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ABSTRACT 

Objective: Target motion analysis (TMA) using conventional passive bearing together with frequency measurements is explored.  

Methods: This approach offers one tactical advantage over the classical bearings-only TMA. It makes the ownship maneuver superfluous.  

Results: In this paper, TMA is carried out using Unscented Kalman Filter (UKF). Inclusion of range, course and speed parameterization is proposed 
in UKF target state vector to obtain the convergence of the solution fast.   

Conclusion: Finally the results of various scenarios in Monte-Carlo simulation are presented. This method can be easily adopted for underwater 
passive target tracking application. 

Keyword: classical bearings-only TMA, Target Motion Analysis (TMA) 

 

INTRODUCTION 

In the ocean environment, two dimensional bearings-only target 
motion analysis (TMA) is generally used. An ownship monitors noisy 
sonar bearings from a radiating target, which is assumed to be 
traveling with a uniform velocity. The ownship processes these 
measurements and finds out target motion parameters-Viz., range, 
course, bearing and speed of the target. Here the measurement is 
nonlinear, making the whole process nonlinear. Added to this, since 
bearing measurements are extracted from a single sensor, the 
process remains unobservable until ownship executes a proper 
maneuver. However, there are many methods available [1]-[6] to 
obtain target motion parameters in the above situation. The 
modified polar extended Kalman filter by Aidala [4], the modified 
gain extended Kalman filter (MGEKF) developed by Song and Speyer 
[5] and hybrid coordinate system approach by Walter Grossman [6] 
are among the successful contributions in this field. TMA method 
dealing with this specific case is known as Bearings-Only Tracking 
(BOT). Passive target tracking is the determination of the trajectory 
of a target solely from measurements of signals originating from the 
target.  These signals could be machinery noise from a target and its 
detection is usually indicated by an increase in energy above the 
ambient at a certain bearing.  The energy is mostly broadband but in 
some instances, the signal spectrum may contain a few tonal as well. 
When the source emits harmonic components, the harmonic signals 
will experience Doppler shifts at the ownship so that the frequency 
measurements can be explored to improve the estimation accuracy. 
The use of both Doppler shifts and bearing angles to analyze a 
moving target is termed Doppler-Bearing Tracking (DBT) [7-12]. 
DBT has the advantage over BOT  in that DBT does not require the 
ownship to maneuver to obtain target motion parameters. Target 
Motion Analysis (TMA) so far carried out for DBT can be divided into 
two groups: recursive method based on Instrumental Variables (IV) 
[8] and batch processing methods such as Maximum Likelihood 
Estimator (MLE) [9].  The work carried out by. Xiuo-Jiao Tao, Cai – 
Rong Zou and Zhen-Ya He [9] cannot be implemented in the real 
scenario as solution is found out using search methods, which are 
not suitable for real time applications.  In practice, an improved 
estimate is required at each sample on every arrival of new 
measurement.  Chan and Rudnicki’s recursive Instrumental Variable 
method [8] is based on pseudo linear formation. In their work, the 
strong bias generated by pseudo linear formation is reduced by 
using the estimated bearing in the place of measured bearing. The 
estimation accuracy of the IV technique can reach the  

 

 

Cramer-Rao lower bound for Gaussian noise at moderate noise 
levels. Recently K.C. Ho and Y. T. Chan [12] proposed “constrained 
least squares minimization” with sequential processing. This is 
proven to be asymptotically unbiased. It avoids the difficulties of 
initial condition sensitivity and possible convergence problem 
associated with the IV or numerical Maximum Likelihood 
techniques. 

The author is motivated by the work presented by ‘Branko Ristic, 
Sanjeev Arulampalam and Neil Gordon’ in ‘Beyond the Kalman 
Filter- Particle filters for tracking applications’ [13]. These scientists 
divided the range interval of interest into a number of sub- intervals, 
and each sub-interval is dealt with an independent Kalman filter. 
They suggested that this method can be extended to course and 
speed parameterization, if prior knowledge of target course and 
speed respectively are vague. Parameterization in initialization 
reduces the dependence of convergence of the solution on 
initialisation. In underwater scenario, prior knowledge of torpedo 
range, course and speed is vague. In this situation, time to obtain 
convergence has an important role and this is achieved using 
parameterization. Inclusion of range, course and speed 
parameterization is proposed for Unscented Kalman Filter (UKF) to 
track a target using bearings and frequency measurements and this 
algorithm is named as Parameterized Doppler-Bearing Unscented 
Kalman Filter (PDBUKF). The measurements are assumed to be 
available from hull mounted array of the ownship. Ownship uses 
estimated target motion parameters to calculate weapon preset 
parameters to release  weapon on to target. 

