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ABSTRACT 

Objective: The target of our work is the preparation of tolnaftate (TOL) loaded solid lipid nanoparticles (SLNs) as well as nanostructured lipid 

carriers (NLCs). 

Methods: The high shear homogenization method was chosen for the preparation of nanoparticles. The nanoparticle dispersions were prepared 

using Compritol 888ATO, Tefose 63, Miglyol® 812, Poloxamer188, and Tween80. Particle size (PS), zeta potential (ZP), polydispersity index (PDI), 

drug entrapment efficiency (EE) and in vitro release study were determined. Differential Scanning Calorimetry (DSC) analysis and morphological 

transmission electron microscopy (TEM) examination were conducted. A stability study for 3 mo was performed. 

Results: The results revealed that NLC and SLN dispersions had spherical shapes with an average size between 41.10±1.92 nm and 98.85±1.01 nm. 

High entrapment efficiency was obtained with negatively charged zeta potential with PDI value ranging from 0.251±0.012 to 0.759±0.028. The 

release profiles of all formulations were characterized by a sustained release behavior over 24 h and the release rates increased as the amount of 

liquid lipid in lipid core increased. Tolnaftate loaded NLC showed more stability than its corresponding SLN. 

Conclusion: It can be fulfilled from this work that NLCs may represent a promising carrier for tolnaftate delivery offering both sustained release 

and stability.  
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INTRODUCTION 

Topical drug delivery is one of the most exciting and challenging 

issues for the pharmaceutical scientist [1]. A long time ago, topical 

drug application was emerged to achieve several goals on different 

levels. However, several problems have appeared with the 

conventional topical preparations e. g. low uptake due to the barrier 

function of the stratum corneum leading to low absorption to the 

systemic circulation [2]. Recently, many studies have suggested 

novel drug delivery systems that are based on lipid nanoparticles. 

These lipid nanoparticles have the potential to increase cutaneous 

drug delivery of both hydrophilic and lipophilic drugs when 

compared to the conventional formulations [3,4]. Topical application 

of Solid lipid nanoparticles (SLNs) and nanostructured lipid 

carriers(NLCs) have been developed as novel systems that are 

composed of physiological lipid materials suitable for topical, 

dermal and transdermal administration [5]. 

Nowadays, Solid lipid nanoparticles (SLNs) are attracting a lot of 

attention as new colloidal drug carriers for topical use [6]. 

Nanostructured lipid carriers (NLCs) have been developed to rise 

above the drawbacks of SLNs, for example, drug leakage during 

storage and inadequate total drug load [7, 8]. NLCs are considered as 

the second generation (Müller et al., 2002). NLCs are based on a 

mixture of solid lipids with incompatible liquid lipids [5]. NLC shows 

many characteristics for application of pharmaceutics, e. g. controlled 

release of actives, targeting of drugs, and enhancing the amount of 

drug penetrating into the mucosa. SLN and NLC were investigated for 

several routes of administration, such as parenteral [6], oral [9] and 

topical routes [10] providing controlled release systems for many 

actives. SLN and NLC have been used in cosmetic and dermatological 

formulations [5]. Both SLN and NLC possess a lot of features that are 

advantageous for the topical route of administration [11, 12]. 

Tolnaftate (TOL) is a synthetic thio carbamate that is used as the 

topical antifungal agent. It inhibits the squalene epoxidase enzyme 

[13]. Squalene epoxidase is an essential enzyme in the biosynthetic 

pathway of ergosterol which is an important constituent of the 

fungal membrane. TOL is only active by topical application and 

inactive when administered via oral and intraperitoneal routes [14, 

15]. Although TOL is present in the market in several topical dosage 

forms e. g. cream, powder, spray and liquid aerosol, each of these 

dosage forms has its own disadvantages. These disadvantages 

include mild temporary stinging caused by aerosols and poor 

penetration noticed by creams and gels. This poor penetration needs 

a long time of therapy and decreases the patient compliance [16].  

