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ABSTRACT 

Objective: The solubility of drug substances in water is one of the major factors taken into account in the formulation of oral solutions and 
parenteral forms. The present study aims to evaluate the utility of a mixture design in improving water solubility of celecoxib through a micellar 
system by the use of organic co solvent and nonionic surfactants that are well tolerated by the parenteral route. 

Methods: In our study, a design of experiments approach was tested using a mixture design of nonionic surfactants (Tween® 80 and Solutol®

Results: The results showed a significant solubility increase in most of tested mixtures. The analysis of the design space showed that the solubility 
of celecoxib varies very closely with the concentration of Tween

HS 15), 
an organic cosolvent (ethanol) and celecoxib. Solubility determination was based on the analysis of samples absorbance at 215 nm. A particles size 
measurement was conducted using a Dynamic Light Scattering at the point showing the maximum of solubility. 

® 80 associated with ethanol and Solutol®HS 15 in water. Run 19 containing 0.8% of 
celecoxib, 10% of ethanol, 2% of Tween® 80, 2% of Solutol®

Conclusion: Micellar solubilisation associating a cosolvent and nonionic surfactants seems to improve celecoxib solubility significantly. Mixture 
design provides maximum information about the effects and the proportions of each component from a limited number of experiments. 

HS 15 and water q. s. for 100% w/w improved celecoxib solubility by about 90 %, and 
showed an average particles size of 9.67 nm. 
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INTRODUCTION 

Today about 40% of newly developed active pharmaceutical 
ingredients are discarded in early development phases because of 
their poor water solubility and bioavailability [1]. Also, up to 70% of 
synthesized drug molecules present solubility problems [2]. 
Solubilization of poorly water-soluble drugs is a crucial step in the 
preparation of many commercially available oral solutions, 
parenteral, soft gelatin, and topical pharmaceutical formulations [3]. 

Many efforts to improve drugs solubility using capable vehicles to 
enclose hydrophobic drugs, such as inclusion complexes with 
cyclodextrins, microemulsions, dendrimers or liposome 
formulations have been established to date [4-7]. However, all these 
systems reveal disadvantages. For example cyclodextrins need 
special guest molecule structures for complexation. Likewise, 
microemulsion systems are characterized by high surfactant 
concentrations which mostly are not well tolerable. Also, those 
systems are often stable at only an explicit composition of 
surfactants, co-surfactants, oil and water [8]. 

Adding miscible organic solvents (or cosolvents) is the most 
common and feasible method to increase drugs solubility. Generally, 
one organic solvent is able to solve the solubility problem. However, 
in some cases, the addition of a second and even a third cosolvent is 
necessary to reach the desired drug concentration. Ethanol is one of 
the most important and common cosolvents in the pharmaceutical 
industry. It is used in many commercially available oral, parenteral, 
and soft gelatin formulations [3]. In our context, it has been shown 
that the aqueous solubility of celecoxib, rofecoxib, and nimesulide 
could be significantly enhanced by using ethanol as a cosolvent [9]. 

Likewise, surfactants play an essential role in many processes 
related to fundamental and applied science. They form colloidal-
sized clusters in solutions, known as micelles, which have particular 
significance in pharmacy since they are able to increase the 

solubility and bioavailability of poorly water soluble drugs [10, 11]. 
Beside these molecular conditions, the surfactant should also have 
an HLB-value above 10 (HLB = hydrophilic-lipophilic balance) to 
guarantee an adequate water solubility. 

Among these surfactants, Macrogol 15 Hydroxy stearate: Solutol®HS 
15 (which is a mixture of ~70% lipophilic molecules consisting of 
polyglycol mono-and diesters of 12-hydroxystearic acid and ~30% 
hydrophilic molecules consisting of polyethylene glycol) and 
polysorbate 80: Tween®

