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ABSTRACT 

Objective: Identifying new inhibitors of Epidermal Growth Factor Receptor (EGFR) by virtual screening using a pharmacophore model followed by docking.  

Methods: A pharmacophore model was developed using a dataset of 77 chemically diverse EGFR inhibitors using PHASE. Statistically valid Three 

Dimensional Quantitative Structure Activity Relationship (3D-QSAR) equations were generated for the pharmacophore model. This was followed by 

database screening to obtain probable hits. Docking of the probable hits into the crystal structure of EGFR was used as a second filter. Docking 

studies were carried out using GLIDE. Calculation of ADME properties of the probable hits arising out of docking further reduced the number of hits.  

Results: A five-point pharmacophore was generated for EGFR inhibitors reported in literature. The pharmacophore indicated that the presence of 

two aromatic ring features (R), one acceptor feature (A), one donor feature (D) and one hydrophobic feature (H) is necessary for potent inhibitory 

activity. The generated pharmacophore yielded statistically significant 3D-QSAR model, with a correlation coefficient r2 of 0.9905 and q2 of 0.8764. 

Virtual screening using the best pharmacophore model resulted in 372 hits. Docking studies as a second filter reduced the hits to 8. Application of 

drug-likeness as a third filter gave 6 leads. 

Conclusion: 6 leads with satisfactory pharmacokinetics properties were identified as potential EGFR inhibitors. This study may facilitate 

development of some new potential EGFR inhibitors.  

Keywords: EGFR inhibitors, 3D-QSAR, Pharmacophore, Docking, Virtual screening. 

 

INTRODUCTION 

A majority of the therapeutically used anticancer agents are 
associated with a major drawback of being nonspecific and non-
targeted in their action. However, advances in biochemistry and 
molecular biology have lead to identification of an array of pathways 
which are disregulated in cancer [1]. Targeting disregulated 
pathways in an attempt to control cancerous growth is an approach 
which is proposed to be less toxic to the normal cells. The epidermal 
growth factor receptor (EGFR) is a member of the receptor family of 
tyrosine kinases [2]. Receptor tyrosine kinases are involved in a 
range of cancer cell behaviors, including excess growth, invasion and 
blood vessel formation [3]. EGFR is known to be over-expressed in 
several human solid tumors [4]. Therefore, EGFR has received much 
attention as a target for anticancer drugs [5, 6]. Erlotinib, Gefitinib 
and Lapatinib are some of the important drugs belonging to the class 
of EGFR inhibitors in clinical practice [7, 8]. 

Small molecules that inhibit the kinase activity of EGFR are of 

considerable interest as new therapeutic antitumor agents for the 

treatment of EGFR mediated cancers. These molecules act by 

binding, either reversibly or irreversibly, to the C-terminal tyrosine 

kinase domain of EGFR. Anilinoquinazolines are among the most 

explored compounds reported as EGFR inhibitors [9, 10]. These 

compounds, however, may not be very specific for inhibiting EGFR 

mutants because of their size and pattern of H-bonding interaction. 
This calls for exploration of other classes of compounds.  

Pharmacophore modeling is considered as one of the important 

approaches used in the ligand-based drug discovery [11-13]. A 

pharmacophore model is a very useful tool for the screening of the 

database, and if combined with docking at a later stage, it can 

combine an advantages of both ligand-based and structure-based 

approaches for drug discovery. In view of these facts, the present 

study involved development of pharmacophore model, QSAR 

equations and use of these data for the screening of commercially 

available databases in search of novel chemical scaffolds.  

MATERIALS AND METHODS 

Selection of dataset 

A total of 77 EGFR inhibitors (table 1) reported in the literature [14] 

belonging to different chemical classes were used as a dataset for 

present pharmacophore modelling studies. The activity values were 

expressed as pIC50 ranged from 4 to 9 spanning five orders of 

magnitude. The ligands were considered as actives if pIC50 value was 

greater than ≥8.5 and considered as inactives if pIC50 value was ≤ 5. 

This resulted in a set of 23 highly active molecules and 17 inactive 

molecules. The dataset was divided into a training set (54 

compounds) and a test set (23 compounds; table 1). Since the 

usefulness of the QSAR model depends on the diversity of structures 

and on effective spanning of the activity range, training set was 

selected after considering these parameters. The inhibitor, Erlotinib 

(Compound No.3), was also included in the training set. 
 