The objective of the present work was to study the preparation, 

characterization and optimization of TOL loaded SLN and NLC in 

order to increase the release, stability and patient compliance of TOL 

dosage forms. 

MATERIALS AND METHODS  

Materials 

Tolnaftate was kindly donated by Misr Company for drugs and 

pharmaceuticals, Cairo, Egypt. Glyceryl behenate (Compritol® ATO 

888) and Glycol stearate (Tefose®63) was generously supplied by 

Gattefossée (Nanterre, France). Poloxamer 188 (Pluronic F68), 

Tween 80 and Miglyol® 812 were obtained from Sigma-Aldrich (St. 

Louis, USA). Dialysis tubing cellulose membrane (molecular weight 

cut-off 12,000-14,000 g/mole), was supplied by Sigma-Aldrich (St. 

Louis, USA). Methanol, Potassium dihydrogen orthophosphate, and 

citric acid were of analytical grade. 

Preparation of TOL-loaded SLNs and NLCs 

The high shear homogenization technique was used to prepare TOL-
loaded SLNs and NLCs followed by ultrasonication [17-19]. The lipid 
phase containing Compritol ATO 888 was melted to approximately 5 
°C above its melting point (74.09 °C), TOL was dispersed in the 
melted lipid. The aqueous phase was prepared by dissolving the 
surfactant in distilled water and heating up to the same temperature 
of the molten lipid. The aqueous phase was poured into the lipid 
phase, at a stirring speed of 25,000 rpm for 5 min using Heidolph 
homogenizer (Silent Crusher Homogenizer, Germany). The obtained 
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O/W emulsion was sonicated for 30 min and was cold down in the 
ambient resulting in the lipid phase recrystallization, and finally, the 
SLN was formed [20]. Different formulations have been studied by 
varying the concentration of both lipid and surfactant to study their 
effect on physical properties. After determination of the best 
concentration of lipid and surfactant, preparation of NLCs was 
carried out using the same method, by replacing 30% and 50% of 
the solid lipid with liquid Miglyol® 812.  

Characterization of TOL-loaded nano particles 

Drug entrapment efficiency  

The entrapment efficiency (E. E. %) was determined indirectly by 
measuring the concentration of the drug in the supernatant after 
centrifugation [21]. The unentrapped TOL was determined by 
adding 1 ml of TOL loaded nanoparticles to 9 ml methanol and then 
this dispersion was centrifuged at 9000 rpm for 30 min at-4 °C. The 
supernatant was collected, filtered through millipore membrane 
filter (0.2 µm) then diluted with methanol and measured 
spectrophotometrically at λ=256.8 nm. The entrapment efficiency 
was calculated using the following equation:  

E. E. % = 
Winitial�Wfree

Winitial
 x 100 

Measurement of particle size and poly dispersity index 

Particle size (PS) and poly dispersity index (PDI) were measured by 
photon correlation spectroscopy (PCS) using a Zetasizer (Zetasizer 
Nano ZS; Malvern), at a fixed angle of 90 ° at 25 °C. The aqueous SLN 
and NLC dispersions were diluted with distilled water before 
analysis. Each sample was measured in triplicate. 

Measurement of zeta potential 

The zeta potential (ZP) of SLN and NLC dispersions was measured at 
25 °C using a Zetasizer (Zetasizer Nano ZS; Malvern). The 
measurements were conducted in triplicate. 

Differential scanning calorimetry  

Thermal characteristics of selected SLN and NLC were determined 

by differential scanning calorimetry (DSC) (Shimadzu, Kyoto, Japan). 

SLN and NLC dispersions were lyophilized before DSC analysis using 

freeze dryer (VirTis Freeze Drying Equipment, Snijders Scientific). 

Samples containing 10 mg nanoparticle dispersions were weighed 

accurately into standard aluminum pans using an empty pan as a 

reference. DSC scans were recorded at a heating and cooling rate of 

10 °C/min. The samples were heated from 30-300 °C and cooled 

from 300-30 °C under liquid nitrogen. 

