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ABSTRACT

Objective: This paper presents the interacting multiple model (IMM) method of tracking underwater maneuvering targets using active sonar 
measurements.

Methods: The IMM algorithm is a widely accepted state estimation scheme for solving maneuvering target tracking problems.

Results: In the underwater scenario, algorithms that assume constant velocity model are suitable for tracking nonmaneuvering targets but fail if 
target is maneuvering.

Conclusion: Unscented Kalman filter is used throughout the process, and the simulation results for two scenarios are presented.
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INTRODUCTION

In this paper, our objective is to achieve underwater maneuvering 
target tracking using active sonar range and bearing measurements. In 
the underwater scenario, the sonars fitted on to ships and submarines 
seek target localization by pumping acoustic energy into the water. 
The energy virtually illuminates the target and the noisy target range, 
and bearing measurements are available. The noisy range and bearing 
measurements are smoothed and further used to estimate course 
and speed of the target. The ownship course and speed are assumed 
to be available without noise. This assumption is made to present the 
concepts with clarity.

The generic case of target tracking can be broadly classified into 
two distinct classes – tracking a maneuvering target and tracking a 
nonmaneuvering or constant velocity (CV) target. Needless to say, the 
challenges posed by maneuvering target tracking are much greater as 
compared to the nonmaneuvering case. Tracking a nonmaneuvering 
target has been historically a well-discussed problem and has been 
mainly solved using the unscented Kalman filter (UKF) and its variants 
or more recently, the particle filters, based on sequential Monte 
Carlo methods. However, when faced with a maneuvering target, the 
problem becomes insurmountable due to model inadequacies. The key 
to successful target tracking lies in the effective extraction of useful 
information about the target’s state from observations, and a good 
model of the target will facilitate this information extraction process to 
a great extent, as rightly emphasized [1]. UKF is proven to be one of the 
best algorithms for tracking a nonmaneuvering target. However, when 
the target model being used by the UKF is that of a CV one, due to the 
mismatch of the target motion model, it fails to get convergence.

Multiple model (MM) introduction
Hence for tracking a maneuvering target, the need is felt to use an MM 
approach. The MM approach gets around the difficulty due to model 
uncertainty in different legs of target run using more than one target 
motion models. The basic idea is to assume a set of models as possible 
candidates of the true target motion model in effect at that time; run a 
bank of elementary filters, each based on a unique model in the set and 
generate the overall estimates by the process of combining the results 

of all the elementary filters. This combined approach to target motion 
parameter estimation for maneuvering targets is thus, definitely a 
better approach than using single UKF or its variants.

In current literature, three generations of MM algorithms have been 
discussed [2]. With MM concepts as common, output processing, 
cooperation strategies, and model set adaptation, respectively, form the 
benchmarks of these three generations. The first generation MM method 
or “the autonomous MM algorithm” was initiated by Magill [3] and 
promoted by Maybeck [4]. The second generation, Blom’s “Interacting 
MM” (IMM), has been practically evaluated in trackingscenarios and 
demonstrated by Bar-Shalom [5]. The third generation, characterized 
by its variable structure, is still relatively new and unproven in practical 
applications. For its well-known applicability to field problems such as 
air traffic control, the IMM approach is chosen to design the algorithm.

Unscented Kalman filter (UKF)
Although the traditional Kalman filter is optimal when the model is 
linear, unfortunately for many of the state estimation problems like 
the above-mentioned scenario, nonlinearity in models exist thereby 
limiting the practical usefulness of the Kalman filter, and the extended 
Kalman filter (EKF). Hence, the feasibility of a novel transformation, 
known as unscented transformation, which is designed to propagate 
information in the form of mean vector and covariance matrix through 
a nonlinear process, is explored for underwater applications. The 
unscented transformation coupled with certain parts of the classic 
Kalman filter provides a more accurate method than the EKF for 
nonlinear state estimation [6]. It is more accurate, easier to implement 
and uses the same order of calculations. The IMM-UKF is, thus, the best 
combination possible to tackle the problem presented. The IMM model 
set used in the algorithm presented contains three UKFs catering to the 
CV model and the coordinated turn (CT) model. The CV UKF is primarily 
responsible for tracking the target in its non-maneuvering phase; the 
coordinated right turn UKF tracks it in the right maneuvering phase 
and the coordinated left turn UKF tracks it in the left maneuvering 
phase.