In this paper, the Doppler shift in the frequency measurement is 
described in terms of target & ownship speed components and the 
velocity of the sound in water. The noise in the measurements is 
assumed zero mean Gaussian and the noise in the frequency 
measurement is not correlated with that of bearing measurement. It 
is also assumed that the measurements are continuously available 
every second. Here the sum of the tonals is taken as a state variable 
in the state vector. The concept of Chan and Rudnicki’s constant 
state vector formulation [8], that the dimension of state vector does 
not increase with the number of frequency tonals is followed.  
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Section 2 describes mathematical modeling of measurements, 
formulation of PDBUKF and initialization of state vector and its 
covariance. Section 3 is about simulation and results. The limitations
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of the algorithm are presented in section 4  and the paper is 
concluded in section 5. 

 

MATHEMATICAL MODELING 

State and Measurement Equations 

 The target is assumed to be moving with constant velocity as shown 
in Fig.1 and is defined to have the state vector      

 TfbfyxsyxS σσωωω   Frryx(k)X                           (1)                                                     

where (rx, ry) denote the relative range components between 
ownship and target. Fs is source frequencyr and superscript T 
denotes transpose.  The ownship state is similarly defined as  

 Tooooo yxyxX                                                                            (2) 

 

 
Fig. 1: Target and Ownship encounter 

                                            

The set of measured data consists of two types of measurements: 
bearing angles and frequency measurements.  The bearing 
measurement is modeled as 

     kγkBkB Bm                                                                                 (3)                                                                                                     

where Bm(k) is the measured bearing, relative to the y axis of the 
ownship, at kth instant (k=1, …, n), B(k) is the actual bearing and  
B(k) a Gaussian random variable with zero mean and variance  
B

2(k).   The actual bearing B(k) is given by 

(k)r

(k)r
tanB(k)

y

x
                                                                              (4) 

 In Sonar, a broadband noise is generally accompanied by one or 
more tonals. These tonals are constant in frequency and because of 
Doppler shift; a particular frequency measured by the ownship is 
given by  
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where fm(j) (k) denotes the jth (j=1, 2,3…n) frequency measured by 
the ownship at kth instant, fs(j) is the jth unknown constant source 
frequency, C is the speed of propagation of the signal, f(j) (k) is the 
zero mean Gaussian random frequency measurement error with 

variance f2 and rx  & ry  are components of relative velocity 

between target and ownship. (Derivation of eqn.(5) is given in 
Appendix-A.) Constant state vector formulation [8] (the size of the 
state vector does not increase with the increase in no. of tonals) is 
obtained as follows: 
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Using eqn. (6), eqn. (5) can be rewritten as 
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The measurement vector Z is given by   











(k)F

(k)B
Z

m

m                                                                                                 (8)                                                                                          

In this tracking problem, the aim is to estimate the state vector Xs, 
from a set of measurements Z.  It is assumed that the noises in 
bearing and frequency measurements are not correlated. The target 
state dynamic equation is given by 

(k) ω1)b(k1/k)Xs(k)(k φ1)(kX    s                            (9)                                                                

where φ(k+1/k), b(k+1) and ω(k) are transient matrix, 

deterministic vector and plant noise respectively. The transient 

matrix is given by 
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where t is sample time and b(k+1) is given by  

 T000000y(k))1)(y(kx(k))1)(x(k001)b(k 

                                                                                                                          (11) 

(k) ω is a  zero mean Gaussian noise vector with E [ (k) ω

(k) ω T]= Q δ kj.  

Unscented Kalman Filter Algorithm 

Unscented Transformation (UT) is a method for calculating the 
statistics of a random variable which undergoes a nonlinear 
transformation. Consider a random variable x (dimension L) 
propagating through a nonlinear function, y = g(x). Assume x has 
mean and covariance PX. To calculate the statistics of y, we form a 

matrix χ  of 2L + 1 sigma vectors iχ  (with corresponding weights

iW ), according to the following [11]:  
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xχ 0                                                                                                        

   L1,...,iPλLxχ
ixi   

   1,...,2LLiPλLxχ
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
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       1,...,2LiλL21WW c

i

m

i               (12) 

                                                                               

where   LκLαλ 2   is a scaling parameter. α  

determines the spread of the sigma points around x  and is usually 
set to a small positive value (e.g., 1e-3), κ  is a secondary scaling 

parameter which is usually set to 0, and β  is used to incorporate 

prior knowledge of the distribution of x (for Gaussian distributions, 

2β   is optimal).   
ixPλL   is the ith row of the matrix 

square root. These sigma vectors are propagated through the 
nonlinear function, 

  1,...,2Liχgy ii                                                                               (13)                                                                                               

and the mean and covariance are approximated using a weighted 
sample mean and covariance of the posterior sigma points [11]. 