Transmission electron microscopy 

The morphologies of the SLN and NLC were examined by 
transmission electron microscopy (TEM) (CM12 Philips, Amsterdam, 
Netherlands). One drop of the diluted sample was stained with 2 % 
(W/V) phosphotungstic acid for 30 seconds and placed on copper 
grids with films for examination. 

In-vitro drug release of TOL from SLNs and NLCs  

The dialysis bag diffusion technique was chosen to perform the in vitro 

release studies [22]. The dialysis bag (molecular weight cut off 12000–

14000) was soaked in deionized water for 12h before use [23]. The 

cellulose bag was filled with the SLN and NLC dispersions equivalent 

to 2 mg of drug and tied at both ends and placed in a beaker containing 

50 mL of phosphate buffer (pH 5.5), temperature and speed were 

maintained at 32 °C and 100 rpm, respectively [24]. Samples were 

withdrawn at predetermined time intervals, and the same volume was 

replaced with fresh buffer to maintain the sink condition. Samples 

were analyzed at 256.2 nm UV spectrophotometrically. The 

cumulative percent of drug released was plotted against time. The 

order of the drug released from the different formulations was 

determined through analysis of the data using linear regression 

equations (zero order, first order or Higuchi diffusion model). 

Stability test for the optimized TOL-SLNs and NLCs 

The selected SLN and NLC formulations were stored in a sealed 

amber colored glass vials to be protected from light and water at 

refrigerator temperature (2-4 °C) in a dark environment. Physical 

appearance was assessed, and the formulations were analyzed with 

respect to drug entrapment efficiency, particle size and zeta 

potential after 1, 2 and 3 mo of storage and compared with fresh 

formulations.  

Statistical analysis 

Data was expressed as mean±SD. The results were statistically 

analyzed by analysis of variance (ANOVA) test using social package 

for statistical study software (SPSS 17®, SPSS Inc., Chicago, USA); P 

values less than 0.05 were considered as significant. 

RESULTS AND DISCUSSION 

Preparation of SLNs and NLCs 

Ten different SLN and NLC formulations produced by high shear 

homogenization method are presented in table 1. Various 

parameters were optimized by varying one parameter while keeping 

others constant. It is recognized that the stabilization of the disperse 

system can be reached by the employment of two surfactants of 

lipophilic and hydrophilic nature [23]. Tefose 63 and Poloxamer 188 

were chosen for the preparation of TOL loaded solid lipid 

nanoparticles as lipophilic and hydrophilic surfactants, respectively. 

The formulation F8 showing high entrapment efficiency was chosen 

for the production of NLC. 

Characterization of TOL loaded nanoparticles 

Entrapment efficiency  

Entrapment efficiencies of all SLNs and NLCs are presented in table 

2. Among the SLN formulations, increasing the concentration of 

Compritol ATO 888 from 3 % w/w to 5 % w/w at a constant amount 

of surfactant 2.5 % w/w results in an increase in entrapment 

efficiencies of TOL SLNs as shown in SLN2 and SLN4. This can be 

justified by increasing lipid concentration offer more space to 

encapsulate more drugs which decrease the drug partition in the 

outer phase [25]. As shown in SLN5 and SLN6, there is no significant 

increase in the entrapment efficiency after addition of Tefose 63 in 

the presence of Tween 80. However, a significant increase (p˂0.05) 

in the entrapment efficiency was observed in SLN8 upon addition of 

Tefose 63 in the presence of Poloxamer 188. This may be due to high 

HLB value of Poloxamer 188 than Tween 80 [26]. The higher HLB 

values may enhance the encapsulation efficiency depending on the 

reduction of interfacial tension and enhancement of solubilization of 

drug [27]. High entrapment efficiency was recorded for SLN8 (80.15 

%) compared to other dispersions. Depending on high entrapment 

efficiency of SLN8, NLC1 and NLC2 were prepared by replacing 30% 

and 50% w/w of Compritol ATO 888 by Miglyol 812. NLC2 

formulation showed highest entrapment efficiency (86.20±0.36%). It 

was found that the solubility of the drug is higher in liquid lipid than in 

solid lipid, which in turn increases the entrapment efficiency [28]. The 

presence of liquid lipid with solid lipid cause a reduction in the 

crystallinity and increasing imperfections in the crystal lattice leaving 

enough space to accommodate drug molecules, which in turn, enhance 

drug loading capacity and drug entrapment efficiency [29]. 

