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ABSTRACT

Inclusion of range, course, and speed parameterization is proposed for modified gain bearings only extended Kalman filter to track a torpedo using 
bearings-only measurements. Parameterization is included to obtain fast convergence in estimated torpedo motion parameters. The ownship is 
assumed to be under torpedo attack, and the bearing measurements are available from hull-mounted array of the ownship. Observer uses estimated 
torpedo motion parameters to calculate optimum evasive maneuver. Monte-Carlo simulation is carried out, and the results are presented for typical 
scenarios with and without parameterization. It is noted that parameterization reduces the time of convergence and the results are satisfactory.
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INTRODUCTION

Surveillance is the most important facet of maritime warfare and is 
undertaken by active as well as passive sensors. Active methods of 
surveillance require acoustic transmissions to be made by the surveillance 
platform and hence susceptible to interception by others. Hence, in 
certain tactical situations, it becomes necessary to maintain silence on 
active mode. In the ocean environment, two-dimensional bearings-only 
target motion analysis is generally used. An ownship monitors noisy sonar 
bearings from a radiating target and finds out target motion parameters 
(TMP)  -  viz., range, course, bearing, and speed of the target. The basic 
assumptions are that the target moves at constant velocity most of the 
time. The ownship motion is unrestricted. The target and ownship are 
assumed to be in the same horizontal plane. The problem is inherently 
nonlinear as the measurement is non-linear. The determination of the 
trajectory of a target solely from bearing measurements is called bearings-
only tracking (BOT). The BOT area has been widely investigated [1-4], and 
numerous solutions for this problem have been proposed.

For presenting the concepts in clear, it is assumed that the target is 
moving at constant velocity. Classical least squares method and Kalman 
filter cannot be directly applied. One useful approach is the pseudo-
linear estimator (PLE) formulation proposed [1] which lumps the 
nonlinearities into the noise term, resulting in a linear measurement 
equation. Here, the measurement matrix contains elements that are 
functions of noisy bearings and, overall, are correlated with the noise 
terms of the measurement equation. As a result, the PLE exhibits a 
bias in the estimated TMP [5]. As it offers a no diverging solution, 
many times PLE is used as a backup solution along with the modern 
filtering techniques (which will be discussed shortly). The classical PLE 
which is in the form of batch processing is converted into sequential 
processing [6] in such a way that it does not require initialization of 
target state vector and this feature is very much useful for maritime 
underwater target tracking. Maximum likelihood estimator (MLE) is 
found to be a suitable algorithm for passive target tracking applications, 
by virtue of its characteristics [1]. This is gradient search based 
algorithm using batch processing of all the available measurements. 
MLE is asymptotically efficient, consistent, unbiased and its covariance 
matrix approaches the Cramer-Rao bound for large samples.

Another approach, utilization of extended Kalman filter (EKF) in 
modified polar (MP) coordinates [7] frame is found to be useful for 

this nonlinear application. In this algorithm, the observable and 
unobservable components of the estimated state vector are automatically 
decoupled. Such decoupling is shown to prevent covariance matrix ill-
conditioning, which is the primary cause of instability. The MP state 
estimates are asymptotically unbiased. A  hybrid coordinate system 
approach developed by Walter Grossman [8] is also another successful 
contribution to bearings-only passive target tracking.

Another successful contribution to this field is by Song and Speyer [9]. 
The divergence in EKF [3,4] is eliminated by modifying the ownship 
gains. This algorithm is named as modified gain bearings-only 
extended Kalman filter (MGBEKF). The essential idea behind MGBEKF 
is that the nonlinearities be “modifiable.” This algorithm has some 
similarities with the pseudo measurement function but it is not the 
same. In pseudo measurement filter, the gain is a function of past and 
present measurements. It is to be noted that MGBEKF is based on 
EKF algorithm, and the gain of the MGBEKF is a function of only past 
measurements. By eliminating the direct correlation of the gain and 
measurement noise process in the estimates of MGBEKF, the bias in 
the estimation is eliminated. A simplified version of the modified gain 
function is made available by Galkowski and Islam [10]. This version is 
useful for air applications, where elevation and bearing measurements 
are available. This algorithm is further modified for underwater target 
tracking applications [11,12], where bearings-only measurements are 
available.

