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ABSTRACT 

Objective: The aim of this study is to synthesis zinc substituted magnetite nanoparticles with higher values of saturation magnetization and testing 
its antibacterial activity.  

Methods: The particles of zinc substituted magnetite with the composition of ZnxFe3-xO4

Results: X-ray diffraction analysis showed that the nanoparticles formed in the present synthesis were crystalline (spinel type) in nature. The size 
of the synthesized nanoparticles was in the range of 3-13 nm obtained from TEM image. Magnetic measurements at 300 Кhavede monstrated the 
super paramagnetic behavior of the nanoparticles. The synthesized ZnMNPs40 nanoparticles exhibited antibacterial activity against bacterial 
strains like Bacillus subtilis, Escherichia coli, Staphylococcus aureus and antifungal activity. 

 (х = 0.0, 0.2, 0.3, 0.4, 0.5) were prepared using a chemical 
condensation method. The crystalline structure, morphology and the magnetic properties of the ferrite particles were studied by means of X-ray 
diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer. The synthesized ZnMNPs40 were tested for their 
antibacterial and antifungal activity by disc diffusion method. 

Conclusion: Zinc has been incorporated into the crystal structure of magnetite to enhance the saturation magnetization of nanoparticles. The 
synthesized ZnMNPs had a nanometric size and a superparamagnetic behavior, exhibited effective antibacterial property. 
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INTRODUCTION 

Nanotechnology is one of the most interesting areas of modern 
science. One of the most promising of nanomaterials is the magnetic 
nanoparticles (MNPs) of different compositions [1]. MNPs offer 
exciting opportunities in fundamental studies and technological 
applications, such as biomedical applications, bio processing and 
catalysts among many others [2-5]. Due to their unique properties, 
MNPs have been actively investigated as the component of targeted 
drug delivery systems [6-8]. 

Nanoparticles of magnetite are the most widely used sources of 
magnetic materials. Doping magnetite with transition metal 
elements (zinc, copper, manganese) allows the modification of 
important quantities such as saturation magnetization, optical 
properties, electroconductivity [9-11]. Zinc belongs to a class of 
microelements that is considered to play an important role in many 
vital biochemical reactions and physiological processes: growth and 
development of the cells, stimulation of the gene transcription and 
cell proliferation, slowing down the oxidation processes, 
optimization of the human immune system [12-16]. 

Zinc oxide nanoparticles are used as antimicrobial agent when 
incorporated into materials such as paints, textiles, plastics and 
personal care products, and can be added to the food to reduce the 
food poisoning effect by the various Aspergillus sp., which is legally 
approved [17-19]. Zinc oxide nanoparticles have shown the best 
antibacterial behavior compared to copper (II) oxide and iron (III) 
oxide nanoparticles [20, 21]. 

Therefore, to get more information about zinc ferrite nanoparticles 
(ZnO∙Fe2O3) and to improve their applications or develop new ones, 
careful studies related to their functionality, particle sizes and also 
their antimicrobial behavior are essential. In this work, zinc-doped 
magnetite nanoparticles are synthesized through co-precipitation 
method. This method may be the most promising one because of its 
simplicity and productivity. It is widely used for biomedical 
applications because of the ease of implementation and the need for 
less hazardous materials and procedures. The crystalline structure 
of the zinc-doped magnetite nanoparticles was studied by means of 
X-ray diffraction. 

Synthesis of magnetic nanoparticles 

MATERIALS AND METHODS 

Iron (III) chloride (FeCl3∙6H2O) and iron (II) sulfate (FeSO4∙7H2O) 
were purchased from Sinopharm Chemical Reagent Co., Ltd. 
(Shanghai, China). Zinc acetate Zn (CH3COO)2∙2H2

Ultrafine particles with the composition of Zn

O and sodium 
hydroxide (NaOH granules) were purchased from Beijing Chemical 
Company (Beijing, China). All chemicals with 99.9% of purity, which 
is used as received without further purification. 

xFe3-xO4 
(х = 0; 0.2, 0.3, 0.4, 0.5) were prepared by co-precipitating aqueous 
solutions of FeSO4, Zn(CH3COO)2 and FeCl3

2FeCl

 mixtures in an alkaline 
medium with maintaining the appropriate mole ratio according to 
Eq.(1): 