Particle size, poly dispersity index and zeta potential 

The mean particle size, poly polydispersity index and zeta potential 

of colloidal carriers are important characteristics of SLNs from 

which the stability of the compound loaded SLNs can be predicted. 

Average particles size, polydispersity, and zeta potential are shown 

in table 2. 

The results revealed that all the sizes of the SLN and NLC are in the 
nano-size range. Sizes ranged from 41.10±1.92 nm and 98.85±1.01 
nm. The results reveal that the particle size increase with increasing 
Compritol ATO 888 concentration from 2.5% w/w (SLN1 and SLN3) 
to 5%w/w (SLN2 and SLN4), this could be explained by the fact that 
homogenization efficiency decreases with increasing content of 
dispersed phase (lipid phase) [30]. When the concentration of the 
lipid exceeded 2.5% w/v with a fixed concentration of surfactants, 
there was insufficient surfactant available to coat the surface of all 
the lipid droplets, resulting in particle aggregation and increase in 
particle size [31]. The presence of Tefose 63 cause a decrease in the 
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particle size in the presence of Poloxamer 188 as shown in SLN7 and 
SLN8 compared to SLN4, however, his presence with Tween 80 
show an increase in the size as shown in SLN5 and SLN6 compared 
to SLN2. As shown in table 2 there is no significant difference in the 
particle size of NLC1 and NLC2 and their corresponding SLN7 and 
SLN8 respectively. 

The polydispersity index is a ratio providing information about the 
homogeneity of particle size distribution in the system. A PDI value 
lower than 0.3 indicates a homogeneous and monodisperse 
population [32]. For SLNs, PDI values ranged from 0.276±0.01 to 
0.759±0.02 indicating wide particle size distribution while PDI 
results for NLC were somehow lesser, indicating homogenous 
population as presented in table 2. The higher the polydispersity, the 
lower the uniformity of the vesicle size in the formulation [33]. 

The stability of colloidal dispersion is highly related to the zeta 

potential value [23]. The zeta potential values of different TOL-SLN 

and NLC formulations are presented in table 2. The results showed a 

relatively good stability and dispersion quality. The nano particles 

are thermodynamically unstable systems and for stability, the zeta 

potential value should be above+30 mV or below-30 mV [34]. 

 Usually, particle aggregation is less likely to occur for charged 

particles with high zeta potential (>30) due to electric repulsion 

which prevents aggregation of the particles [35]. For SLN3 and 

SLN4, the zeta potential data were-34.7±1.50 and-33.4±0.98, 

respectively. It was known that, The use of steric stabilizer favored 

the formation of stable nanoparticle dispersion [23]. Poloxamer 188 

provides a steric stability for maintaining the stability of SLNs [36]. 

 

Table 1: Composition of TOL loaded SLNs and NLCs 

Formulations Compritol ATO 888 (w/w %) Surfactant (w/w %) Liquid lipid (w/w %) 

SLN1  3 Tween 80(2.5%) - 

SLN2 5 Tween 80(2.5%) - 

SLN3 3 Poloxamer188 (2.5%) - 

SLN4 5 Poloxamer188 (2.5%) - 

SLN5 5 Tween 80(2.5%)+Tefose 63 (2.5%) - 

SLN6  5 Tween 80(2.5%)+Tefose 63 (5%) - 

SLN7 5 Poloxamer188 (2.5%)+Tefose 63 (2.5%) - 

SLN8  5 Poloxamer188 (2.5%)+Tefose 63 (5%) - 

NLC1 5 Poloxamer188 (2.5%)+Tefose 63 (5%) Miglyol® 812(30%) 