Section II contains mathematical modeling of measurements, target, 
and ownship path. It also contains a brief introduction of UKF and 
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IMM algorithms. Detailed simulation is carried out, and the results are 
presented in Section III. Finally, the paper is concluded in Section IV.

MATHEMATICAL MODELLING

The target-observer scenario depicting the motion of target and 
observer is shown in Fig.  1. The imaginary line joining target and 
observer is called line of sight (LOS). The angle made by LOS with Y-axis 
is called bearing (B). The length of LOS is called range (R) of the target.

State and measurement equations
Let the target state vector be X(k), where:

X k x k y k R k R k
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Where, x(k) and y (k) are target velocity components and, 
Rx(k)=R*sin(B) and Ry(k)=R*cos(B) are range components along x- and 
y-axis, respectively.

The target state dynamic equation is given by:

X(k+1)=ϕ(k+1/k)X(k)+b(k+1)+Гω(k)� (2)

Where, ϕ and b are transition matrix and deterministic vector, 
respectively.
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Where, x0 and y0 are observer position components. The plant noise:
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In this paper, all angles are assumed to be w.r.t. y-axis. This convention 
is to reduce mathematical complexity and for easy implementation. The 
bearing measurement Bm, and range measurement Rm is modeled as:
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Where, ϛ(k) and ξ(k) are the errors in the bearing and range 
measurements, respectively, while these errors are assumed to be 
zero mean Gaussian with variances s B

2  and s R
2 , respectively. The 

measurement and plant noises are assumed to be uncorrelated to each 
other.

The plant noise covariance matrix is given by:
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ëê

ù
ûúw w .

UKF algorithm
Detailed literature on UKF is available in Candy [7,8]. However, a small 
brief of UKF is as follows.

The state equation is given by:

X(k+1)=F(X(k), ϕ(k))+ω(k)� (7)

Where, ω(k) is the plant noise. The UKF uses (2n+1) scalar weights 
(mean and covariance), which can be calculated as:
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Where, i=1,2,…2n.

Where λ=(a2−1)n is a scaling parameter, “a” determines the spread 
of the sigma points around the mean and is usually set to a small 
positive value and β is used to incorporate prior knowledge of the state 
distribution x (for Gaussian distribution, β=2 is optimal).

The standard UKF implementation consists of the following steps:

Calculation of the (2n+1) sigma points starting from the initial 
conditions x(k)=x(0) and P(k)=P(0)
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Transformation of these sigma points through the process model using 
Equation (12). The prediction of the state estimate at time k with 
measurement up to time k+1 is given as:
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As the process noise is additive and independent, the predicted 
covariance is given as:
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Next step is updating the sigma points with the predicted mean and 
covariance. The updated sigma points are given as:
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After updation, transformation of each of the predicted points happens 
through the measurement equation. Prediction of measurement 
(innovation), given as:

y k k W Y k ki
m

i

n
+( )= +( )( )

=
å1 1

0

2

� (13)
Fig. 1: Target and ownship encounter
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Since the measurement noise is also additive and independent, the 
innovation covariance is given as:
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The cross covariance is given as:
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Kalman gain is calculated as:

K k P Pxy yy+( )= -1 1 � (16)

The estimated state is given as:

X(k+1|k)=X(k+1|k)+K(k+1)(y(k+1|k+1)−y(k+1|k))� (17)

Where, y(k) is true measurement. Estimated error covariance is given 
as:

P(k+1|k+1)=P(k+1|k)−K(k+1)PyyK(k+1)T� (18)

Generic IMM algorithm
a.	 Interaction:
	 Interaction involves computation of mixing probabilities of model i 

and j with previous mode probabilities and transition probabilities. 
The mixing probabilities are calculated as:
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where j=1,…n and ui j  is mixing probability to reach model j from 
i. i jp  = Transition probability to reach model j from i.

b.	 Mixing:
	 Mixing involves computation of resultant state and covariance 

matrices of all models according to mixing probabilities.
	 Mixing of state vector:
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	 Where, j=1, 2…, n.
c.	 Mixing of covariance matrices:
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d.	 Computing likelihood:
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	 Where, ˆ jz is the measurement residue for and Sj is the innovation 
covariance of filter j.

e.	 Updating mode probability:
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f.	 Computing resultant state and covariance vectors:
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IMM-UKF
Three UKFs are combined to form IMM-UKF. Three models, one CV (CV), 
and two CT models were used to develop IMM-UKF. It assumed that the 
target is a submarine which occasionally changes its course at 1°/s.