In this work, we tried to increase the solubility of celecoxib in water 
using surfactants and organic cosolvent. Celecoxib is the first specific 
inhibitor of cycloxygenase-2 (COX-2) [12]. It was given preference 
thanks to its popular use as an analgesic, antipyretic and anti-
inflammatory agent. It is also used as an adjunct to standard therapy 
to reduce the number of colorectal adenomatous polyps in patients 
with familial adenomatous polyposis [13]. It’s a class II drug of 
biopharmaceutical classification system, and its solubility is classified 
“low” according to this classification system [14]. However, in the 
formulation of liquid dosage forms, its solubility should be increased 
because of formulation volume limitation. According to the European 
pharmacopoeia 8.0, celecoxib is practically insoluble in water (one 
part in more than 10 000 parts of water), and its water solubility is 
0.0033 mg/ml at 25 °C according to the literature [15, 16]. Knowing 
that the standard therapeutic oral dose is 200 mg with a 
bioavailability of about 40%, the therapeutic dose by parenteral 
route is expected to be 80 mg per a vial of a convenient volume of 10 
ml [17]. However, an injection of 80 mg of celecoxib needs over 24 
liters of water for injection. 

 80 are two commonly used nonionic 
surfactants. They are widely used as formulation stabilizers and also 
as excellent solubilizers for parenteral use. 

For this reason, our study aims to evaluate the utility of a mixture 
design to determine the optimum composition of nonionic 
surfactants and co-solvent for obtaining a significant increase in 
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celecoxib water solubility, which would permit to reduce its volume 
of injection [18-28]. 

MATERIALS AND METHODS 

Instruments and reagents 

A sample of celecoxib (C17H14F3N3O2S) (4-[5-(4-methylphenyl)-3-
(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide) was 
obtained as a donation from Promopharm Pharmaceutical Company 
(Morocco). Nonionic surfactants, Solutol® HS 15 and Tween® 80, 
were purchased from BASF (Ludwigshafen, Germany) and Merck 
(Germany), respectively. Ethanol was purchased from VWR BDH 
Prolabo®

To carry out this study, we were based on the protocol previously 
used by our team to study the solubilization of acetaminophen using 
phospholipids and nonionic surfactants optimized by experimental 

design [29]. Indeed, to define the formulation space for the celecoxib 
mixtures, we tested an experimental design by using Design-
Expert® software, which is a statistical tool that enables calculation 
of factorial designs and drawing graphs for design evaluation.  

 (France). Freshly distilled and filtered water was used for 
the preparation of all solutions. 

In order to determine the maximum amount of celecoxib which can 
be solubilized by the mixtures of surfactants and cosolvent, 
absorbance measurements were carried out using UV/visible 
spectrophotometer (Shimadzu UV 2450, Japan). For size control in 
dispersion, a dynamic light scattering (DLS) by Zetasizer 3000HS 
(Malvern Instruments, France) was used. 

Experimental design 

The statistical study made by Design Expert 

In this article, a D-optimal experimental design (mixture design) was 
selected to evaluate and model the effects of surfactants and co-
solvent on enhancing the solubility of celecoxib in water. This has 
the advantage to provide maximum information from a limited 
number of experiments. The studied factors are: the amounts of 
ethanol (X

consisted in the analysis 
of variance (ANOVA), the R-Squared and precision. The significance 
of the model was estimated by applying ANOVA at the 5% 
significance level. A model is considered significant if the p-value is 
less than 0.05. The signal-to-noise ratio is determined to evaluate 
measurements precision and should be greater than 4. 

1 = D), Tween® 80 (X2 = B) and Solutol® HS15 (X3

To make this experimental design, we used a constant concentration of 
celecoxib at 0.8% w/w in all experiences. This concentration is about 
2400 times higher than the concentration usually soluble in water. 
Table 1 shows the ranges of these components for the determination 
of functional design space

 = C). 
Output parameters included drug solubility and size measurement. 

 

. The lower and upper limits of other 
components were determined to permit a solubilizing effect and a 
suitable concentration for parenteral administration [30-32]. 

Table 1: 

Components 

Lower and upper limits of surfactants and co-solvent used to make the experimental design 

Lower limit (%) Upper limit (%) 
X1 0 : ethanol 10 
X2: Tween® 0  80 2 
X3: Solutol® 0  HS 15 2 

With Design Expert®

 

 software, we experimented a matrix of 20 formulations at different ratios of all components (table 2). 

Preparation of the samples 

Mixed surfactant-co solvent system was prepared by a direct 
dispersion method according to methods previously described in the 
literature [33-35]. 