3+yFeSO4+xZn(CH3 COO)2+

Zn

(6+x+2y) NаOH → 

xFeyFe2O4+xNаCH3COO+yNа2SO4+6NаCl+(6+x+y) H2

In a typical procedure, 10 % by mass water solution of precursors 
(FeSO

O (1) 

4, Zn (CH3COO)2 and FeCl3

Characterization 

)freshly prepared were mixed 
together at heating. 0.1 M NaOH solution was added drop-wise with 
continuous stirring until complete precipitation of the black ferrite 
was achieved (pH 9–11). The reaction mixtures were maintained at 
85-90 °C for 4 h. This time was sufficient for the hydroxides to 
transform into spinel ferrite. After the system was cooled to room 
temperature, the precipitates were collected using magnetic 
separation and washed with distilled water until pH neutral, 
producing thus samples ZnMNPs. 

The X-ray diffraction (XRD) patterns of the samples were recorded 
on a Siemens D500 X-ray powder diffractometer using copper 
radiation. Slow scans of selected diffraction peaks were carried out 
in the step mode (step size 0.03 °, measurement time 75 s). The 
crystallite size of the nanocrystalline samples was measured from 
the X-ray line broadening using the Debye-Scherrer formula. 
Magnetization measurements were performed in a vibrating sample 
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magnetometer at 300 K using a superconducting magnet to produce 
fields up 2 kOe. The samples were analyzed in a PEM-125k 
transmission electron microscope (TEM). 

Antimicrobial activity assay 

The in vitro screening of the antimicrobial activity was carried out by 
the broth-dilution method using a bacterial suspension of 
5×105colony-forming units (CFU)/ml McFarland density. The 24-
hour-old bacterial cultures were inoculated into nutrient broth 
supplemented with various concentrations of ZnMNPs. A control 
(nutrient broth and culture only) was also prepared. The 
antimicrobial activities of the as-synthesized nanoparticles were 
determined against microbial ATCC reference strains. In the present 
experiment, we used both Gram-positive and Gram-negative 
bacterial as well as fungal strains.  

The microorganisms used for the study were S. aureus ATCC 25923, E. 
coli ATCC 25922, P. aeruginosa ATCC 27853, B. subtilis ATCC 6633, C. 
albicans ATCC 885-653 strains. The suspensions were incubated at 37 °C 
for 24 h. After incubation, the bacterial growth was visually inspected 
and the lowest concentration of ZnMNPs at which no observable 
bacterial growth was taken as the minimum inhibitory concentration 
(MIC) value. The experiments were carried out in triplicate, and averages 
were reported. For the determination of the minimum bactericidal 
concentration (MBC) and minimum fungicidal concentrations (MFC), 
solid nutrient medium (Mueller-Hinton agar) was inoculated with one 
loopful of culture taken from the first broth cultures. While MBC assay 
plates were incubated for at 37 °C for 24 h, MFC assay plates were 
incubated at 25 °C for 3 days

 

Fig. 1: X-ray diffraction pattern of Zn

. After incubation, the different levels of the 
zone of inhibition were measured. 

RESULTS AND DISCUSSION  

The structural size effect can be revealed in the change of syngony 
and the constant of the crystalline lattice for finely-dispersed 
powder without changing crystal symmetry [22, 23]. Therefore, only 
the change of the lattice constant might be expected. The XRD 
pattern for zinc-doped magnetite nanoparticles are shown in fig. 1. 

xFe3-xO4

The character of diffraction patterns satisfies the powders single 
phase and indicates the fact that the crystals synthesized have a 
cubic structure of the spinel type ferrite belonging to Fd3m(227) 
space group. The crystallite size was estimated by the Debye-
Scherrer formula using the full width at half maximum values of the 
indexed peaks. The average crystallite size decreases from 9.2 to 5.8 
nm as the partial substitution of zinc decreases. Although all the 
samples were prepared under identical conditions, the crystallite 
size was not the same for all Zn concentrations. This was, probably, 
due to the preparation conditions, which gave rise to different rates 
of ferrite formation for different concentrations of zinc, favoring the 
variation of crystallite size. 

composition 

The value of the lattice parameters was calculated from diffraction 
patterns with the error of (3–4)·10-4

 

Fig. 2: Dependence of the crystalline lattice of ZnMNPs on the 
zincions concentration 

 

Å(fig.2). The lattice constant 
was found to be increasing with the increase in zinc concentration 
from x=0 to x=0.4. 