The traditional Kalman filter is optimal when the model is linear. 
Unfortunately, many of the state estimation problems like tracking 
of the target using bearings only information are nonlinear, thereby 
limiting the practical usefulness of the Kalman filter and EKF. 
Hence, the feasibility of a novel transformation, known as unscented 
transformation, which is designed to propagate information in the 
form of mean vector and covariance matrix through a non-linear 
process, is explored for underwater applications. When the unscented 
transformation is coupled with certain parts of the classic Kalman filter, 
it is called as unscented Kalman filter (UKF) [13-17]. UKF can be treated 
as an alternative to MGBEKF.

Particle filters (PF) [18-21] are the new generation of advanced filters, 
which are useful for nonlinear and non-Gaussian applications. PF or 
sequential Monte Carlo methods use a set of weighted state samples, 
called particles, to approximate the posterior probability distribution 
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in a Bayesian setup. At any point of time, the set of particles can be 
used to approximate the PDF of the state. As the number of particles 
increase to infinity, the approximation approaches the true PDF. They 
provide nearly optimal state estimates in the case of nonlinear and non-
Gaussian systems. The PF is a completely nonlinear state estimator. Of 
course, there is no free lunch. The price that must be paid for the high 
performance of the PF is an increased level of computational effort.

In this paper, the target is considered as torpedo. The task is to estimate 
the torpedo motion parameters, while ownship is in attack by a torpedo. 
After getting the bearings of the torpedo for few seconds (say for the 
duration of 15  seconds), ownship tries to escape by doing a certain 
maneuver. This maneuver is based on 70° relative bearing method, 
which is being used by Navy (Appendix A). Here, this first maneuver is 
called as ownship safety maneuver. The idea is to escape from the field 
as early and quick as possible. In general, the ownship tries to increase 
the speed after turning to the required course. This is required for the 
ownship to escape from the target as early as possible.

The ownship’s subsequent escape maneuvers can be carried out in 
systematic way, if torpedo’s range, bearing, course and speed are known. 
As these are not available, these are estimated using an algorithm. Here 
as bearings are only available, ownship safety maneuver will be used for 
observability of the process. During the safety maneuver, ownship tries 
to escape in such a way that range between ownship and target becomes 
maximum with an increase in time. However, for getting solution, it is 
another way round. Range should decrease to get more bearing rate 
with increase in time. With this constraint, ownship tries to estimate the 
torpedo motion parameters to calculate the proper evasive maneuvers 
at various time instants and escape from torpedo attack.

The authors are motivated by the work presented by “Branko Ristic, 
Sanjeev Arulampalam, and Neil Gordon” in “Beyond the Kalman 
Filter- PF for tracking applications” [17]. These scientists divided the 
range interval of interest into a number of sub-intervals, and each 
subinterval is dealt with an independent Kalman Filter. They suggested 
that this method can be extended to course and speed parameterization 
if prior knowledge of target course and speed, respectively, are 
vague. Parameterization in initialization reduces the dependence of 
convergence of the solution on initialization. In underwater scenario, 
prior knowledge of torpedo range, course, and speed is vague. Under 
torpedo attack, the aim is to obtain torpedo motion parameters 
accurately as early as possible to calculate optimum ownship evasive 
manoeuvre. In this situation, time to obtain convergence has an 
important role, and this is achieved using parameterization. The 
inclusion of range, course, and speed parameterization is proposed for 
MGBEKF to track a torpedo using bearings-only measurements and 
this algorithm is named as parameterized modified gain bearings-only 
extended Kalman filter (PMGBEKF). The ownship is assumed to be 
under torpedo attack, and the bearing measurements are available from 
hull-mounted array (HMA) of the ownship. Observer uses estimated 
torpedo motion parameters to calculate an optimum evasive maneuver.

