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ABSTRACT 

Cancer remains one of the most pressing health concerns worldwide, driving continuous efforts in pharmaceutical research to develop more 
effective treatments. In the ever-evolving landscape of cancer therapy, cocrystals stand as promising contenders, offering enhanced solubility, 
stability, and bioavailability to traditional anticancer agents. Co-crystallization, a strategy emerging at the nexus of pharmaceutical and crystal 
engineering. From the fundamental principles of cocrystal engineering to advanced spectroscopic and crystallographic methodologies, each aspect 
is meticulously dissected to unveil the transformative potential of cocrystals in oncology. The review elucidates the transformative potential of 
cocrystals in oncology, highlighting their capacity to revolutionize drug delivery and efficacy. Recent advancements in the f ield are comprehensively 
examined, showcasing the promising role of anticancer cocrystals in paving the way for novel therapeutic strategies and improved patient 
outcomes. Cocrystals represent a promising avenue in cancer therapy, offering significant enhancements to traditional anticancer agents. Through a 
comprehensive exploration of recent advancements, this article navigates the complex terrain of anticancer cocrystals, drug-drug cocrystals, paving 
the way for novel therapeutic strategies and improved patient outcomes.  
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INTRODUCTION 

Cancer stands as a prominent catalyst for the escalating global 
mortality rates and remains a paramount public health challenge 
worldwide [1]. With one in every six deaths attributed to cancer, 
its impact on mortality rates cannot be overstated [2]. The 
Global Cancer Observatory (GCO) projects a staggering 10 
million deaths related to cancer, alongside an estimated 19 
million new cases in the year 2020 alone [3]. Despite these stark 
statistics underscoring the ongoing battle against cancer, it is 
disheartening to note that the "war on cancer" remains far from 

won, as evidenced by projections indicating a staggering toll of 
sixteen million lives lost and three billion new cases globally 
over the next decade [4].  

The spectrum of cancers is vast and encompasses a myriad of types, 
including but not limited to kidney cancer, pancreatic cancer, uterine 
cancer, bladder cancer, skin cancer, prostate cancer, non-Hodgkin 
lymphoma, leukemia, endometrial cancer, colorectal cancer, lung 
cancer, melanoma, breast cancer, liver cancer, and thyroid cancer 
[5]. Refer to fig. 1 for an illustration depicting data and facts 
concerning various cancer types. 

 

 

Fig. 1: Statistical data and factual information regarding various types of cancer [6] 

 

Over the past decade, healthcare professionals have grappled with 
heightened cancer prevalence. Progress in science and technology 

has been instrumental in addressing gaps in the field, particularly in 
advancing medicinal treatments. Historically, cancer treatment 
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primarily relied on parenteral administration, but in recent decades, 
oral administration has gained traction due to its convenience and 
dosing frequency [7]. 

Oral drug delivery stands out as a popular and well-established 
method, offering benefits such as enhanced patient comfort, 
acceptability, and safety. The customisable nature of formulations 
based on the physicochemical properties of medicinal ingredients 
adds to their appeal within the scientific community. However, the 
efficacy of orally administered cancer chemotherapeutic drugs is 
impeded by challenges like the significant first-pass effect, higher 
efflux ratio, lower water solubility, impermeability, and reduced 
bioavailability [8]. 

Anticancer drugs constitute about 75% of newly developed chemical 
compounds, which are predominantly known for their poor water 
solubility [9]. This limited solubility poses a significant challenge to 
their development and practical application. According to the 
Biopharmaceutics Classification System (BCS), drugs are categorized 
as weakly water-soluble if their highest dosage strength fails to 
dissolve in 250 ml or less of water across a pH range of 1 to 7.4 [10]. 
Unfortunately, numerous anticancer drugs such as dasatinib [11], 
curcumin [12], docetaxel [13], and paclitaxel [14] fall into BCS classes 
II and IV due to their low solubility. Despite this challenge, many of 
these drugs possess potential antineoplastic efficacy. Their high lattice 
energies render them less soluble than micrograms per millilitre, 
hindering their dissolution and interaction with water molecules [15]. 

Since oral administration remains the most feasible route, over 80% 
of commercial drugs are formulated in solid doses like tablets and 
capsules [16]. In solid-state formulations, the physicochemical 

properties of drugs can be modified using methods such as co-
crystals, polymorphs, salts, amorphous forms, and hydrates [17]. 
However, due to the risk of polymorphic transformation, which can 
impact the final product, polymorphs are generally not 
recommended [18]. Consequently, new strategies must be devised to 
modify or improve the physicochemical properties of these drugs 
[19]. 