Table 1: Structures and biological activities of training and test set compounds 

Compound No. Structure Actual pIC50 Predicted pIC50 Residual 
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-0.265 

 

(T) indicates compounds in test set 
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Generation of common pharmacophore hypotheses 

PHASE, version 3.3, Schrodinger, LLC, New York, NY, 2011 

implemented in the Maestro 9.3 software package was used to 

generate pharmacophore and three-dimensional quantitative 

structure–activity relationship (3D-QSAR) models for EGFR 

inhibitors. The two-dimensional (2D) chemical structures of the 

compounds were sketched in Maestro graphical interface and 

converted into corresponding standard three-dimensional (3D) 

structures using the best conformation model generation method 

with OPLS-2005 force field and mixed Monte Carlo multiple 

minimum/low mode (MCMM/lMOD) search algorithm to reduce 

redundant conformers. Conformations with energy higher than the 

global minimum by 10kcal/mol were rejected. Whenever the 

structure contained a chiral carbon, all possible isomers were 

generated for the study.  

A set of six built-in pharmacophoric features including hydrogen-bond 

(H-bond) acceptor (A), H-bond donor (D), hydrophobic group (H), 

hydrophobic aromatic rings (R), positively ionizable group (P) and 

negatively ionisable group (N) are provided in Phase. This set of features 

was used to generate pharmacophoric sites for all the compounds. 

Various pharmacophore hypotheses were generated by taking into 

consideration active compounds using a tree-based partitioning 

technique that groups together similar pharmacophores based on their 

intersite distances. A tree depth of four was used in the present work. 

The terminal box size was 1 A °. The generated hypotheses were 

subjected to a stringent scoring process. The hypotheses which survived 

the scoring process were taken up for building QSAR models. Scoring 

with respect to actives was conducted using default parameters for site, 

vector, and volume terms. 

Building QSAR models 

Phase provides the means to build 3D-QSAR models for a set of ligands 

which are aligned to a selection of hypotheses and to visualize these 

models along with the ligand structures and the hypotheses. The QSAR 

models were developed for ligands belonging to the training set with a 

range of activities. The molecules of the training set were placed in a grid 

box of cubes, with each cube dimension corresponding to 1A °. Each cube 

was allotted a binary number based on the presence or absence of the 

pharmacophoric features present in it. This representation was then 

used to generate a 3D-QSAR model using partial least squares (PLS) 

method. All hypotheses successfully generated and scored were then 

used to build pharmacophore-based 3D-QSAR models with grid spacing 

1A °, random seed value of one, and 5 PLS factors. The quality of the 

generated QSAR models was assessed by examining the associated 

statistical parameters such as standard deviation (SD), root mean square 

error (RMSE), variance ratio (F) and correlation coefficients: r2 and q2. 

Validation of pharmacophore and 3D-QSAR models 

The generated 3D-QSAR models were validated by leave-one-out 

method and prediction of activities of the test set compounds using 

the QSAR model. Result of the QSAR validation was also included as 

criterion for selection of best pharmacophore hypothesis. 

Database screening using pharmacophore hypothesis 

The best pharmacophore hypothesis was used as a 3D query for 

screening ZINC database. The purpose of this screening was to 

retrieve potential hits suitable for further development. Conformers 

were generated for each molecule in the database using Confgen. 

The database screening was carried out using phase virtual 

screening protocol implemented in Schrodinger with Best/Flexible 

Search option. The molecules retrieved from the database mapped 

all the five features of the pharmacophore.  

Molecular docking  

These studies were done using GLIDE (Maestro, version 8.5, 

Schrodinger, LLC, 2008) software and the crystal structure of EGFR 

(PDB code: 1M17), complexed with 4-anilinoquinazoline inhibitor, 

Erlotinib. The crystal structure was cleaned by deleting the ligand 

and the cofactors. This was followed by adding hydrogen atoms in 

their standard geometry, adjusting the bond orders and formal 

charges. The crystal structure was then refined, and the geometries 

were optimized with the OPLS-2005 force field using standard 

protocol and parameters. The inhibitor was extracted from the 

complex and re-docked (fig. 1).  

The final docked conformation of the inhibitor was aligned to the 

original conformation and root mean square deviation (RMSD) 

calculated. RMSD value of 1.12 confirmed the accuracy of the 

docking program. The docking studies were carried out using extra 

precision mode of Glide using default parameters. The active site 

was defined by the generation of a grid box such that the co-

crystallized ligand occupied the center of the box. 