Monte-Carlo simulation is carried out, and the results are presented 
for typical scenarios. Results are presented with and without 
parameterization. It is observed that parameterization reduces the time 
of convergence.

Section 2 describes mathematical modeling of measurements, 
formulation of algorithm, and initialization of state vector and its 
covariance. Section 3 is about simulation and results obtained. 
Limitations of the algorithm are presented in Section 4 and finally the 
paper is concluded in Section 5.

MATHEMATICAL MODELLING

MGBEKF
The alternative derivation of the modified gain function [9] of Song and 
Speyer’s EKF is slightly modified as follows. Let the target state vector 
be XS(k) where
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Where, x k( )  and y k( ) are target velocity components and, Rx(k) 
and Ry(k) are range components respectively. The target state dynamic 
equation is given by

Xs(k+1)=ϕXs(k)+b(k+1)+Гω(k)� (2)

Where, ϕ and b are transition matrix and deterministic vector 
respectively. The transition matrix is given by
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Where, x0 and y0 are ownship position components. The plant noise ω(k) 
is assumed to be zero mean white Gaussian with ( ) ( )w w dé ù=¢ë û kjE k j Q . 
True North convention is followed for all angles to reduce mathematical 
complexity and for easy implementation. The bearing measurement, Bm 
is modeled as
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Where, ς(k) is error in the measurement and this error is assumed to 
be zero mean Gaussian with variance σ2. The measurement and plant 
noises are assumed to be uncorrelated to each other. Equation (4) is a 
nonlinear equation and is linearized by using the first term of the Taylor 
series for Rx and Ry. The measurement matrix is obtained as:

( ) ( ) ( ) ( ) ( )é ù+ = + + - + +ê úë û
2 2ˆ ˆ1 0 0 1 1 1 1y xH k R k k R k k R k k R k k 	

� (5)

Since the true values are not known, the estimated values of Rx and Ry 
are used in the above equation. The covariance prediction is:

P(k+1|k)=ϕ(k+1|k)P(k|k)ϕ(k+1+k)+ГQ(k+1)ГT� (6)

The Kalman gain is

G(k+1)=P(k+1|k)HT(k+1)[σ2+H(k+1)P(k+1|k)HT(k+1)]−1� (7)

The state and its covariance corrections are given by

X(k+1|k+1)=X(k+1|k)+G(k+1)[Bm(k+1)−h(k+1,X(k+1|k))]� (8)

Where, h(k+1,X(k+1|k)) is the bearing using predicted estimate at time 
index k+1

P(k+1| k+1)=�[I−G(k+1)g(Bm(k+1),X(k+1| k))]P(k+1| k)[I−G(k+1)
g(Bm(k+1),X(k+1|k))]T+σ2G(k+1)GT(k+1)� (9)

 Where, g (.) is modified gain function as defined in [8]. The value of g is:
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Since the true bearing is not available in practice, it is replaced by the 
measured bearing to compute the function g (.).

PMGBEKF
The ownship is assumed to be under torpedo attack, and the bearing 
measurements are available from HMA of the ownship. In underwater 
scenario, prior knowledge of torpedo range, course and speed is vague. 
Under torpedo attack, the aim is to obtain torpedo motion parameters 
accurately as early as possible to calculate optimum ownship evasive 
manoeuvre. Time to obtain convergence greatly depends on the 
accuracy of the initialization of the target state vector. Parameterization 
in initialization reduces the dependence of convergence of the solution 
on initialization. Inclusion of range, course and speed parameterization 
is proposed for MGBEKF to track a torpedo using bearings-only 
measurements. Observer uses estimated torpedo motion parameters to 
calculate optimum evasive maneuver.

