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ABSTRACT 

Objective: Genistein, an iso flavonoid has been shown to possess many biological activities including anti-inflammatory, antioxidant and anti-
angiogenic property. It has been shown to be protective in dampening diabetes induced retinal inflammation in vivo. Therefore, the purpose of the 
present study is to investigate the effect of genistein on glucose induced toxicity in cultured human RPE cells (ARPE-19).  

Methods: ARPE-19 cells were challenged with normal glucose (NG 5 mM) and high glucose (HG1 25 mM & HG2 50 mM) concentrations with or 
without genistein (20 µM) for 24 h. The mRNA expression of aldose reductase (ALR) and VEGF was measured by real-time PCR using SYBR green. 
Inhibitory effects upon ALR activity were performed. The VEGF levels of cell supernatant were estimated by sandwich ELISA. Cellular viability and 
mitochondrial function upon genistein treatment were assessed using dye exclusion method and MTT assay respectively.  

Results: Genistein at the studied concentration showed 93% of cell viability and no marked toxicity was observed on cell growth. ARPE-19 cells 
challenged with HG1 and HG2 showed (2.32) and (2.48) fold increase in ALR expression as compared to NG. Significant increase in VEGF165 

expression was observed in ARPE-19 cells with HG1 and HG2 as compared to NG. The genistein treated cells significantly reduced the mRNA 
expression of both ALR and VEGF165. No significant increase in VEGF level was observed in ARPE-19 cell supernatant with HG1 and HG2 
(220.68±5.24 and 228.96±7.19 pg/ml) as compared to NG (220.30±2.04 pg/ml), however, significant reduction was observed in response to 
treatment with genistein in HG1 and HG2 (155.51±9.33 and 122.85±4.76 pg/ml). Also ALR activity significantly reduced in genistein treated cells 
when compared with HG1 and HG2 concentrations.  

Conclusion: The results of the present study clearly demonstrate that genistein protects RPE cells from glucose toxicity. Genistein could be a 
prospective potent agent for treating complications linked with diabetes mellitus, such as diabetic retinopathy. 
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INTRODUCTION 

The retinal pigment epithelium (RPE), outermost layer of the retina 
plays vital role like nutrients transport from the vascular choroid, 
development of the blood–retinal barrier (BRB) and scattered light 
absorption [1, 2]. In diabetic retinopathy (DR) RPE cells involved in 
the pathologic pathway of neovascularization and retinal vascular 
permeability that leads to visual loss [3-5] through polyol 
accumulation, formation of advanced glycation end products (AGEs), 
oxidative stress and production of vascular endothelial growth 
factor (VEGF) [6-8]. In the polyol pathway aldose reductase (ALR) is 
the first rate-limiting enzyme which catalyzes the conversion of 
excess glucose to sorbitol. The accumulated sorbitol disrupts cellular 
homeostasis and depletes NADPH leading to osmotic swelling and 
oxidative damage [9], extracellular fluid within the retina, distorting 
the retinal structural design leading to breakdown of BRB and 
leakage in the RPE [10, 11]. The increased oxidative stress possibly 
raises the synthesis of diacylglycerol (DAG) followed by activation of 
the protein kinase C, which results in increasing the expression of 
endothelial nitric oxide synthetase (eNOS), endothelin-1 (ET-1) and 
VEGF [12-14]. 

Many studies have revealed that VEGF plays a prominent role in 
the angiogenesis in eye. The human VEGF gene makes up to five 
different isoforms having amino acid at different positions (121, 
145, 165, 189 and 206 amino acids) that code for VEGF proteins 
[15, 16]. Among these VEGF165 is the principal molecular species 
produced by a range of normal and transformed cells [3, 17]. It is 
also postulated that some VEGF are important for the normal 
physiological homeostasis of the eye, and it can be useful to 
diminish VEGF in these pathologies without abolishing its 
expression [18, 19]. 

Soybeans (Glycine max) enclose massive amounts of the isoflavones 
genistein and daidzein. Genistein (4’, 5', 7'-trihydroxyisoflavone) is a 
strong antioxidant and tyrosine kinase inhibitor [20, 21]. Genistein 
offers protection against a number of diseases such as cancer, 
diabetes, cardiovascular diseases, post-menopausal disturbances 
and osteoporosis [22-24].  

Previous studies on experimental animals have shown that genistein 
has excellent antidiabetic, anti angiogenic and anti-inflammatory 
properties [25-27] and is beneficial in preventing and treating 
ocular toxicity associated with high glucose. The main objective of 
the present study to investigate the effect of genistein on high 
glucose induced ALR and VEGF expression in cultured human retinal 
pigment epithelial cells (ARPE-19). 

