dose of 7 mg/kg. These models have demonstrated various signs of 
myocardial injury in mice, including cTnI, lDH, and CK-MB at 
elevated levels, myocardial fiber degenerative conditions and 
rupture, myocardial cell edema, vacuole-like degeneration, elevated 
myocardial apoptosis, and these conditions. Additionally, a rat 
model of cisplatin cardiotoxicity was established using a single 
intraperitoneal injection of cisplatin with a cumulative dose of 20 
mg/kg, which resulted in increased levels of cTnI and lDH, 
suggesting myocardial damage in rats [77]. 

Animal models of cardiotoxicity using cisplatin 

In a 10 d study by Turkmen et al., (2022), a single dose of 7 mg/kg 
cisplatin was administered intraperitoneally in rats to induce 
Myocardial Infarction (MI). Cisplatin induction in the disease group led 
to a significant increase in the TBARS while SOD, CAT, glutathione 
peroxidase activities and total GSH levels were decreased significantly. 
According to the histological examination, histopathological 
differences such as necrosis, mononuclear cell infiltration, 
hemorrhage, and vascular occlusion were observed and the cardiac 
damage score was also increased in the cisplatin-treated group [78].  

In another investigation, MI was induced through a solitary 
intraperitoneal administration of cisplatin in rats at a dosage of 12 
mg/kg on the initial day of the experiment. Subsequently, saline was 
administered orally daily for 14 days. The impact of cisplatin 
manifested as a notable rise in lipid peroxidation and NO, levels, 
coupled with a significant reduction in GSH levels and Na+, K+-
ATPase activity. Furthermore, heightened serum levels of cardiac 
marker enzymes such as CK-MB and cTnT were observed. Cardiac 
malondialdehyde demonstrated an increase, while SOD levels 
exhibited a decrease. Cytokines such as IL-1ß and TNF-α levels were 
also elevated. In another investigation, MI was induced by a single 
intraperitoneal injection of cisplatin in rats at a dose of 12 mg/kg on 
the first day of the experiment. Subsequently, saline was 
administered orally daily for 14 d. The impact of cisplatin 
manifested as a notable rise in lipid peroxidation, and NO, levels, 
accompanied by a notable decrease in GSH levels and Na+, K+-
ATPase activity. Moreover, elevated serum levels of cardiac marker 
enzymes, including CK-MB and cTnT, were observed. Cardiac 
malondialdehyde demonstrated an increase, while SOD levels 
exhibited a decrease. Additionally, cytokines such as interleukin-1ß 
and TNF-α levels were found to be elevated [79].  

Bayrak et al., and Ibrahim et al., respectively, demonstrated the 
cardiotoxic effects of a single intraperitoneal injection of cisplatin in 
rats at doses of 16 mg/kg on the 11th day of an 18 d study and in 
mice at a dose of 7 mg/kg on the 27th day of a 30 d study. The 
injections resulted in significant increases in Troponin I, CPK, CK-
MB, malondialdehyde, and NO levels, coupled with reductions in 
GPx, SOD, Bcl-2 levels, and CAT [95]. Cisplatin administration 
induced disruptions in cardiac muscle fibers, loss of striations, 
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absence of intercalated discs, and pyknotic nuclei. Histopathological 
changes included degeneration, cardiomyocyte necrosis, fibrous 
tissue reaction, degenerative alterations, vacuolated cytoplasm, and 
engorgement of blood vessels [80, 81].  

Adali et al. conducted a study where a single intraperitoneal 
injection of cisplatin was administered to rats at a dose of 15 mg/kg 
on the third day of a 5 d investigation. In the cisplatin-treated group, 
significant cardiac damage was evident, characterized by congestion, 
edema, and abnormal nuclei in myocardial fibers. The study 
observed a considerable decrease in the expression of the 
antiapoptotic protein Bcl-2 in the cisplatin group. Furthermore, the 
number of apoptotic cardiomyocytes was notably higher in the 
cisplatin-treated group. These findings collectively emphasize the 
detrimental impact of cisplatin on various cardiac parameters and 
structural integrity, providing insights into its potential cardiotoxic 
effects in experimental animals [82]. 

Isoprenaline-induced cardiotoxicity model 

The sympathetic nervous system is responsible for preserving 
cardiovascular homeostasis and is primarily regulated by 
endogenous catecholamines such as noradrenaline and adrenaline. 
Catecholamines, however, have the potential to cause further 
cardiac problems because they are cardiotoxic under certain 
conditions. Arrhythmias, stress cardiomyopathy, acute MI, and 
chronic heart failure are among the recognized incidences [83, 84]. 
Catecholamines alone have the potential to cause infarctions, which 
is why they are used in experiments as a model of acute MI [83, 84]. 
Remarkably, compared to endogenous catecholamines, a synthetic 
catecholamine called isoprenaline with nonselective β-adrenergic 
agonistic activity has shown a higher capacity to simulate acute MI 
in experimental animals [85, 98].  