The basic idea is to use a number of independent MGBEKF trackers 
in parallel, each with a different initial estimate. To do so, the range, 
course and speed interval of interest is divided into a no of subintervals, 
and each subinterval is dealt with an independent MGBEKF. Let us 
suppose the range, course, and speed intervals of interest is (rangemin, 
rangemax), (coursemin, coursemax), and (speedmin, speedmax), respectively, 
with range, course, speed subintervals. The subintervals are 100 m, 1°, 
1 m/seconds in range, course, and speed, respectively. Let

a=(rangemax−rangemin)/100

b=(coursemax−coursemin)/1

b=(speedmax−speedmin)/1� (11)

So number of filters, N is given by (a*b*c). The initial weights of each 
MGBEKF are set to 1/N. Subsequently, the weight of filter i at time k is 
given by
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Where, p(B(k)|i) is the likelihood of measurement B(k). Assuming 
Gaussian statistics, the likelihood p(B(k)|i) can be computed as
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Where, ( )-ˆ 1iB k k  is the predicted angle at k for filter i, and s iinv
2  is 

the innovation variance for filter i given by
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The combined estimate of PMGBEKF is computed using the Gaussian 
mixture formulas [17].

Initialization of state and its covariance matrix
In general, the torpedo will be fired at intercept course. With respect to 
the ownship, the torpedo course will be within (initial bearing +/60)°. 
Hence, the search space in the bearing is reduced to initial bearing 
±60°. It is assumed that HMA of the ownship can track the target in 
auto-tracking mode from 5000 m (maximum range) onward and the 
ownship speed is in the range of 20-5 m/seconds. The maximum filters 
required are around 9000, which is found through evaluation of several 
tactical scenarios. Here, subinterval size is chosen in such away that 
number of filters is not too high and at the same the accuracy of the 
solution is obtained within the required time. The initial target state 
vectors are in the following form:

Xs(0/0)=[r*sin(tcr) r*cos(tcr) ν*sin(Bm(0)) ν*cos(Bm(0)]T

Where r, initial range in meters=[5000, 4900, 4800,……, 1000].

tcr, torpedo course in degrees=�[Bm(0) +60 Bm(0)−1]+60 Bm(0)−2+60 … 
Bm(0)−60]

v, torpedo speed in m/seconds =[20, 19, 18,…, 5]� (15)

Hence, there will be a* 120 *c, MGBEKFs with different initialization of 
state vectors. It is assumed that the state vector Xs(0/0) is uniformly 
distributed. Then, the element of initial covariance matrix is a diagonal 
matrix and can be written as :
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SIMULATION

In simulation, it is assumed that HMA auto detection range interval is 
5000-500 m. Estimation of torpedo motion parameters is stopped when 
the range is ≤500 m. Observer maximum speed is 18 knots and turning 
rate is 1°/seconds. All 1 second samples are corrupted by additive zero 
mean Gaussian noise with r.m.s level of 0.33°. The ownship is assumed 
to be doing safety maneuver with turning rate of 1°/seconds. The 
measurement interval is 1 second and the period of simulation is 500 s. 
All angles are considered with respect to True North 0-360°, clockwise 
positive. For the purpose of presentation, two scenarios as shown in 
Table 1 are considered for evaluation of the algorithm. In the figures, 
the error in estimated range, course and speed are represented as 
R-error, C-error and S-error, respectively. The results of PMGBEKF after 
100 Monte-Carlo runs are shown in Fig. 1a-c for Scenario 1 and Fig. 2a-c 
for Scenario 2. For the purpose of comparison, the results with one 
MGBEKF are shown in Fig. 3a-c for scenario 1. In general in underwater 
scenario, some measurements are outliers. Hence, in simulation 5% of 
measurements (randomly chosen) are made corrupted with 20 times of 
than that of expected error, and the corresponding results are shown in 
Fig. 4a-c for Scenario 1 and Fig. 5a-c for Scenario 2.