MATERIALS AND METHODS 

Human RPE cell cultures 

ARPE-19 cells were grown in DMEM/F12 (1:1 mixture of Dulbecco’s 
modified Eagle’s medium and Ham’s F12; Gibco-Life Technologies, 
Rockville, MD, USA) and 10% Fetal bovine serum (Gibco-Life 
Technologies, Rockville, MD, USA) and Penicillin-streptomycin 
(containing 10,000 U/ml penicillin and 10 mg/ml streptomycin; 
Penicillin-streptomycin). Cell cultures were maintained in a 
humidified incubator at 37 °C with 95% air and 5% CO2. The medium 
was changed every other day. Cultures were dissociated using 0.05% 
(w/v) trypsin (Gibco-Life Technologies, Rockville, MD, USA) in 
phosphate buffered saline (PBS), pH 7.4 after its confluency. Then they 
were sub cultured at a splitting ratio of 1:4. Near-confluent, cells were 
challenged with normal (NG-5 mM), high (HG1-25 mM) and (HG2-50 
mM) glucose with or without genistein for 24 h. 
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Cell viability assay 

The effect of genistein on cell viability was assessed by dye exclusion 
method [28]. Briefly, serum starved ARPE-19 cells were exposed to 
various concentrations of genistein (5µg/ml-100 µg/ml) for 24 h. 
After the treatment, the cells were washed three times with ice-cold 
PBS. The cells were then dissociated with trypsin-EDTA and the 
resulting pellet was treated with trypan blue and live cells were 
counted using hemo cyometer. 

Cell viability percentage calculated by: (live cells/total no. of cells) x 100. 

Measurement of mitochondrial damage by MTT assay 

The mitochondrial damage by genistein was assessed using a 3-(4, 5-
dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay 
kit (In vitro toxicological assay kit Sigma, USA), which has been 
described previously [29]. ARPE-19 cells seeded in 96-well plates at a 
density of 1×104 cells/well were grown to 80% confluency. The cells 
were serum starved for 3 h and treated with different concentrations 
of genistein (5µg/ml-100µg/ml) in DMEM/F12 medium containing 
1% FBS for 24 h. After incubation, MTT (20 µl) was added and 
incubated for 3 h. The levels of formazan reaction product from each 
well were determined at 570 nm using the Spectramax M3 multiplate 
reader (Molecular Device, California, USA).  

RNA isolation and real-time PCR 

Total RNA was isolated from ARPE-19 cells challenged with NG, HG1 
and HG2 in the presence or absence of 50µg/ml Genistein for 24 h 
using Trizol Reagent (Sigma, USA). cDNA template from total RNA 
was synthesized using cDNA reverse transcription kit (High Capacity 
cDNA Reverse Transcription Kit, Thermo, USA). ALR, VEGF165 and 
GAPDH were amplified by gene-specific primers (Bioserve, 
Hyderabad, India). The sequences of primers (F): 5’-TTTTCCCAT 
TGGATGAGTCGG-3’ and (R): 5’-ACGTGTCCAGAATGTTGGTGT-3’ for 
human ALR (60bp); F: 5’ GCTACTGCCATCCAATCGAG-3’ and R: 5’-
TCTTTCTTTGGTCT GCATTCAC-3’ for human VEGF-165 (255bp) and 
GAPDH Primer (131bp) F: 5’-GTCTCCTCTGACTTCAACAGCG-3’ and 
R: 5’-ACCACCCTGTTGCTGTAGCCAA-3’ used as an internal control 
for experiment. ALR and VEGF165 expression was quantified by 
quantitative real-time PCR (ABI 7900 HT, CA, USA) using SYBR green 
(F-410L, Thermo, USA). The cycle parameters consisted of an initial 
denature step of 95 °C for 10 min followed by 40 cycles of 95 °C for 
15 s and 60 °C for 60 s. The PCR samples were analyzed with 1.2% 
agarose gel electrophoresis along with DNA ladder, stained with 
ethidium bromide and visualized below UV light. 

Effect of genistein on VEGF secretion by sandwich ELISA 

The quantity of VEGF secreted into the culture medium post exposure to 

different concentrations of glucose with or without genistein conditions 
was estimated using sandwich ELISA (VEGF ELISA Duoset, R&D System, 
USA) according to the manufacturer’s protocol. 