The pathogenesis of isoprenaline-induced cardiac dysfunction is 
mostly understood to include the b-adrenergic receptor as well as 
catecholamines and their redox cycling, which includes the 
generation of ROS and a series of their oxidation products [86]. The 
first event in pathophysiology is the overstimulation of both β-
adrenergic receptors in the cardiovascular system, even though 
oxidative stress is significant. Prolonged exposure to high levels of 
isoprenaline can induce oxidative stress, generating ROS and 
causing damage to cellular components. This oxidative stress, 
coupled with alterations in calcium handling, can lead to apoptotic 
and necrotic cell death pathways in cardiac myocytes, exacerbating 
myocardial injury. Additionally, isoprenaline-induced myocardial 
damage triggers an inflammatory response characterized by the 
release of pro-inflammatory cytokines and immune cell infiltration 
into the myocardium, further contributing to tissue damage [87, 89]. 

Animal models of isoprenaline-induced cardiotoxicity 

Wu et al., (2023) conducted a study involving 72 six-week-old wild-
type female mice (C57BL/6). They were divided randomly into 
groups: a control group receiving normal saline and groups treated 
with increasing doses of isoprenaline (5, 10, 25, 50, and 100 mg/kg 
isoprenaline via intraperitoneal injections daily for 14 days). The 25 
and 50 mg/kg isoprenaline groups showed significant weight 
changes and lower mortality compared to the control. These groups 
also exhibited reduced autonomous activity in the open-field test. 
Echocardiography revealed balloon-like apexes of the heart and left 
ventricular dyskinesia in the 25 and 50 mg/kg isoprenaline groups. 
Electrocardiography showed increased ST segment amplitude, QT 
interval, and Q amplitude in these groups. Histological examination 
of heart tissue showed a disordered arrangement of myocardial 
cells, dissolution of myocardial fibers, widened myocardial cell 
space, edema, and hyperemia in the interstitium, while control 
group tissue remained structurally intact. Additionally, the 25 and 
50 mg/kg isoprenaline groups exhibited significantly higher levels of 
cortisol, BNP, cTn-T, and CRP compared to the control group. The 
study successfully established a high-incidence, low-mortality SC 
model by administering 25 and 50 mg/kg isoprenaline, which may 
serve as a basis for developing other animal models of SC [90]. 

Hosseini et al., (2023) employed a subcutaneous injection of 
isoprenaline at a daily dosage of 85 mg/kg for two consecutive days 
(on days 8 and 9). The histopathological examination revealed that 

isoprenaline induced degenerative changes in the myocardium, along 
with inflammation and hemorrhage, resulting in an increased release 
of cardiac markers such as cTnT, lDH, CK-MB, and CPK, as well as 
elevated levels of malondialdehyde in cardiac tissue. Significant 
cellular damage, edema, congestion, tiny regions of bleeding, and focal 
infiltration of inflammatory cells, including neutrophils, lymphocytes, 
and macrophages, were observed upon microscopic assessment of the 
isoprenaline-treated group. Furthermore, the administration of 
isoprenaline resulted in a decrease in the concentrations of thiol 
content, CAT, and SOD. It also raised the levels of triglycerides, low-
Density lipoprotein Cholesterol (LDL-C), and Very-Low-Density 
lipoprotein Cholesterol (VLDL-C), while concurrently decreasing the 
levels of High-Density lipoprotein Cholesterol (HDL-C). According to 
the study, enhanced adipose tissue lipid mobilization elevated cardiac 
cytosolic calcium levels, and heightened cyclic adenosine 
monophosphate levels could be the cause of the rise in serum lipids in 
rats after isoprenaline injection [91]. 

Abdelhalim et al., (2021) conducted a study where rats were subjected 
to subcutaneous injection of isoprenaline at a dose of 100 mg/kg for 2 
consecutive days to induce MI. The cardiac muscle of rats treated with 
isoprenaline exhibited a localized area of coagulative necrosis, as 
evidenced by the histological investigation. In addition, these rats' 
myofibers showed signs of MI induction, including thrombosis in 
blood vessels, loss of striation, hypereosinophilia, karyopyknosis, and 
macrophage infiltration in the interstitium. Moreover, the plasma 
concentrations of troponin-I and malondialdehyde were markedly 
increased with isoproterenol administration. Additionally, there was a 
noticeable rise in the activity of enzymes such as creatine kinase, lDH, 
and ALT. On the other hand, the cardiac homogenates of rats given 
isoprenaline had considerably lower concentrations of GSH and SOD 
activity. The generation of ROS by isoprenaline resulted in damage to 
cellular tissue structure, causing the release of enzymes such as CK, 
AST, ALT, and lDH into the bloodstream, thereby increasing their 
concentrations in the serum [92]. 