Pure surfactant stock solutions were prepared by accurately 
weighting the appropriate quantity of each component and diluting 
with distilled water to the final volume. Stocks solutions of water 
soluble surfactants were dispersed together in phosphate buffer 
0.067 M at pH 7.4 in conical vials, by weighting the appropriate 
amounts of surfactants and then adding the desired amounts of 
ethanol [36, 37]

The samples got equilibrated at 37 °C for at least 24 h in a 
thermostated water bath (GFL1083, Germany) [30, 38, 39]. The final 
concentration of surfactants (Tween

. The respective amounts are defined according to 
the mixture design already realized. 

® 80, Solutol®

Drug solubilization study was conducted at room temperature 
following direct dispersion method where the model drug, at a fixed 
concentration of 0.8% w/w, was mixed with the surfactants-cosolvent 
dispersion 

 HS 15) and 
cosolvent (ethanol) in each vial is varying from 0 to 14% w/w 
according to our mixture design. 

previously prepared. 

A “blank” for each sample was simultaneously prepared following 
the same protocol and comprising the same proportions of different 
components, excluding the drug. 

Vials were then shaken in a 
thermostated water bath at 37 °C for at least 24 h. Then, samples were 
stored during 24 h at room temperature to reach equilibrium. Excess 
amounts of the drug were then separated by 12 min centrifugation at 
12 000 rpm in a centrifuge (Industria EPF-12, Argentina). 

Solubility determination 

A definite quantity of the clear supernatant solution properly 
collected from all conical vials was filtered and diluted with ethanol. 
The absorbance of each sample was determined against its blank at 

215 nm [15]. The amount of solubilized drug was then obtained from 
the standard curve drawn with absorbance versus concentration. 

All reported data are the average of three independent assays. For 
the calibration curve, five different concentrations in a range from 
0% w/w to 0.02x10-3% w/w were prepared by dilution of drug stock 
solution in methanol. The concentration-absorbance relationship 
obeyed the Beers–Lambert law (r2

Size determination 

 = 0.987). 

Dynamic Light Scattering was used to determine particles size in a range 
between 0.3 nm and 10 µm [40, 41]. It was employed for the point 
having the maximum of solubility. The measurement was carried out at 
25 °C after 5 min of equilibration. To avoid any losses (like larger 
vesicles), the produced sample was analyzed without any dilution or 
filtration step. 

RESULTS AND DISCUSSION 

All mixture experiments were conducted in random order and 
calculations were performed by Design Expert

Solubility of celecoxib 

® software. The 
solubility results of the 20 mixtures

Experimental design and mathematical modeling 

 of celecoxib with various ratios 
of surfactants and cosolvent are shown in table 2. 

Experiments were carried out to determine the mathematical 
relationship between the factors influencing the performance and 
the characteristics of the formulation. A first order polynomial 
regression model represented by a linear equation was selected as 
follows:  

Y = a1X1 + a2X2 + a3X3 + a4X4 

Where Y is the solubility prediction of celecoxib, a1, a2, a3 and a4 are 
the estimated coefficients from the observed experimental values of 
solubility for X1 (ethanol), X2 (Tween® 80), X3 (Solutol® HS 15) and 
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X4 With solubility measurements, mixtures were designed by Design 
Expert

 (water). The response of celecoxib solubility expressed by a 
linear equation was as follows:  

Solubility = 0.02311X1 + 0.01989X2 + 0.00025X3 + 0.00009X4 

®

 

 to explore the feasibility zone presenting the maximum 
solubility for celecoxib. Fig. 1 represents the experimental domain 
inside the ternary diagram at different ratio of water. 

Table 2: Mixture design of experiments and solubility results of the 20 celecoxib 

Run 

mixtures 

Celecoxib 
% w/w 

X1

% w/w 
: Ethanol X2: Tween®

% w/w 
 80 X3: Solutol®

% w/w 
 HS 15 X4 Solubility % w/w : Water % w/w 

1 0.8 10 2 2 85.2 0.090 
2 0.8 10 0 2 87.2 0.052 
3 0.8 10 2 0 87.2 0.055 
4 0.8 10 1 1 87.2 0.050 
5 0.8 5 1 2 91.2 0.082 
6 0.8 5 2 1 91.2 0.090 
7 0.8 0 2 2 95.2 0.072 
8 0.8 10 0 0 89.2 0.001 
9 0.8 0 1 0 98.2 0.027 
10 0.8 0 0 1 98.2 0.036 
11 0.8 5 0 0 94.2 0.002 
12 0.8 7.5 1.5 1 89.2 0.063 
13 0.8 2.5 0.5 0.5 95.7 0.035 
14 0.8 2.5 1.5 1.5 93.7 0.081 
15 0.8 7.5 0.5 0.5 90.7 0.028 
16 0.8 5 1 1 92.2 0.072 
17 0.8 10 0 2 87.2 0.052 
18 0.8 10 2 0 87.2 0.066 
19 0.8 10 2 2 85.2 0.094 
20 0.8 0 0 0 99.2 0.001 
 

  
A 

  
B 

  
C 



Rahali et al. 