The lattice constant (a) increased with increasing Zn content, which 
suggested the formation of a compositionally homogeneous solid 
solution and was found to be within the range of the lattice 
constants of FeFe2O4 and ZnFe2O4. The ionic radii of Zn2+(0.82 Å) 
and Fe2+(0.83 Å) are almost the same. However, the tetrahedral 
interstitial site has smaller radii for both Fe3O4 (0.55 Å) and 
ZnFe2O4 (0.65 Å) than the octahedral interstitial site (0.75 and 0.70 
Å, respectively). Thus, the localization of Zn2+ions in the tetrahedral 
interstitial sites increases the lattice parameter. The observed 
nonlinear character of dependence a(x) can be due to the fact that 
the Zn2+

 

ions partially occupy the octahedral positions. In a cubic 
system of ferromagnetic spinels, the magnetic order is mainly due to a 
super exchange interaction mechanism occurring between the metal ion 
in the A and B sublattices. The substitution of nonmagnetic ion such as 
zinc, which has a preferentially A site occupancy results in the reduction 
of the exchange interaction between A and B sites. Hence, by varying the 
amount of zinc substitution, it should possible to vary magnetic 
properties of the samples [24]. The saturation magnetization for all the 
ZnMNPs is listed in table 1. 

Table 1: The parameters derived from X-ray diffraction pattern and saturation magnetization of the ZnMNPs 

Chemical composition Mol. mass, 
(g/mol) 

Lattice parameter 
a (Å) 

X-ray density 
(g/cm3

Crystallite size and 
microstrain, nm/% ) 

Saturation magnetization 
(emu/g) 

FeFe2O 232.0 4 8.3560(3) 5.2854 10.8/0.14 67.4 
Zn0.2Fe0.8Fe2O 233.8 4 8.3773(4) 5.2931 7.8/0.60 65.8 
Zn0.3Fe0.7Fe2O 234.7 4 8.3841(13) 5.2935 7.0/0.90 54.9 
Zn0.4Fe0.6Fe2O 235.6 4 8.3906(3) 5.3054 9.2/0.17 75.2 
Zn0.5Fe0.5Fe2O 236.5 4 8.3850(10) 5.3352 5.8/0.50 63.2 

 

The decrease in the particle size to the nanometer scale is accompanied by the decrease in the magnetization all ZnMNPs. The sample ZnMNPs40 
has the specific magnetization M = 75 emu∙g-1 in field H= 17 kOe (fig. 3). It is higher than magnetization of magnetite particles (FeFe2O4) with the 
same size [25]; i.e., the substitution of zinc ions for iron ions made it possible to increase the magnetization of the nanoparticles. By using the co-
precipitation method at room temperature, it is easy to prepare ZnMNPs nanoparticles with an approximate size of 9 nm. The results showed that 
the crystallite and average particle size of the ZnMNPs were dependent on the concentration of zinc ions. 
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Fig. 3: The fragment of the hysteresis loop of the as-synthesized 
particles ZnMNPs40 

 

The magnetic measurement confirms that the synthesized particles 
exhibit superparamagnetic properties at room temperature. The 
magnetization curve for the ZnMNPs40 exhibits immeasurable 
values of coercivity field and remnant magnetization (fig.3). 

Fig. 4 shows, the TEM image of the particles and their size 
distribution obtained with a statistic of ~400 particles for the 
composition with zinc concentration 40 % (ZnMNPs40). The 
distribution is close to symmetrical, the values of d lie in the range of 
3–13 nm, and the average value is ~8.5 nm. In this case, 80% of the 
particles have the sizes of 6.0–10.0 nm, which agrees with the result 
obtained by X-ray diffraction. 

The antimicrobial activity of the ZnMNPs40 has been studied on 
strains belonging to common bacterial pathogens, that is, the Gram-
negative, Pseudomonas aeruginosa, Escherichia coli, Gram-
positive Staphylococcus aureus, 

 

Bacillus subtilis and fungus. The 
sample of ZnMNPs40 was found to be active against the test 
organisms with varying values of MIC (table 2). 