NLC2  5 Poloxamer188 (2.5%)+Tefose 63 (5%) Miglyol® 812(50%) 

 

Table 2: Particle size, Zeta potential, PDI and EE (%) of TOL loaded SLN and NLC (mean±SD, N=3) 

Formulations E. E. (%) PS(nm) ZP (mV) PDI 

SLN1 52.76±0.18 53.10±4.00 -22.5±1.06 0.519±0.06 

SLN2 64.38±0.96 73.93±3.45 -21.9±1.11 0.477±0.04 

SLN3 46.61±0.79 41.10±1.92 -34.7±1.50 0.759±0.02 

SLN4 64.54±1.19 72.99±4.22 -33.4±0.98 0.411±0.02 

SLN5 53.12±1.03 95.43±2.93 -22.6±0.98 0.276±0.03 

SLN6 64.66±0.56 98.85±1.01 -21.8±1.27 0.404±0.07 

SLN7 69.25±0.81 45.32±1.06 -22.1±1.23 0.697±0.06 

SLN8 80.15±0.72 47.40±2.53 -18.5±2.50 0.404±0.03 

NLC1 80.41±0.36 45.46±2.34 -22±1.01 0.271±0.02 

NLC2 86.20±0.36 44.56±0.52 -19.2±1.97 0.251±0.01 

 

Transmission electron microscopy 

The results of TEM imaging of TOL loaded SLN and NLC, which are 

shown in fig. 1A and 1B, indicate that the particles had nanometer-

size spherical shapes, and no drug crystal was noticed. fig. 1C 

represents the enriched shell model which might be explained by 

the significant difference between the melting points of the lipid 

and the drug. The drug-enriched shell model is characterized by 

the drug located at the interface of the lipid and the surfactants, 

either by fast solidification of the lipid matrix, or the successful 

competition of the drug for the interface due to solubility 

properties. According to this model of drug incorporation, a solid 

lipid core is formed when the recrystallization temperature of the 

lipid is reached [37]. 
 

 

Fig. 1: Transmission electron micrograph of (A) TOL loaded NLC; (B) TOL loaded SLN and (C) NLC micrograph representing the core and 

shell theory 

 

Differential scanning calorimetry (DSC) 

DSC is used to investigate the melting and recrystallization behavior 

of crystalline material like SLNs [38]. The physical state for NLC/SLN 

lipid matrix should be in the form of solid. DSC studies had revealed 

that all formulations possess melting point over 40°C which indicate 

the solid state at room temperature [39]. Thermogram of the pure 

drug, as well as of Compritol ATO 888, Tefose 63, compared with the 
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thermograms of lyophilized TOL loaded SLN and NLC formulae in 

the range of 10-350 °C are shown in fig. 2. TOL thermogram 

demonstrates a sharp endothermic peak at 112.2 °C. A sharp 

endothermic peak at 75.71°C was observed for Compritol ATO 888. 

Three consecutive endothermic peaks were shown for Tefose 63 

thermogram, namely at 35.43 °C, 46.43 °C and 58.29 °C. The 

endotherm of the drug was completely absent in the thermograms of 

TOL loaded SLN and NLC. The absence of the drug endotherm 

indicates either formation of an amorphous dispersion of TOL in the 

lipid matrix or that the drug was completely solubilized inside the 

lipid matrix of the SLN and NLC. For the less ordered crystal, the 

melting of the substance requires less energy than the perfect 

crystalline substance. It is reported that if a substance has high 

melting point value, this would suggest highly ordered lattice 

arrangement [40]. The amorphous form is thought to have high energy 

with an increase in the surface area leading to higher solubility, 

dissolution rates and bioavailability of the drug incorporated [41, 42]. 