Co-crystals, as defined by the Food and Drug Administration (FDA), 
are crystalline solids comprising two or more distinct molecules. In 
pharmaceutical contexts, Active Pharmaceutical Ingredients (APIs) 
often engage in crystal lattice formation through non-ionic 
interactions with co-formers or co-crystal formers (Food and Drug 
Administration, 2018). Over recent years, co-crystals have shown 
significant advancement in drug development, particularly in 
modifying the physicochemical and pharmacokinetic attributes of 
APIs. These modifications include enhancements in solubility, 
dissolution rate, particle size, melting point, bioavailability, 
morphology, biochemical stability, physical form, and permeability 
[20]. Additionally, numerous research studies have explored the 
application of co-crystals in drug delivery [21]. 

Moreover, Yuliandra et al.'s investigation into the in vivo efficacy of 
the ibuprofen-nicotinamide (IBU-NIC) co-crystal in male Swiss-
Webster rats demonstrated that co-crystal production could 
enhance the analgesic effectiveness of the compound. Results 
indicated a doubling in pain inhibition with the IBU-NIC co-crystal 
compared to ibuprofen alone or its physical combination [22, 23]. 
Moreover, as depicted in fig. 2, active pharmaceutical ingredients 
(APIs) can create multi-component crystals in a singular form. 

 

 

Fig. 2: Various pharmacological forms for API that are solid and multicomponent [24] 

 

Lawton and Lopez did not introduce the term "co-crystal" until 
1963. Co-crystals are characterized as multicomponent crystals 
consisting of co-formers and APIs, featuring non-covalent 
intermolecular bonding interactions such as van der Waals forces, π-
π stacking, hydrogen bonds, and halogen bonds. Supramolecular 
synthons, alternatively known as homo-or hetero-synthons, emerge 
when functional groups within a crystal repeatedly interact with one 
another through proton donors and acceptors. These synthons may 
comprise identical functional groups or diverse ones [19].  

The data was collected from Elsevier-Science Springer Link, PubMed, 
National Library of Medicine (NLM), Semantic Scholar, and Google 
Scholar to conduct a literature search mostly from 2022 to 2024. 
The reference articles selected for this work are those that describe 
the current trends in co-crystallization techniques, characterization 
spectral techniques used, latest drug cocrystals for various cancer 
for management purpose, patient care and improving quality of life.  

Co-former screening and selection techniques 

Selecting the perfect co-former is imperative for accessing cocrystals 
with desired qualities. Simultaneously, the crystal engineering of APIs 
poses a formidable task. The process of cocrystal formation faces its 
greatest challenge during the selection of suitable co-formers, as the 
array of potential candidates often exceeds hundreds and multiple 
validation methods are commonly employed [25]. Supramolecular 
chemistry underpins the synthesis of cocrystals, with hydrogen bonding 
being the predominant intermolecular bonding motif among most APIs 
and co-formers. Thus, the choice of the optimal co-former remains 
pivotal for achieving cocrystals with the desired attributes [26]. 

Theoretical approaches 

Various theories, including "Hydrogen bonding propensity," 
"Cambridge Structure Database," "supramolecular synthon," "acid 
dissociation constant (pKa) values," and "Hansen solubility 
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parameters," were utilized in elucidating the genesis of cocrystals 
[27]. Etter's pragmatic directives on hydrogen bonding for 
constructing such solids could provide the fundamental framework 
for understanding hydrogen bonding synthons in cocrystals. Etter's 
investigation into the controllability of hydrogen bonding within 
established crystal structures aimed to regulate the hydrogen-bond 
assembly of chemical compounds generating crystals. Consequently, 
he proposed a series of pragmatic principles governing hydrogen 
bonding [27, 28]. The subsequent elucidation outlines Etter's trio of 
hydrogen-bonding guidelines:  

a) All reliable proton donors and acceptors participate in hydrogen 
bonding. 

b) Six-membered-ring intramolecular hydrogen bonds form, unlike 
intermolecular hydrogen bonds. 

c) Following the establishment of intramolecular hydrogen bonds, 
the remaining proton donors and acceptors above create 
intermolecular hydrogen bonds with each other. 