In a research study by Wang et al.,(2016), Incubation with different 
doses ranging from 0.015 to 0.0025 mol per liter for 24 h. 
isoprenaline-induced oxidative stress and apoptosis in H9c2 
cardiomyocytes. The levels of SOD and GPx were downregulated as 
well as the levels of malondialdehyde were upregulated in 
isoprenaline-induced H9c2 cardiomyocytes. A further mechanism 
study indicated the induction of mitochondria-dependent apoptotic 
pathways and reduction of the expression levels of the Bcl-2 family. 
Isoprenaline significantly increases apoptotic rate compared with 
the control group. They found that when H9c2 cardiomyocytes were 
treated with isoprenaline, the expression levels of the pro-apoptotic 
proteins Bax and p53 were much higher than those of the control 
group, whereas the expression levels of the anti-apoptotic protein 
Bcl-2 were lower. Using western blot, they were able to identify both 
total and phosphorylated (active form)c-Jun N-terminal 
Kinase(JNK), Extracellular Signal-Regulated Kinase (ERK), and P38 
MAPK. Following treatment with isoprenaline, there was a 
significant rise in the expression levels of p-ERK and p-P38. There 
are many parallels between human heart failure and isoprenaline-
induced cardiac hypertrophy in rats [93]. 

Ojha et al., (2010) demonstrated an isoprenaline-induced 
cardiotoxicity rat model in which an isoprenaline control group 
consisting of 15 rats was administered with saline p. o. with 
isoprenaline of dose 85 mg per kg s. c. for induction of myocardial 
necrosis in rats. In rats, the myocardial SOD, CAT, and GPx enzyme 
activity were significantly reduced with the treatment of 
isoprenaline. Because superoxide anions can be detrimental to the 
myocardium, increased generation of superoxide anions or 
inadequate clearance of superoxide anions was the cause of 
decreased SOD activity in isoprenaline control animals in this 
investigation. Through the process of neutralizing free radicals, the 
cellular tripeptide glutamyl cysteinyl glycine, or GSH, inhibits 
peroxidative damage. After the isoprenaline was administered, there 
was a noticeable drop in GSH. Free radicals produced in ischemia 
tissues were known to induce metabolic stressors, which in turn led 
to the breakdown of the tissue defense mechanism and subsequent 
cardiac damage and necrosisMoreover, after the injection of 
isoprenaline, we noticed a reduction in the myocyte injury marker 
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CK-MB isoenzyme and lDH, which indicate the degree of necrotic 
damage to the cardiac membrane caused by isoprenaline. MI can be 
diagnosed by looking for the leakage of the enzymes lDH and CK-MB. 
Determining the CK-MB isoenzyme and lDH is therefore a helpful 
metric for evaluating myocardial injury. Moreover, a histological 
analysis of the isoprenaline control group's heart cells revealed 
increased necrosis, edema, and inflammation [94]. 

Trastuzumab-induced cardiotoxicity  

Trastuzumab is a type of medicine that targets a protein called 
Human Epidermal Growth Factor Receptor-2 (HER2), found on the 
surface of certain cancer cells. This medicine works by binding to the 
HER2 protein, which is produced by the HER-2 gene. This gene is 
associated with the growth of cancer cells. Trastuzumab is a 
humanized monoclonal antibody designed to combat tumor growth 
by specifically attaching the HER-2 protein on the surface of cancer 
cells. The potential effects of trastuzumab on the cardiac tissue were 
studied utilizing the model of cardiotoxicity in experimental rats. 