 

 

Fig. 1: Validation of docking protocol by re-docking 1M17 
associated ligand, Erlotinib into the active site of the receptor 

 

All the hits obtained from pharmacophore screening were subjected 

to molecular docking using standard precision mode of Glide which 

gave G-score value corresponding to each compound. The G-score 

value was calculated by taking into consideration the favorable van 

der Waals, coulombic, lipophilic and hydrogen-bonding interactions 

and penalizing for steric and buried polar clashes. Compounds with 

lower G-score were eliminated and the remaining compounds were 

subjected to extra precision docking. This was followed by 

interaction-based selection of 8 hits. 

Qik prop descriptors 

These hits obtained from the database were also subjected to further 

filter via Lipinski’s rule of five to identify compounds with potent 

EGFR inhibitory activity and favorable absorption, distribution, 

metabolism and excretion (ADME) properties. The ADME properties 

were calculated using QikProp. In the present study, QikProp was 

run in normal processing mode with default options. 

RESULTS AND DISCUSSION 

Pharmacophore model 

The active ligands were used to identify common pharmacophore 

hypotheses by following a tree-based partitioning technique that 

groups together similar pharmacophores according to their inter 

site distances. Six top-ranked five featured hypotheses were chosen 

for building QSAR equations (table 2).  
 

Table 2: Summary of phase 3D-QSAR statistical results of six top-ranked hypotheses 

Hypotheses SD r2 F RMSE q2 Pearson-R 
ADHRR.442 0.2491 0.9851 635.1 0.6786 0.7718 0.9206 

ADHRR.256 0.2131 0.9891 871.2 0.7893 0.6913 0.9008 

ADHRR.409 0.1641 0.9935 1475.9 0.6066 0.8177 0.9251 

ADHRR.187 0.1988 0.9905 1002.2 0.4994 0.8764 0.9507 
AADHR.359 0.2043 0.99 948.5 0.5982 0.8227 0.9307 

AAHRR.313 0.1952 0.9909 1040.1 0.6427 0.7954 0.9059 



The very first pharmacophore model for the ATP

inhibitors of EGFR was proposed [15] way back in 1999. This model 

highlights four important structural features, a hydrogen bond 

acceptor, a donor, a hydrophobic site and a ring. The crystal 

structure of EGFR tyrosine kinase domain, along with ATP

competitive inhibitor, 1M17 published later focuses on the acceptor 

forming a hydrogen bond with Met769 along with hydrophobic 

interactions. Other pharmacophores reported in the literature for 

EGFR inhibitors include AADHR reported for the class of 

phenylureas [16], AAADRR for pyrrolopyrimidines [1

for a diverse class containing anilinoquinazolines, 

thienopyrimidines [18]. All these pharmacophores 

importance of an acceptor and a ring structure apart from other 

hydrophobic interactions. 

3D-QSAR results 

With known experimental activities, a 3D-QSAR model was created 

for each hypothesis, using ligands that are aligned 

 

Fig. 2: Scatter plot for the predicted activity and actual activity values for EGFR inhibitors in 

 

The best predictive five featured hypothesis (ADHRR.187) 

developed in the present study consisted of one hydrogen

acceptor, one hydrogen-bond donor, one hydrophobic feature (

and two aromatic ring features. The pharmacophore hypothesis and 

inter-site distances between the pharmacophoric sites is depicted in 

fig. 3 and shown in table 3.  

 

Fig. 3: Intersite distance (Å) in the geometry of the 
pharmacophore hypothesis (ADHRR.187).

vectors represent acceptor feature, blue spheres 

represent donor feature, green spheres represent hydrophobic 
feature and orange rings represent aromatic feature

 

When the highest active compound was mapped on the generated 

hypothesis (fig. 4), the quinazoline nitrogen mapped on the acceptor 

feature, secondary amine nitrogen mapped on the donor whereas 

Fluorine mapped on the hydrophobic feature. A benzene 

quinazoline ring was mapped on the ring residues.
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for a diverse class containing anilinoquinazolines, thiazolo and 