Int J Pharm Pharm Sci, Vol 8, Issue 3, 161-166 
 

164 

  
D 

  
E 

  
F 

Fig. 1: Contours plots and surface plots of estimated solubility of celecoxib (% w/w) with a, b, c, d, e and f respectively at 87.2%, 89.2%, 
91.2%, 92.2%, 93.7% and 95.2% of water 

 

Size determination 

Particles size measurement by DLS, of run 19 who had the maximum 
celecoxib solubility, shows a mean size of 9.67 nm with a narrow 
size distribution (fig. 2). 

 

Fig. 2: Average particles size distribution of run 19 

Statistical analysis 

Our model’s F-value is 37.82, which implies that the model is 
significant. At most there is only a 0.01% chance that this large could 
occur due to noise. Our signal-to-noise ratio of 17.9 indicates an 
adequate signal (greater than 4). Therefore, this model can be used 
to navigate the design space. 

Model and results analysis  

These experiments show an improvement of solubility, up to 90% 
with run 1 and run 19, compared to the solubility of celecoxib in 
water, without additives, examined by run 20. Indeed, 

Increasing the proportion of the three components together is in 
favor of higher solubility, as 

exploring the 
proportion of surfactants and co-solvent shows that solubility is 
affected by their association.  

the optimum composition which 
permitted to solubilize the maximum of celecoxib contains the 
maximum amounts of surfactants and co-solvent in our matrix.  
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Also, it has already been reported that Solutol® HS 15 forms mixed 
micelles when mixed with Tween® 80. These mixed micelles are 
known to present a more excellent solubilizing capacity and stability 
than single Solutol® HS 15 or Tween® 80 micelles [42]. This 
indicates that dissolution is probably made through a micellar 
dispersion of celecoxib. In fact, water-miscible surfactant molecules 
contain both a hydrophobic and hydrophilic portion and can 
solubilize many poorly water-soluble drugs, especially in the 
presence of a cosolvent. Surfactants can also self-assemble to form 
micelles once the surfactant monomer concentration reaches the 
critical micelle concentration. In our model, the solubility obtained 
by maximum proportions of surfactants and cosolvent (run 1 and 
run 19) is better than that obtained without cosolvent with the same 
proportions of surfactants (run 7). This indicates that Tween® 80 
and Solutol®

The weakest solubility values of our matrix were observed with run 8 
and run 11 that contain no surfactants. Then, with this model, the use 
of ethanol alone does not improve solubility. This result can be 
explained by the fact that cosolvent formulation has more tendency of 
precipitation on dilution comparing with micellar formulation [44].  

 HS 15 can probably solubilize celecoxib molecules by 
both a direct ethanol effect and by uptake into micelles [43]. 

Considering the coefficients a1 (ethanol), a2 (Tween® 80), a3 
(Solutol® HS 15) and a4 (water) given by our model’s solubility 
equation, we notice that a1 and a2 are the two coefficients that affect 
the most celecoxib solubility. However, as high values of solubility 
are observed with high proportions of cosolvent relative to 
surfactant; we can say that in our model ethanol is not a limiting 
factor, all the more, so ethanol alone does not improve solubility. 
Furthermore, response surface plots presented in fig. 1 and 
illustrating the effect of surfactants and cosolvent on solubility show 
that with this model, response surface is closely related to the 
concentration of Tween®

The prediction by the model of a better solubility did not give 
additional points. This shows that the proportions of the various 
components bringing the maximum of solubility are already 
included in our experiment matrix. 

 80 in the mixture. 

CONCLUSION 

Optimization by mixture design of the solubility of a hydrophobic 
molecule like celecoxib associating a cosolvent and nonionic 
surfactants seems to improve significantly the solubility and defines 
the effects and the proportions of each component from a limited 
number of experiments. 
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