Varying amounts of trastuzumab were injected into the rats through 
the intraperitoneal route. This resulted in cumulative doses of 15.75 
mg/kg, 48 mg/kg, and 60 mg/kg. The observed cardiac 
manifestations in the rats included myocardial fibrosis, reduced left 
Ventricular Ejection Fraction (LVEF) and Fractional Shortening (FS), 
increased left Ventricular End-Diastolic Diameter (LVDD), and End-
Systolic Volume (ESV). Additionally, the rats exhibited elevated 
levels of serum lDH and cTnI, indicative of potential heart issues. In 
addition, a similar cardiotoxicity model was replicated in rabbits by 
injecting trastuzumab under the skin (subcutaneous injection) at a 
cumulative dose of 26 mg/kg. This caused infiltration of lymphocytes 
and macrophages around heart muscle cells, along with a decrease in 
lVEF, indicating impaired left ventricular function in rabbits [95]. 
Cardiac dysfunction with trastuzumab is often asymptomatic but can 
be symptomatic as well and the cardiotoxicity is aggravated with the 
prior use of chemotherapeutic agents like anthracyclines. Previously 
published literature showed that cancer therapy-related cardiac 
dysfunctions range from 13%-17% with trastuzumab [96]. 

 

Table 1: Overview of chemical-induced cardiac toxicity models in experimental animals 

Model  Animal 
species 
used 

Method General 
condition 

Cardiac 
structure 
and 
functions 

Myocardial injury Pathological 
changes of 
the 
myocardium 

References 

Doxorubicin  Mice Single i. p. injection of 25 
mg/kg 

Chemotherapy LVEF, FS↓ Heart failure and 
interstitial swelling 

LDH↑, CK MB↑  [27] 

Doxorubicin  Rat A single i. p. injection of 10 
mg/kg, 20 mg/kg in the tail 
vein 

Decreased diet 
and activity, 
weight loss, and 
diarrhea 

LVESV, 
lVEDV↑, 
lVEF↓ 

Cardiac fibers are twisted 
and injured, and 
myocardial cells are 
necrotic. 

BNP, lDH, 
cTnT↑ 

[32] 

Doxorubicin  Mice Multiple i. p. injections of 4 
mg/kg/w with an 
accumulative dose of 24 
mg/kg 

Weight loss LVESV, 
lVEDV↑, 
lVEF↓ 

Collagen deposition and 
interstitial fibrosis in the 
heart 

cTnI↑ [36] 

5-
Fluorouracil 

Rat A single intraperitoneal 
injection of 150 mg/kg or 
several intravenous doses of 8 
mg/kg/d with a cumulative 
dose of 40 mg/kg or 
numerous intraperitoneal 
injections of 50 mg/kg/w with 
a cumulative dose of 300 
mg/kg 

Depression, 
severe diarrhea, 
loss of appetite 

- The myocardial cells are 
surrounded by 
inflammatory cells, and 
the myocardial fibers are 
severely twisted and 
divided. 

CK, CRP, TNF-
α, IL 1β↑ 

[61] 

5-
Fluorouracil 

Rabbit 50 mg/kg intravenously as a 
single shot or 15 mg/kg/w 
with a total dose of 60 mg/kg 

 LVWT↑ The cardiomyocytes have 
lymphocytes and 
neutrophils infiltrating 
them, and they show 
multifocal necrosis. 

 [65] 

Cisplatin Mice Four i. p. injections of mg/kg 
every two days, with a 
cumulative dosage of mg/kg, 
mg/kg, or mg/kg/2d, and a 
cumulative dose of mg/kg 

- - Vacuum valvular 
degeneration, cardiac 
edema, cardiac fiber 
degeneration and 
rupture, and increased 
myocardial cell apoptosis 

CK-MB, 
lDH,cTnI↑ 

[75] 

Trastuzuma
b  

Rat A series of intraperitoneal 
injections at a dose of 2.25 
mg/kg/d with a cumulative 
dose of 15.75 mg/kg or 6 
mg/kg/d with a cumulative 
dose of 48 mg/kg, 20 mg/kg/w, 
or 60 mg/kg 

- LVEF, FS↓, 
lVDD, ESV↑ 

Myocardial fibrosis LDH,cTnI↑ [95] 

 

CONCLUSION 

Utilizing chemicals like streptozotocin, isoprenaline, and 
anticancer medications such as cisplatin, doxorubicin, and 5-
fluorouracil in experimental setups is crucial for comprehending 
their mechanisms in inducing cardiac damage in rodent subjects. 
These models reveal that anticancer drugs can damage the heart 
in different ways, including oxidative stress, DNA damage, and 
problems with mitochondria. For example, 5-fluorouracil harms 
the heart by causing various issues like inflammation, blood 
clotting, and directly damaging heart cells and ion channels. 

Streptozotocin models help us understand diabetic heart 
problems by showing how metabolic disorders and blood vessel 
issues lead to heart damage.  

Isoprenaline models help study sudden heart injuries like heart 
attacks, aiding in finding treatments to protect the heart. Overall, 
these models are vital for testing drug safety and effectiveness 
and developing treatments to protect the heart. 
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