All these pharmacophores highlight the 

ture apart from other 

QSAR model was created 

for each hypothesis, using ligands that are aligned to the associated 

pharmacophore on five points. Since the dataset 

significant diversity, a pharmacophore

developed which considered the sites on a molecule that is matched 

to the hypothesis. Statistical validity and robustness of the QSAR 

models can be evaluated using various parameters including SD, F, 

Pearson-R, r2 values of the training set and q

We started the evaluation of QSAR equations with a look at SD, r

and F values. These values are associated with training set results

Table 2 shows six pharmacophore hypotheses which indicated 

satisfactory results of the training sets.

which are associated with the test 

in the next step. A stringent criterion of 

and q2 values of less than or equal to 0.2 was applied to filter the 

hypotheses further. This resulted in 

ADHRR.256. The final filter of RMSE value 

pharmacophore model, ADHRR.187

predicted activity versus actual activity for training and test set, 

respectively, based on the best hypothesis ADHRR.187.

 
2: Scatter plot for the predicted activity and actual activity values for EGFR inhibitors in (a) Training set and (b) Test set

The best predictive five featured hypothesis (ADHRR.187) 

developed in the present study consisted of one hydrogen-bond 

bond donor, one hydrophobic feature (H) 

and two aromatic ring features. The pharmacophore hypothesis and 

site distances between the pharmacophoric sites is depicted in 

 

Intersite distance (Å) in the geometry of the 
87). Red spheres with 

spheres with vectors 
represent hydrophobic 

represent aromatic feature 

When the highest active compound was mapped on the generated 

nitrogen mapped on the acceptor 

feature, secondary amine nitrogen mapped on the donor whereas 

Fluorine mapped on the hydrophobic feature. A benzene ring and a 

mapped on the ring residues. 

Table 3: Distances of all pharmacophore hypothesis 
QSAR model 

Site 1 Site 2 
A2 D5 

A2 H6 

A2 R10 

A2 R11 

D5 H6 

D5 R10 

D5 R11 

H6 R10 

H6 R11 

R10 R11 

 

Fig. 4: Top ranked pharmacophore model mapped on the 
highest active compound (Compound 91)
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pharmacophore on five points. Since the dataset consists of 

significant diversity, a pharmacophore-based 3D-QSAR model was 

developed which considered the sites on a molecule that is matched 

to the hypothesis. Statistical validity and robustness of the QSAR 

models can be evaluated using various parameters including SD, F, 

values of the training set and q2 values of the test sets. 

We started the evaluation of QSAR equations with a look at SD, r2 

and F values. These values are associated with training set results. 

shows six pharmacophore hypotheses which indicated 

sults of the training sets. Pearson-R and q2values, 

which are associated with the test set, were taken into consideration 

. A stringent criterion of the difference between r2 

values of less than or equal to 0.2 was applied to filter the 

hypotheses further. This resulted in an elimination of hypothesis 

ADHRR.256. The final filter of RMSE value less than 0.5 gave the best 

pharmacophore model, ADHRR.187. Fig. 2a and 2b shows a plot of 

predicted activity versus actual activity for training and test set, 

respectively, based on the best hypothesis ADHRR.187. 

 
(a) Training set and (b) Test set 

Distances of all pharmacophore hypothesis sites of 3D-
model ADHRR.187 

Distance (A °) 
3.236 

6.807 

3.689 

4.035 

5.117 

3.68 

3.356 

8.763 

3.133 

6.561 

 
Top ranked pharmacophore model mapped on the 

highest active compound (Compound 91) 
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Database screening and docking 

The generated pharmacophore hypothesis was used as a 3D querry 
for searching the ZINC database. This resulted in identification of 
372 hits from the ZINC database. Docking was used as a second filter 
to arrive at probable hits. 

To validate the docking protocol, Docking began with redocking of the 

inhibitor from the co-crystallized ligand. The RMSD between the 

docked pose and the crystallized pose of the same ligand was found to 

be 1.12, thus validating the docking protocol. This was followed by 

docking of the hits obtained using pharmacophore screening into the 

crystal structure of EGFR (PDB code: 1M17). The criteria for selection 

of best 10 compounds out of the 372 hits were based on obtaining a 

good dock score (>7.0) along with the docked structure retaining most 

of the important interactions which are seen in the crystal structure. 