Fig. 4: TEM image and particle size histogram of synthesized 
nanoparticlesZnMNPs40 

 

The significant inhibitory effect was observed against Escherichia coli 
(gram negative), and Staphylococcus aureus, Bacillus subtilis (gram 
positive) bacteria and fungus (table 2). It was found that the 
ZnMNPs40 exhibited antibacterial activity against E. coli, S. aureus, B. 
subtilis and antifungal activity with MIC, 62.5 μg/ml, and MBC of 125.0 
μg/ml. The nanoparticles were found to be bacteriostatic and 
fungistatic in action. Similar activity observations have been made for 
nanoparticles of zinc oxide [20, 26]. The probable mechanism of the 
antimicrobial action of ZnMNPs involves the binding of Zn2+

Zinc oxide nanoparticles potentiate bactericidal efficacy of macrolides, 
tetracyclines and beta lactum antibiotics [29]. Future studies should 
investigate the effect of ZnMNPs on the antibacterial activity of different 
antibiotics and the applicability of these nanoparticles for magnetic 
targeted drug delivery system will also be investigated. 

ions to the 
functional groups of proteins and enzymes, which causes inactivation 
and inhibition in cell processes. Zinc ions cause destruction of the 
bacterial cell wall, degradation and lysis of the cytoplasma; leading to 
cell death. ZnMNPs with the size 9 nm have a large surface area, thus 
their bactericidal efficacy is enhanced compared to largersized 
particles. For the zinc nanoparticles system, studies [26-28] showed 
that zinc binds to the membranes of microorganisms, similar to 
mammalian cells, prolonging the lag phase of the growth cycle and 
increasing the generation time of the organisms so that it takes each 
organism more time to complete cell division. 

 

Table 2: Antimicrobial activity of ZnMNPs40 nanoparticle 

Pathogen Concentration (µg/ml) Observation MIC (µg/ml) Zone of inhibition (mm)±SD (n=3) MBC/MFC (µg/ml) 
 control turbid  -  
 

(ATCC 25923) 
Staphylococcus aureus 

 

15.6 turbid  -  
31.2 turbid  -  
62.5 clear 62.5 -  
125.0 clear  9.5±0.1 125.0 
250.0 clear  11.2±0.1  
500.0 clear  12.0±0.5  

 control turbid  -  
 
Bacillus subtilis 
(ATCC 6633) 
 

15.6 turbid  -  
31.2 turbid  -  
62.5 clear 62.5 -  
125.0 clear  7.6±1.0 125.0 
250.0 clear  9.0±0.5  
500.0 clear  11±0.2  

 control turbid  -  
 
Escherichia coli 
(ATCC 25922) 
 

15.6 turbid  -  
31.2 turbid  -  
62.5 clear 62.5 -  
125.0 clear  12.1±0.2 125.0 
250.0 clear  14.0±1.0  
500.0 clear  17.0±0.7  

 control turbid  -  
 
Pseudomonas aeruginosa 
(ATCC 27853) 
 

15.6 turbid  -  
31.2 turbid  -  
62.5 turbid  -  
125.0 turbid  -  
250.0 clear 250.0 -  
500.0 clear  8.6±0.8 500.0 
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 control turbid  -  
 
Candida albicans  
(ATCC 885-653)  

15.6 turbid  -  
31.2 turbid  -  
62.5 clear 62.5 -  
125.0 clear  11.0±0.7 125.0 
250.0 clear  13.4±1.0  
500.0 clear  17.5±0.3  

 

CONCLUSION 

Co-precipitation method has been used to synthesize the magnetite 
system with the composition of ZnхFe3-хO4 (х=0–0.5). The lattice 
constant and particle size were found to be increasing with the 
increase in zinc concentration from x=0 to x=0.4. The resulting 
ZnMNPs exhibit superparamagnetic properties, depending on the 
particle size: the lower the particle size, the lower is the saturation 
magnetization. The synthesized ZnMNPs40 being combinations of 
superparamagnetic behavior, higher value of saturation 
magnetization with small particle size, appear to be of interest for 
biomedical applications. It was found that the ZnMNPs40 exhibited 
antibacterial activity against E. coli, S. aureus, B. subtilis and 
antifungal activity. The prepared ZnMNPs40 can be used for further 
studies and applications as drug delivery systems. 
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