ALR activity 

ALR activity was assessed spectrophotometrically as described 
previously by Reddy [30]. The assay was carried out in UV 
transparent 96 well plate with 300 µl capacity. The assay mixture 
contained 100 mM ALR buffer (135 mM sodium phosphate buffer 
(pH 7.0), 0.5 mM PMSF and 10 mM beta mercaptoethanol containing 
0.2 mM LiSO4, 5 mM DL-glyceraldehyde and enzyme preparation 
(Cell lysate). The reaction was initiated by the addition of 0.15 mM 
NADPH and the decrease in the optical density at 340 nm was 
recorded for 20 min. 

Statistical analysis 

All experiments were performed in duplicate. Values are expressed 
as means±standard deviation (SD) in the results and calculations. 
The data were analyzed by student’s t test for comparisons between 
groups using Prism 6 software; GraphPad. Values of p<0.05 were 
considered statistically significant. 

RESULTS 

Effect of genistein on cell viability and cytotoxicity 

In order to demonstrate the safety of genistein in RPE cells, we have 
carried out cell viability and toxicity assay after incubation with different 
concentrations for 24 h.  
 

 

Fig. 1: Effect of genistein on the viability of human RPE cells. 
The results are presented as the mean±SD (n=4). *P<0.05 vs. 

control
 

 

Fig. 2: Genistein inhibits HG induced ALR and VEGF expression at mRNA level. ALR and VEGF165 mRNA expression analyzed by RT-PCR (A) 
Melting Curve analysis from a real time PCR assay (B) The gel electrophoresis represent wholesome gene amplification of our interest without 

any primer dimer formation. (C and D) ALR and VEGF 165 mRNA expression was increased with high glucose and inhibited by genistein, Data are 
presented as mean±SD (n=3) *p<0.001 vs. NG; **P<0.0001 vs. NG; >>p<0.05 vs. HG1;>P<0.001 vs. HG2 with genistein treated cells 
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The results suggest that genistein does not significantly alter viability of 
RPE cells upto 50µg/ml. Genistein at 100µg/ml showed 14.4% toxicity 
by dye exclusion method (p<0.05) (fig.1). However, genistein at all 
studied concentrations did not show any cell toxicity by MTT assay (Data 
not shown). 

Effect of genistein on ALR and VEGF165 expression by real time PCR 

ALR expression was found to be 2.3 fold and 2.5 fold high in RPE 
cells challenged with HG1 and HG2 respectively. Genistein at studied 
concentration (50µg/ml) showed the marked reduction in ALR 
mRNA expression induced by HG1 and HG2 concentration (p<0.05).  

VEGF165 expression was found to be 1.7 fold increases in RPE cells 
challenged with HG1. Genistein showed marked reduction in VEGF 
mRNA expression with RPE cells challenged with HG1 and HG2 
concentration of glucose (p<0.05). 

Genistein inhibits HG induced VEGF secretion 

No significant increase in VEGF secretion with high glucose was 
observed for 24 h. The presence of genistein significantly reduced 
VEGF secretion under the given experimental conditions.  

Effect of genistein on ALR activity 

RPE cells were grown in various concentrations of glucose for 24 h 
and ALR activity was determined. At HG1 and HG2 concentrations, 
dose dependent increase in ALR activity was observed and these 
changes were restored by genistein treated cells (P<0.05). 
 

 

Fig. 3: (A) Genistein inhibits HG induced VEGF Secretion in 
human RPE cells. Data are presented as mean±SD of three 

experiments. *p<0.05 vs. NG; **p<0.005 vs. HG1; **p<0.001 vs. 
HG2 Compared with treated cells (B) Effect of genistein on % 
ALR inhibition, At HG1 and HG2 concentrations, there was a 

dose dependent in increase in ALR activity was observed and 
these changes were restored by genistein treated cells 

 

DISCUSSION 

Retinal pigmented epithelium constitutes an important component of 
blood-retinal barrier (BRB) where in conjunction with endothelial 
cells it provides tight junction which restrict the flow of solutes and 
fluid from the subretinal space across BRB to the choroid in retina. In 
diabetes, the integrity of BRB is disrupted due to damage to RPE by 
oxidative stress associated with high glucose level. Corresponding to 
damage of RPE; vascular leakage causes excessive water influx to the 
retina, which leads to DR and diabetic macular edema [31]. 

In the present experiments, we screened the protective effect of 
Genistein on high glucose induced ALR and VEGF expression in 
cultured human RPE cells. Genistein, an iso flavonoid that is extracted 
from the seeds of soya bean considered to be potent anti-diabetic 
agents, such as preservation of insulin β-cells and restoration of the 
glucose metabolic enzyme activities independently from its tyrosine 
kinase activity and intracellular cAMP accumulation, which 
subsequently activates PKA [25, 27, 32, 33].  