Hydrogen bonding interaction with Met769 was defined as the most 

important interaction [19] and the hits in which this interaction was 

absent were rejected. The procedure gave eight compounds which 

fitted in these criteria. Fig. 5 shows structures of the identified 

compounds from ZINC database and fig. 6 shows the docked images of 

the same. Table 4 shows interaction of these eight compounds with the 

active site of the tyrosine kinase domain of EGFR.  
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Fig. 5: Structures of ZINC database leads 
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Fig. 6: Two dimensional representations of lead molecules in their binding orientation in the active site of EGFR 

 

Table 4: Summary of docking results for 8 leads 

Compounda Glide score Interacting residues 
ZINC44012931 -7.86 Met769, Leu768, Gly772, Leu694, Leu820, Pro770, Ala719, Ile720, Ile765 

ZINC32650290 -7.20 Met769, Leu768, Gly772, Leu694, Leu820, Pro770, Ala719, Ile720, Ile765, Ile753 

ZINC32544573 -8.54 Met769, Asp831, Leu768, Gly772, Leu694, Leu820, Pro770, Ala719, Ile720, Ile765, Leu753 

ZINC017025205 -9.22 Met769, Asp831, Lys721, Thr830, Leu768, Gly772, Leu694, Leu820, Pro770, Ala719 

ZINC04822304 -9.48 Met769, Glu738, Thr766, Leu768, Gly772, Leu694, Leu820, Pro770, Ala719 

ZINC01680588 -9.94 Met769, Asp831, Thr766, Leu768, Gly772, Leu694, Leu820, Pro770, Ala719 

ZINC00611711 -7.16 Met769, Leu768, Gly772, Leu694, Leu820, Leu753, Pro770, Ala719, Ile720, Ile765 

ZINC12804309 -7.03 Met769, Leu768, Gly772, Leu694, Pro770, Ala719 

aLigand Ids for ZINC database 

 

Qik Prop descriptors 

To assess drug likeness of the identified compounds, these 

compounds were subjected to calculation of a variety of ADME 

properties. These included partition coefficient, water solubility, 

percent human oral absorption, permeation through the blood brain 

barrier, and cell permeability. The results as listed in table 5 indicate 

that compounds ZINC04822304 and ZINC01680588 show a 

significantly lower oral absorption. These compounds belong to the 

class of pyrrolopyrimidine and imidazopyrimidine respectively. Both 

these compounds contain a free amino group in their structures. The 

other identified hits belong to chemical classes of chalcone, 

pyrazolopyrimidine, anilinoquinazoline, imidazopyrimidine-2,4-

dione and benzofuranopyrimidine. 
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Table 5: ADME properties of the 8 lead molecules by using QikProp 

Compounda QPlogPo/wb QPlogSc QPlogBBd QPPCacoe QPPMDCKf % human oral absorptiong 

ZINC44012931 2.935 -3.181 -0.157 1995.746 2639.456 100 

ZINC32650290 3.273 -4.391 -0.123 2456.422 1306.837 100 

ZINC32544573 2.664 -4.842 -0.694 968.785 478.039 95.992 

ZINC017025205 -0.241 -1.949 -0.982 305.972 236.556 70.025 

ZINC04822304 -1.082 -2.127 -1.901 43.63 21.247 49.956 

ZINC01680588 -0.469 -2.402 -1.433 94.18 94.17 59.53 

ZINC00611711 0.62 -3.137 -1.328 173.587 74.535 70.658 

ZINC12804309 4.484 -5.399 0.306 5457.062 3096.815 100 

aZINC database ligand IDs, bPredicted octanol/water partition co-efficient log p (acceptable range: −2.0 to 6.5), cPredicted aqueous solubility; S in 

mol/l (acceptable range: −6.5 to 0.5), dPredicted BBB permeability (acceptable range: −3 to 1.2), ePredicted Caco-2 cell permeability in nm/s 

(acceptable range: <25 is poor and>500 is great), fPredicted apparent MDCK cell permeability in nm/s (acceptable range: <25 is poor and>500 is 

great), gPercentage of human oral absorption (<25% is poor and>80% is high). 

 

CONCLUSION 

In conclusion, we have developed a pharmacophore model for ATP-

competitive inhibitors of EGFR, using a diverse set of ligands. A 

QSAR model was developed using this pharmacophore hypothesis. 

The development of the pharmacophore model and QSAR model 

involved use of stringent statistical criteria coupled with knowledge 

of the structure of the receptor. This was then used for screening the 

ZINC database to obtain probable hits. The hits were further filtered 

by docking and calculation of ADME properties to arrive at six 

molecules with probable EGFR inhibitory activity.  
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