UKF is a straightforward extension of the UT to the recursive 
estimation. In UKF, the state random variable is redefined as the 
concatenation of the original state and noise variables. The UT sigma 
point selection scheme is applied to this new augmented state 
random variable to calculate the corresponding sigma matrix. The 
standard UKF  implementation consists of the following steps:2.2.1 
Calculation of the (2n+1) state vectors with sigma points starting 
from the initial conditions 

                kΡλnkXkΡλnkΧkΧkΧ sss 

                                                                                                                           (14) 

 2.2.2 Transformation of these sigma points through the process 
model using eqn.(9). 

2.2.3 The prediction of the state estimate at time k with 
measurement up to time k+1  is given as 
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2.2.4. As the process noise is additive and independent, the 
predicted covariance is given as  
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2.2.5. Updation of the sigma points with the predicted mean and 
covariance. The updated sigma    points are given as 

 k)|1λ)P(k(nk)|1(kΧk)|1λ)P(k(nk)|1(kΧk)|1(kXk)|1X(k sss 

                                                                                                                           (17) 

2.2.6. Transformation of each of the predicted points through 
measurement model eqn.(10) 

2.2.7. Prediction of  measurement,  given as 


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2n
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(m)

i k)|1.Y(kWk)|1y(k
                                                            (18)                                                                                

2.2.8. Since the measurement noise is also additive and independent, 
the innovation covariance is given as 

   R(k)k)|1y(kk)|1kY(i,.k)|1y(kk)|1)k Y(i,WP
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            (19)                  

2.2.9. The cross covariance is given as 

   T
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            (20)                              

2.2.10. Kalman gain is calculated as  

1

yyxy.PP1)K(k                                                                                       (21)                                                       

2.2.11. The estimated state is given as 

k)|1y(k1)k|11)(y(kK(kk)|1X(k1)k|1X(k                    (22)                                                  

where y(k) is true measurement. 

2.2.12. Estimated error covariance is given as 

T

yy 1).K(k1).PK(kk)|1P(k1)k|1P(k                 (23)                                                     

 Parameterized Doppler-Bearing Unscented Kalman Filter 

The ownship is assumed to be getting the bearing measurements 
available from sonar. Prior knowledge of target range, course or 
speed is not available. The aim is to obtain target motion parameters 
accurately at the earliest. Time to obtain convergence greatly 
depends on the accuracy of the initialisation of the target state 
vector. Parameterization in initialization reduces the dependence of 
convergence of the solution on initialisation. Inclusion of range, 
course and speed parameterization is proposed for Doppler-Bearing 
Unscented Kalman Filter (DBUKF) to track a target using bearings 
and Doppler frequency measurements. The basic idea is to use a 
number of independent DBUKF trackers in parallel, each with a 
different initial estimate. To do so, the range, course and speed 
interval of interest is divided into a number of sub-intervals, and 
each sub-interval is dealt with an independent DBUKF. Let the range, 
course and speed intervals of interest are 

)course,course(),range,range( maxminmaxmin  and 

)speed,speed( maxmin  respectively with range, course, speed 

subintervals. For example, the sub-intervals can be chosen as 1000 
meters, 1 degree, 1 m/sec in range, course, and speed respectively. 
Let 

)/1000range(rangea minmax   

)/1course(courseb minmax   

)/1speed(speedc minmax                    (24) 

So number of filters, N is given by (a*b*c). If hardware support for 
sufficient computation capacity is available, the size of the sub-
intervals can be increased as much as possible to improve the 
accuracy of the estimated target motion parameters. The initial 

weights of each DBUKF is set to N1 . Subsequently, the weight of 

filter i  at time k  is given by 
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where   ikBp  is the likelihood of measurement  kB . Assuming 

Gaussian statistics, the likelihood   ikBp  can be computed as 
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where  1kkB̂i   is the predicted angle at k  for filter i ,and 

2
inv

iσ  is the innovation variance for filter i  given by  

      2Tiii2
inv

i σkĤ1kkPkĤσ                          (27)

  

The combined estimate of parameterized DBUKF is computed  

using the Gaussian mixture formulas. 

SIMULATION AND RESULTS 

Initialization of state vector 

It is assumed that HMA of the ownship can track the target in auto-
tracking mode from 20000 meters (maximum range) onwards and 
the target speed is in the range of 20 m/sec to 5 m/sec. The search 
area in target course is 0 to 359 deg. Here sub-interval size is chosen 
in such away that minimum filters give the same accuracy within the 
required time. The target state vector is initialized as  

               kF0Bcosr 0Bsinr θcos Vθsin V0|0X smmTTs   

                          Tfbfyx σσkωkωkω                                   (28)                                                   

                           where   (0)Bm and (0)Fm  are the initial bearing and Doppler 

frequency measurements   (k)ω(k),ω yx and 

(0)Fm  are the disturbances in acceleration component 

along x axis, 

  y axis   and in frequency component.  

             r, initial range in meters= [ 20000 19000 18000 ……3000]. 