For CV model:
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Where Ω is the turn rate, with −1°/s for left CT model and 1°/s for right 
CT model.

The measurement relation vector and measurement noise covariance 
matrices are given by:
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SIMULATION AND RESULTS

Simulation
The IMM-UKF was tested with the following scenarios. The trajectory 
of the target and observer is simulated in Matlab. Range and bearing 
measurements are computed by taking sonar maximum acquisition 
range as 8000  m. The sampling time of these measurements is 
computed assuming sound velocity in water as 1500 m/s. Hence, the 
sampling time is 2*8000/1500=10.6  seconds. Total simulation time 
is 1000 seconds. These measurements are corrupted by adding zero-
mean white Gaussian noise. The IMM UKF algorithm uses the following 
transition and mode probabilities.

Transition probability matrix: 
0 99 0 005 0 005

0 005 0 99 0 005

0 005 0 005 0 99

. . .

. . .

. . .

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Initial mode probability matrix: 0 99 0 005 0 005. . .éë ùû

The above values are arrived at by rigorous simulations using different 
transition and mode probabilities for every scenario. The choices have 
been simulation intensive factors as there are no patterns in the results 



Innovare Journal of Science, Vol 5, Issue 1, 2017, 17-21
	 Jawahar and Chakravathi	

20

that could be utilized to generate an empirical formula for calculating 
these probabilities.

Ownship is taken to be moving with course 90° and speed 4.1 m/s for 
both test cases as in Table 1. The noise in the measured range is taken as 
10 m S.D. while the noise of the measured bearing is taken to be 0.565° 
S.D. for simulation purposes. The noise is assumed to be Gaussian. The 
turn rate for the target ship is taken as 1°/s. The acceptance criteria 
taken for error in course and speed convergence are ±5° and 20% of 
true speed, respectively.

Results
From Figs. 2-5, it is evident that the target ship is being tracked 
accurately by the IMM-UKF algorithm in both the scenarios even in its 
maneuvering phases. The course maneuvers in the first and second 
scenarios are 240° and 220°, respectively. It is seen that large course 
changes have been tracked correctly by the algorithm. The slacks in the 
estimated course at both the time of maneuver start and maneuver stop 
are indicative of the time that algorithm takes time to respond to the 
target maneuvers as shown in Table 2.

CONCLUSION

The performance of the proposed IMM-UKF algorithm to active 
underwater target tracking is found to be satisfactory. Selection of 
transition probability and model probabilities are the key factors to 
tune the IMM performance. It is observed that, even though the model 
switching occurred at precise instants, the reflection of switch in 
convergence times had a noticeable delay. The performance of the IMM-

Fig. 2: Estimated course and true course (Scenario 1)

Fig. 3: Estimated speed and true speed (Scenario 1)

Fig. 4: Estimated course and true course (Scenario 2)

Fig. 5: Estimated speed and true speed (Scenario 2)

Table 1: Scenarios considered

Target Scenario 1 Scenario 2
Range (m) 5000 3000
Initial bearing (°) 50 60
Straight path before maneuver

Course (°) 270 120
Speed (m/s) 7.71 9.19

Course maneuver
Start sample 37 (400 s) 37 (400 s)
End sample 58 (640 s) 56 (620 s)

Straight path after maneuver
Course (°) 30 340
Speed (m/s) 7.71 9.19

Ownship
Course (°) 90 90
Speed (m/s) 4.1 6.16

Table 2: Convergence time in seconds

Tactical geometry Scenario 1 Scenario 2
Straight path before maneuver

Course 52 49
Speed 30 38

Delay in course maneuver detection
Course 33 33
Speed 10 11

Straight path after maneuver
Course 70 54
Speed 10 11
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UKF can be improved by further investigation on the role of covariance 
matrices.
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