Aldose reductase (ALR) is a cytosolic enzyme which is responsible 
for conversion of blood glucose into fructose. During hyper glycemic 

condition, the increased glucose level enhances the activity of ALR 
by increasing glucose flux through this pathway. The increased 
expression of ALR under hyper-osmotic stress was subsequently 
reported in cultured human retinal pigment epithelial cells. In fact, 
ALR mRNA is highly expressed in the rat lens, retina and sciatic 
nerve, the major target organs of diabetic complication. Increased 
activity of ALR results in decreased NADPH/NADP+ratio, which has 
impact on antioxidant enzyme. The decreased activity of the 
antioxidant enzymes causes oxidative stress under high glucose 
conditions followed by increased formation of advanced glycation 
end products (AGEs). They cause pathological changes by trouble 
making protein function and interfering with cellular receptors [8, 
34, 35]. 

ALR inhibitors, such as ARI-809, TMG, minal restat, and epalrestat, 
have been shown to prevent or reverse early abnormalities 
associated with diabetes, especially eye disease, in animal models 
[36-38]. Many natural compounds have been tested for ALR 
inhibitory activity. In addition to its antioxidant properties, 
genistein, a tyrosine kinase inhibitor, has an inhibitory effect on the 
formation of advanced glycation end products [21, 39]. 

Our results show that genistein suppresses high glucose induced 
ALR expression and ALR Enzyme secretion by inhibiting the action 
of ALR and increases the level of cellular antioxidant. Therefore, 
genistein mediated inhibition of ALR and increases in antioxidants 
levels may help to prevent high glucose induced diabetic vision loss. 
However, Kim et al. [40] reported that genistein significantly inhibits 
xylose induced lens opacity, ex vivo, via inhibition of ALR and its 
antioxidant effects. 

VEGF is recognised as a major contributor to the development of 
diabetic retinopathy. The protein iso forms of VEGF vary in length 
from 111 to 206 aa (VEGF111, 121, 145, 148, 165, 183, 189 and 
206). Among these isoforms, VEGF165 is believed to be highly 
associated with ocular leakage and neovascularisation [41]. 

Stimulated by hyperglycaemia and oxidative stress, VEGF was 
expressed by vascular endothelial, retinal pigment epithelial, Müller 
glial cells, pericytes and astrocytes as well as retinal neurons [42, 
43], highlighting its multiple pathological functions in diabetic 
retinopathy. 

Hyperglycaemia-induced ischemia responsible for the production of 
a DNA binding protein called hypoxia-inducible factor 1 (HIF-1). 
HIF-1 binds to the VEGF gene and initiates the transcription process. 
This leads to the generation and accumulation of VEGF mRNA by 
both increased mRNA transcription and decreased mRNA 
degradation [44, 45], eventually leading to the intracellular 
accumulation of VEGF molecules. VEGF levels were also found to be 
markedly elevated in diabetic rat retinas and patients (plasma, 
vitreous, excised proliferative membranes) with diabetic 
retinopathy [42, 46, 47]. 

Activation of protein kinase C and phosphorylation of occludin, both 
induced by VEGF by altering retinal capillary permeability by 
increasing the phosphorylation of proteins involved with tight 
junctions such as zonula occludens [48]. The VEGF induction 
activates mitogen-activated protein (MAP), resulting in endothelial 
cell proliferation. This cascade coincides with the activation of the 
phophatidylinositol 3-kinase (PI3)/Akt pathway after VEGFR-2 
induction [49]. Activation of VEGF-R2 receptors on the apical surface 
of the RPE is responsible for the VEGF-induced increase in epithelial 
permeability which result breakdown of the blood-retinal barrier 
(BRB), angiogenesis [50].  

Results from these studies demonstrate that the pathological 
response from VEGF is blocked by the protein tyrosine kinase 
inhibitor, genistein. However, genistein showed significantly 
reduced VEGF levels; indicative of potent anti-angiogenic property 
of genistein which is in conformity with earlier work [50, 51].  

CONCLUSION 

In conclusion, ALR and VEGF expression increased in human RPE 
cells treated with HG1 and HG2. However, HG induced ALR enzyme, 
VEGF secretion and mRNA expression of ALR and VEGF were 
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inhibited by pretreatment with genistein. The inhibitory effect of 
genistein on ALR and VEGF expression is mediated by inhibition of 
the AGEs and PKC signaling pathway.  
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