   , target course in deg = [0 1 2 ..359] 

VT, target  speed  in m/sec  = [ 20 19 18 ….5].                       (29)       
There will be number of  DBUKFs working in parallel with different  
initialization of state vectors.   

 Initialization of covariance matrix  

 It is assumed that the components of the initial target state vector 
follow uniform density function and accordingly the initial 

covariance matrix P(0/0)  is chosen as a diagonal matrix with the 

elements are given by 

 12(i)X 4 diagonalP(0/0) 2

s   where i = 1,2 …10 

 

 

 

 

 

Scenario 

Parameters 

Initial 

Range 

(m) 

Initial 

Bearing 

(deg) 

Sum of tonal frequencies 

(Hz) 

 

Target 

Speed (m/sec) 

Target Course 

(deg) 

Ownship 

Course 

(deg) 

Ownship Speed 

(m/sec) 

1 3000 45 800 15              120 90               4.635 

 

Simulation of algorithm 

 All raw bearings and frequency measurements are corrupted by 
additive zero mean Gaussian noise with a maximum level of 0.5 
degrees and 0.9 Hz respectively. The performance of this algorithm is 
evaluated against no. of geometries. A typical scenario as shown in 
Table. 1 is chosen for evaluation of the algorithm. The measurement 
interval is one second and the period of simulation is 1800 seconds. 
Here all angles are considered with respect to True North 0 to 360 
degrees, clockwise positive. The errors in the estimated range, course 
and speed are shown in figures. In underwater applications the 
acceptable errors in estimated range, course and speed are less than or 
equal to 10 %, 5 degrees and 20% respectively. As per the required 
accuracies the entire solution of the estimated parameter range, course 
and speed are obtained around at 80 seconds. 

Limitations of this algorithm 

 In some scenarios, there will not be applicable change in the bearing 
from beginning to end of the process. As change in frequency 
measurement depend on bearing rate and hence change in 
frequency measurement is negligible. So, convergence of solution is 
not possible in these scenarios, unless ownship maneuvers in such a 
way that there is an appreciable change in bearing measurements.  

In general, the sonar can listen to a target when SNR is sufficiently 
high. When SNR becomes less, auto tracking of the target fails, the 
sonar  tracks the  target in  manual  mode and the measurements are  

 

 

 

not available continuously. The bearings available in manual mode 
are highly inconsistent and are not useful for good tracking of the 
target. In this algorithm, it is assumed that good track continuity is 
maintained over the simulation period. This means that propagation 
conditions are satisfactory during this period. The algorithm cannot 
provide accurate results when the measurement noise is more than

01 rms. 

 

Fig: 1.  Simulated and predicted target paths 
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                      Fig. 2.  Target  and ownship in a pursuit geometry 

 

 

Fig. 1(a). Error in range estimate 

 

Fig. 1(b). Error in course estimate 
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Fig. 1(c). Error in speed estimate 

                 

CONCLUSION 

Recently much importance is given to obtain the target motion 
parameters using passive sonar installed in ownship (submarine, 
ship or underwater weapon) without using ownship maneuver. In 
many tactical situations, it is very difficult to carry out number of 
maneuvers until the required accuracy in the estimated target 
motion parameters. Researchers try to use Data fusion techniques if 
more tracking sensors are available. But in many situations only 
single platform with single sensor is available for tracking 
application in underwater. So, DBT is a right candidate to obtain 
target motion parameters without using ownship maneuver. This 
method can be easily adopted for underwater passive target tracking 
application.  In this paper an approach using Unscented Kalman 
Filter (which is useful for non-linear applications) is proposed to 
estimate target motion parameters without using ownship 
maneuver in passive target tracking.  

 

Mathematical modeling of frequency measurement 

Let Vo & Vt,  &   be the ownship and target speeds and courses 

respectively.  The relative velocity along line of sight (LOS), as shown 
in Fig.2, is as follows. 

B)-( cosV -B)-( cosV  velocity relative  , V T0C               (A.1)                    

    = )xxsinB()y-ycosB( t0t0
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                  (A.2)   

Doppler shift is defined as the ratio of relative velocity to 
wavelength. It is given by 

Doppler shift = 

length wave

 velocityrelative   =  
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C

 velocityrelative              (A.3) 

So the frequency measured as ownship is given by  
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