Supra molecular synthon approach 

Cocrystals emerge from noncovalent interactions between a drug 
and co-formers, such as hydrogen bonds, van der Waals forces, and 
pi-pi stacking. Supramolecular synthons, defined as structural units 
within super molecules, can be formed through known or 
anticipated synthetic methods involving intermolecular interactions, 
as proposed by Desiraju's [29] model of the supramolecular synthon 

approach. The process of designing cocrystals using the H-bonding 
rule of the supramolecular synthons approach is illustrated in fig. 3. 

a) Identifying functional groups within the active pharmaceutical 
ingredient (API) and co-former molecules. 

b) evaluating intramolecular interactions within the isolated 
molecules of the desired compounds. 

c) recognizing potential functional groups that could hinder 
intramolecular interactions in pure compounds. 

d) evaluating the probability of intermolecular interactions between 
different molecules. 

e) choosing co-formers through analysing both intramolecular and 
intermolecular interactions. 

Cambridge Structural Database (CSD) 

The CSD serves as a crucial tool in elucidating intermolecular hydrogen 
bonding within crystals [30], playing a pivotal role in advancing various 
fields such as chemistry, materials science, life sciences, and 
pharmaceutical research. With its robust design and efficiency, the CSD 
continually incorporates approximately 40,000 new structures annually 
[31]. Furthermore, it can be leveraged to anticipate stable hydrogen 
bond motifs, thereby preserving the most robust patterns across a range 
of core structures. Additionally, the CSD offers the advantage of 
facilitating the development of cocrystals through techniques like the 
hydrogen bonding potential (HBP). 

 

 

Fig. 3: Hydrogen bonding between suitable functional groups of drugs and co-former according to supramolecular synthon approach [29] 

 

Preparation methods of co-crystals 

The two most common methods of cocrystal production are solution 
crystallization and solid-state crystallization. The methods used to 
generate cocrystals can be broadly divided into three categories: 
solvent-based, supercritical fluid approaches, and green synthesis 
methods (also known as non-solvent-based methods) [32]. 

Green synthesis techniques or non-solvent techniques 

Non-solvent techniques offer environmental advantages as they 
require minimal or no solvent for the creation of cocrystals. These 
methods, namely Liquid-Assisted grinding (LAG), extrusion, 
simple/neat grinding, and hot-melt extrusion, fall into four distinct 
categories [33]. The neat grinding approach involves blending two 
or more co-formers according to a predetermined stoichiometry and 
then mechanically or physically grinding them for a set duration. 
Except for the minimal use of organic solvent during grinding, the 
LAG method closely resembles neat grinding [34]. In the extrusion 
process, co-formers and the Active Pharmaceutical Ingredient (API) 
are combined below the raw material's melting point using either a 
single screw or twin screws. Conversely, hot-melt extrusion is a 
specialized technique that simultaneously melts and mixes co-
formers using a hot screw extruder [35].  

Solvent-based techniques 

Various solution-based techniques, including evaporative, spray 
drying, solvent evaporation, slurry, and reactive co-crystallization, 

are recognized for their ability to produce cocrystals. Solvent serves 
as a medium in the co-crystallization process, involving 
undersaturated solutions of both the co-former and the API [36]. 
Formation of ketoprofen-malonic acid cocrystal by solvent 
evaporation method. This method typically yields single-crystal 
cocrystals suitable for diffraction studies and crystal structure 
characterization. Similarly, assisted evaporation co-crystallization, 
conducted under controlled conditions, resembles the solvent 
evaporation method but occurs at higher temperatures and/or 
lower pressure [37]. 

Although spray drying is commonly employed for producing 
amorphous solid dispersions (ASDs), recent research indicates its 
potential for cocrystal synthesis. This method offers advantages due 
to its rapid, continuous, and precise control over the process. In 
spray drying, a sprayer disperses an unsaturated liquid containing 
both drugs and co-formers with nitrogen, facilitating rapid solvent 
removal and solid particle formation [38]. 

The slurry conversion technique, often known as isothermal slurry 
conversion, involves introducing solid co-formers to a solvent (or a 
blend of solvents) at a predetermined stoichiometric ratio to achieve 
equilibration. Unlike evaporative co-crystallization, this method 
doesn't necessitate a clear starting solution. 

In reactive co-crystallization, co-formers and APIs are separately 
mixed before being introduced to one of the clear solutions, leading 
to spontaneous co-crystallization. Nanocrystal formulations can be 
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prepared using the ultrasound-assisted solution technique, where 
suitable co-formers and APIs are dissolved in a solvent. The solution 
undergoes sonication at a controlled temperature to prevent 
fragmentation and degradation, followed by overnight incubation 
for solvent evaporation and cocrystal formation [39].  