Incorporation of TOL inside the lipid matrix led to more defects in the 

lipid crystal lattice. This caused a decrease in the melting point of the 

lipid, from 75.71 °C to 67.26°C and 61.87 °C in the final SLN and NLC 

formulations, respectively. These melting point depressions might be 

due to the small particle size (nanometer range), the high specific surface 

area, and the presence of a surfactant, i.e., these depressions may be due 

to the Kelvin effect [43]. Kelvin showed that small, isolated particles 

would show lower melting temperature than that of bulk materials.  
 

 

Fig. 2: DSC thermograms of pure TOL, bulk Compritol ATO 888, 

Tefose 63, SLN and NLC formulations 

 

Release study 

The in vitro drug release profiles of TOL loaded SLNs and TOL 

loaded NLCs are shown in fig. 3 and 4. In order to compare the drug 

release profile of the prepared SLN and NLC formulations, the 

release of TOL from the lipid particles was investigated for 24 h. The 

maximum amount of TOL released was found from the formulation 

SLN8 as shown in fig. 3. This increase may be attributed to the 

presence of Tefose 63 with a concentration 5%w/w compared to 

other formulations as increasing surfactant concentration leads to 

an increase in the percent of drug released. This can be explained by, 

as during particle production by the hot homogenization technique, 

drug partitions from the liquid oil phase to the aqueous water phase. 

As the solubility of the drug increase in water, the amount of drug 

partitioning to the water phase will increase. The higher the 

temperature and surfactant concentration, the greater is the 

solubility of the drug in the water phase, so the amount of drug in 

the outer shell increased and released in a relatively rapid way [44]. 

Due to the addition of liquid lipid in the NLC1 and NLC2 formulations, a 

significant increase in the amount of drug released in comparison to 

SLN8 as seen in Fig.4. This increase due to adherence of liquid lipid to the 

lipid matrix and decreases the diffusion path length of the lipid matrix 

[23]. In addition, the increase of Miglyol 812 from 30% to 50%w/w in 

NLC2 lead to an increase in the percent of drug released. This may be 

due to increasing of the percent of drug dissolved in the presence of 

liquid oil leading to increasing the amount of drug in the outer shell 

increased and released more. The release data are analyzed according to 

zero, first order and Higuchi equations which are widely used in 

determining the release kinetics of lipid nanoparticles. The amount of 

TOL released from both the SLN and NLC formulations studied shows a 

linear relationship with the square root of time. Therefore, the release 

rate of TOL is expressed following the theoretical model by Higuchi [45]. 

 

Fig. 3: In-vitro drug release profile of SLN formulations 

 

 

Fig. 4: In-vitro drug release profile of NLC formulations 

compared to SLN formulation 

 

Table 3: Stability profiles of TOL SLN and NLC 

Items for comparison Formulations 

SLN8 NLC2 

Entrapment efficiency (%)  

Fresh 80.15±.72 86.20±0.30 

1 mo 73.71±0.91 85.44±1.46 

2 mo 64.17±0.75 83.67±0.50 

3 mo 63.45±0.23 83.42±0.75 

Particle size (nm)  

Fresh 44.23±2.53 44.56±0.52 

1 mo 47.40±0.45 43.26±0.32 

2 mo 50.33±0.22 43.41±0.21 

3 mo 51.54±0.32 43.45±0.23 

Zeta potential (mV)  

Fresh -18.5±2.50 -19.2±1.97 

1 mo -17.3±0.54 -18.9±1.10 

2 mo -16.9±0.32 -18.3±0.35 

3 mo -16.9±0.45 -19.2±1.02 
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Stability test 

The stability study was done for 2 formulations: SLN8 and NLC2 

which were stored away from light and water in sealed amber 

colored glass vials. From the table 3, it was found that the 

entrapment efficiency and the particle size of freshly prepared SLN8 

showed a significant decrease (p<0.05) and a significant increase 

(p˂0.05) respectively compared to the stored SLN8 during the 3 mo. 

However, no significant change was recorded in the particle size and 

the entrapment efficiency in case of NLC2. 
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