It is assumed that the estimated torpedo motion parameters are said to 
be converged when
a.	 Error in the range estimate ≤20% of the actual range
b.	 Error in the course estimate ≤5°.
c.	 Error in the speed estimate ≤4 knots.

As per the required accuracies, the entire solutions of the estimated 
parameters range (R), course (C) and speed (S) are shown in Table 2.

From the results, it is very clear that convergence time is reduced 
(which is very much required in torpedo tracking) using PMGBEKF 
when compared to with that of one MGBEKF. It is also noted from the 
results that the algorithm is able to manage satisfactorily with outliers.

LIMITATIONS OF THE ALGORITHM

In general, the sonar can listen to a target when SNR is sufficiently 
high. When SNR becomes less, auto tracking of the target fails, the 
sonar tracks the target in manual mode and the measurements 

Table 1: Details of scenarios chosen

S. No. Parameter Scenario 
1

Scenario 
2

1 Initial range (meters) 3500 4500
2 Initial bearing (degrees) 75 280
3 Torpedo speed (meters/seconds) 15.45 15.45
4 Target course (degrees) 170 45
5 Observer speed (meters/seconds) 6.18 7.73
6 Observer course (degrees) 0 40
7 r.m.s. error in the bearing (degrees) 0.33 0.33
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Fig. 2: (a) Error in range estimates. (b) Error in course estimate. (c) Error in speed estimates

c

ba

Fig. 1: (a) Error in range estimates. (b) Error in course estimate. (c) Error in speed estimate

c

ba
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are not available continuously. The bearings available in manual 
mode are highly inconsistent and are not useful for good tracking 
of the target.[22-26] In this algorithm, it is assumed that good track 
continuity is maintained over the simulation period. This means that 

propagation conditions are satisfactory during this period as well 
as track continuity is maintained during ownship manoeuvres. The 
algorithm cannot provide good results when the measurement noise 
is more than 1° rms.

Fig. 4: (a) Error in range estimates. (b) Error in course estimates. (c) Error in speed estimates

c

ba

Fig. 3: (a) Error in range estimates. (b) Error in course estimate. (c) Error in speed estimate

c

ba
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Table 2: Convergence of various algorithms

Scenario Convergence time with one 
MGBEKF (seconds)

Convergence time with 
PMGBEKF (seconds)

Convergence time with outliers 
using PMGBEKF (seconds)

Range Course Speed Range Course Speed Range Course Speed
Scenario 1 115 161 192 84 124 145 140 183 312
Scenario 2 111 235 260 76 199 205 191 214 407
MGBEKF: Modified gain bearings‑only extended Kalman filter, PMGBEKF: Parameterized modified gain bearings‑only extended Kalman filter

CONCLUSION

In this paper, tracking of torpedo using HMA measurements is 
explored. Ownship safety maneuver is used for observability of the 
process. Effort is made to reduce the convergence time or to obtain 
torpedo motion parameters as quickly as possible to carry out evasive 
maneuver by ownship. The convergence time is reduced with the usage 
of parameterisation in initialization of target state vector. The target 
range, course, and speed intervals of interest are divided into a number 
of sub-intervals, and each subinterval is dealt with an independent 
MGBEKF. The performance of the PMGBEKF is superior to that of 
MGBEKF. Extensive simulation is carried out and the results are found 
to be satisfactory.
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APPENDIX A

In safety maneuver algorithm, it is observed whether the torpedo is on port side (sign of the torpedo is negative) or starboard side (sign of the torpedo 
is positive). If the absolute value of the relative bearing is <70°, then evasive maneuver is equal to measured bearing+(sign of torpedo side)*30°. If 
the absolute value of relative bearing is greater than or equal to 70°, then evasive maneuver is equal to 180°+measured bearing+(sign of torpedo 
side)*30°.