Supercritical fluid approach 

To produce a single crystal from a complex system of multiple 
components, the supercritical fluid method involves heating a 
mixture of Active Pharmaceutical Ingredient (API) and co-former to 
a temperature near the melting point of one component, typically 
the co-former. Unlike traditional organic solvents, supercritical fluid 
facilitates rapid kinetics and simplifies solvent removal from the 
final products, reducing costs and equipment requirements for 
subsequent steps in cocrystal production. This technique relies on 
suspending both API and co-former in a supercritical CO2 slurry for 
co-crystallization. By adjusting CO2 thermodynamics to maintain its 
density and solvent power, control over co-crystallization between 
components is achieved. 

The use of this method has demonstrated accelerated co-
crystallization rates, resulting in complete co-crystallization and the 
formation of pure cocrystals due to efficient mass transfer facilitated 
by convection in the CO2 slurry. In the Rapid Expansion of 
Supercritical Solvents (RESS) method, supercritical CO2 saturated 
with API and co-former is depressurized through a nozzle into an 
atmospheric drying chamber. However, many pharmaceutical 
compounds do not exhibit the required solubility in supercritical CO2 
for this approach. 

In the Supercritical Antisolvent Co-crystallization (SAC) procedure, 
supercritical CO2 serves as an antisolvent. This method precipitates 
both molecules together as a single unit and requires less soluble API 
and co-former compared to RESS. Upon the introduction of 
components into the vessel, CO2 dissolves in the solvent, expanding the 
volume while reducing solvent solubility and precipitating the solvent. 

In the batch gas antisolvent (BGAS) method, a solution containing 
both API and co-former is saturated in a vessel with carbon dioxide 
under increased pressure until co-crystallization is achieved. 
Alternatively, the semi-continuous supercritical antisolvent (SSAS) 
technique utilizes a sprayer to inject an API-co-former solution into 
a vessel containing supercritical CO2 under high pressure [40]. 

Characterization of cocrystals 

Microscopic, spectroscopic, and thermal techniques are commonly 
employed in the analysis of cocrystals. Various physicochemical 
factors such as crystallinity, melting temperature, stability, 
dissolution, and solubility are assessed similarly to any other solid 
form to ascertain the suitability of a substance for industrial dosage 
formulation. The melting point, a crucial physical characteristic 
determined by the temperature at which the solid and liquid phases 
reach equilibrium with zero free energy of transition, is 
fundamental. Differential scanning calorimetry (DSC) efficiently 
provides melting point and thermal data like melting enthalpy. 
Additionally, Differential Thermal Analysis (DTA) and 
Thermogravimetry (TG) are employed to ascertain factors such as 

polymorphisms, glass transitions, hydration, decomposition, and 
stability. 

Powder X-ray diffraction and single-crystal X-ray diffraction offer 
structural information, crystallinity level, and crystal size. Single-
crystal X-ray diffraction (SCXRD) is considered the gold standard for 
comprehensive 3D structural, compositional, packing, and hydrogen 
bond information. Spectrophotometric methods like Infrared 
Radiation (IR), Raman, and nuclear magnetic resonance (NMR) offer 
insights into noncovalent interactions, such as hydrogen bonds, and 
detect shifts in intermolecular interactions across various crystal 
structures. Scanning electron microscopy (SEM) and optical 
microscopy are utilized for surface topography examination, particle 
size analysis, and optical property assessment. 

Hot-stage microscopy (HSM) integrates microscopy and thermal 
analysis to provide solid-state characterization, especially for 
temperature assessment. Stability in both solid and liquid states is 
crucial for orally administered dosage forms. Thermal and relative 
humidity stress (RHS) are used to assess the potential for solid-state 
modifications. High-performance liquid chromatography (HPLC) is 
often combined with thermal techniques and powder X-ray 
diffraction (PXRD) for degradation testing. 

Distinguishing between salt and cocrystal can be challenging. Solid-
state NMR and/or IR spectra can aid in estimating proton transfer, 
though interpretation in a specific system may be difficult. SCXRD 
remains the most reliable method for identifying salt or crystals, 
while others are indirect and prone to error [41]. 

Application of drug cocrystals in the realm of cancer treatment 

Teva Pharmaceuticals has recently combined fumaric acid with the 
anticancer medication ibrutinib, commonly prescribed for chronic 
lymphocytic leukaemia, to create a cocrystal. This innovative blend, 
demonstrated to be more stable while maintaining comparable 
solubility to the original medication, presents ample opportunity for 
further cocrystal development. Researchers have successfully 
improved the physicochemical properties of numerous anticancer 
medications through the creation of various cocrystals. These 
cocrystals often incorporate carboxylic acids, polyphenols, carboxyl 
amides, and amides as co-formers due to their similar pKa values. 
Some anticancer medications, such as paclitaxel, exhibit zwitterionic 
properties. The majority of these medications are either mildly basic 
or weakly acidic [19]. 

The pKa rule of 3 suggests that cocrystal formation is facilitated 
when the pKa values of the drug and co-former fall within a range of 
0 to 3. Using the ∆pKa rule, da Silva and colleagues synthesized 
cocrystals of 5-fluorocytosine with various co-formers, including 
terephthalic acid, benzoic acid, adipic acid, succinic acid, and malic 
acid [42]. 

In another study, Chenxin et al. investigated two distinct co-formers 
for palbociclib, utilizing orcinol and resorcinol. Palbociclib-
resorcinol cocrystals exhibited enhanced powder dissolution 
compared to pure palbociclib. However, a notable drawback was 
observed: while these cocrystals improved the drug's solubility, they 
also increased its bioavailability [43]. 

 

Table 1: A list of anti-cancer medication cocrystals that have been described, along with cocrystal synthesis methods and enhanced 
properties from pure API 

Anti-cancer drugs Co-formers  Preparation techniques Enhanced parameters from pure 
drug 

Reference 

5-Fluorouracil Ferulic acid Solvent assisted co-grinding Improved solubility and 
permeability 

 [44] 

5-Fluorouracil Proline Solvent evaporation technique 
and Liquid assisted grinding 

Improved solubility, permeability  [45] 

4,40–ethylene bis 
pyridine 

Flavonoids Solvent Evaporation method Improved dissolution behaviour 
and anti-tumor activity 

 [46] 

5-Fluorouracil Succinic acid, Malic acid 
Cinnamic acid, and Benzoic acid 

Neat grinding and slow solvent 
evaporation 

Improved anticancer activity  [47] 

6-Mercaptopurine 
monohydrate 

2,4-Dihydroxybenzoic acid and 
Hydroxybenzoic acid 

Slurry reactive crystallization Improved solubility and stability  [48] 

Axitinib Glutaric acid Solvent evaporation technique Improved solubility and stability  [49] 
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Drug-drug cocrystals (DDC) 

Drug-drug cocrystals represent a novel class of solid forms 
comprising two or more active pharmaceutical ingredients (APIs). 
They present a promising solution to the challenges associated with 
traditional combination therapies. DDCs offer potential as a solid-
state platform for dual drug delivery, altering the physicochemical 
properties of constituent medications. Compared to other 
combination approaches, DDC technology can enhance API 
characteristics such as bioavailability, stability, and lifecycle 
management while potentially improving dissolution rates [50]. 

In a study by Carmen [51], a cocrystal of celecoxib (CTC) and 
tramadol hydrochloride was examined. Dissolution trials revealed a 
slower release of tramadol hydrochloride and an increased intrinsic 
dissolution rate (IDR) of celecoxib in the cocrystal. Comparative 
pharmacokinetic analysis with open combinations and single-entity 
reference products showed a favourable change in clinical profile. 
Celecoxib was absorbed more rapidly from CTC than tramadol, 
resulting in a decreased peak plasma concentration (Cmax). Phase II 
clinical trials demonstrated superior analgesic efficacy of CTC over 
tramadol and celecoxib in treating moderate to severe pain post-
dental extraction involving bone removal. Additionally, this DDC 
formulation offers additional intellectual property protection, 
potentially extending the patent life of both tramadol and celecoxib.  

CONCLUSION 

In recent years, cocrystals have garnered significant attention from 
scientists owing to their perceived low risk, affordability, and 
multifaceted advantages. Despite this, the body of research literature 
on cocrystal remains relatively sparse, and commercially available 
cocrystal are in short supply. Pharmaceutical researchers face 
challenges in predicting cocrystal development, understanding 
supramolecular interactions, and elucidating cocrystal association 
and dissociation patterns. Overcoming these challenges requires the 
development of novel crystallization technologies and more efficient 
screening protocols. Additionally, expanding cocrystals to include 
drug-nutraceutical combinations could unlock new possibilities for 
drug combinations and innovative medication applications. This 
exploration has explored various formulation strategies and 
therapeutic implications, highlighting the potential of cocrystals to 
enhance drug solubility, bioavailability, and stability, thus pushing 
the boundaries of conventional pharmaceutical formulations. 
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