INNOVARE JOURNAL OF SCIENCES

O3

e
& éCAIIJI:.'.’Ml(E SICIENC'_ES

LIMIT INTERCHANGE IN INTEGRATION AND SUMMATION BY USING L'HOSPITAL’S

KHAKRE R.A.

Dept. Of MathematicsVivekanand Arts, Sardar Dalipsing Commerce & Science College.Aurangabad - 431003 (M.S), India.

Abstract : It is known that L’'Hospital’s Rule is one of the important results used for obtaining the limits of those functions which are of

L L o
the type — - ata given point ‘a’ where —— may take an indeterminate form like —
(!

gix) gla)

L

7 e The main purpose of this paper is to

illustrate some problems and results in advanced calculus with the help of this rule and examples .we shall show that there are some
sequences of functions for which the integral of the limit is equal to limit of the integral .We also illustrate through examples the
L’Hospital’s Rule fails in the limit interchange process if a sequence under consideration is not uniformly convergent.

INTRODUCTION

L’Hospital’s Rule [3] is one of the important results for
flx)
e(x}

obtaining the limits of those rational functions of the type

at a given point ‘a’, where —
givenp gla)
0w k

form like —, —, or —. Even if a student does not know the
0 oo o=

may take an indeterminate

details of the proof of this result he/she can easily obtain the

fixd

limits of many functions of the type at a given number ‘a’

gix]
fla)
where —— may have any one of the above mentioned

ela)

indeterminate forms.

The study of interchange of limit operation is one of the major
concepts in Mathematical Analysis. Taking the limit inside the
integral is not always allowed. There are several theorems that
allow us to do so. The major ones being Lebesgue dominated
convergence theorems that allow us to do so. The major ones
being Lebesgue dominated convergence and monotone
convergence theorems. The uniform convergence theorem is a
special case of dominated convergence theorem. By means of
examples we are going to show that limit processes cannot in
general be interchanged without affecting the result. In fact the
limit interchange process can also be explained through the
use of L’'Hospital’s Rule. In this paper the following problems
and results in advanced calculus are illustrated with the help of
examples and this rule.

(i) Finding the second derivative of a given function if it exists,

(ii) If {Xm,n } is a double sequence of real numbers

depending on the positive integers

m, n then can we say that

lim lim x = lim lim x
ey ey monap—oa T

(iii)The integral of the limit of a sequence {f n } of real valued

integrable functions

coincides with the limit of the integral of {fn} under
certain conditions, and

(iv)The integral of the sum of infinite number of real valued
integrable functions

coincides with the sum of their integrals under certain
conditions.

Further counter examples are also given to show that the
application of

L’Hospital Rule in the limit interchange process fails, if the
sequence of functions under consideration is not uniformly
convergent.

PRELIMINARIES

For the sake of completeness we given below some necessary
definitions and known results from Real Analysis.

Definition 2.1:We say that a sequence {fu(x)} real valued
functions defined on the closed interval [a, b] converges

uniformly to a function f(x) if for every E= 0 there is a
positive integer N such that n = N implies |fn{X}} - f(x} |

<Eforallxin[a, b]

[==]
Definition 2.2: We say that a series E n= 1le 1::1:.’} of real

valued functions defined on I = [a, b] converges uniformly on I

if the sequence Sy, (x}of partial sums defined by
E:‘;lﬁ (.'X-'} =5, (x} Converges uniformly on 1.

Remark 2.1: It is clear that every uniformly convergent
sequence is point wise convergent, but the converse not always



1
true. For example the sequence l:,—v}'r is uniformly
142
Y

convergent on [0,1] and hence it is convergent at every point of
[0,1]. Similarly it can also be shown that the sequence

{fn .:3}} defined on [0, 1] by the relation

{facy} =20, ift/nsxs2/m,

=0, otherwise, is not uniformly convergent.

Definition 2.3:A double sequence Xmx of real numbers, m, n =
1, 2, 3...is said to be convergent if

llmn_,mn{ll_rﬂa Xmn = llmmﬁmil_ﬁ}_,xmn

2.1

Note that on the left side of (2.1), we first let m—oo, then n—oo;
on the right side of (2.1) n—oo first and, then m—oo.

Definition 2.4:Let E C [a, b]. An outer measure of E denoted by
m (E) is defined as m (E) = g.1.b. |G| where g.l.b. is taken over all

open sets G which contain E, where |G| = En ”n |,

(| fn |den0tes the length of the interval In). Similarly the inner

measure m (E) of E is defined as m (E) = L.u.b.|F| where Lu.b. is
taken over all closed setsf contained in E.

Definition 2.5: A set E is said to be measurable if m (E) =
m_(E). In this case we define the measure of E as m(E) = m (E)
=m_(E).

Definition 2.6:A statement S is said to hold almost everywhere
on a set E C [a,b] if the set of those points of E at which the
statement does not hold is of measure zero. In this case express
this idea by writing ‘S holds a.e. on E’.

We now state L’'Hospital Rule in the form of a theorem.
Theorem 2.1 (L’ Hospital’s Rule):

Let f and g be two real valued differentiable functions in the
open interval (a, b) and g'(x) # 0 for all x € (a, b), & —= =a
=Lp= oo,

Let

1imﬁﬂf,':—“§ =L If f(x) = 0andg(x) =
glx

Dasx—aorifglx) 2—=asx—a

Flx) Frix)

= lim —= 1
g(x) 0 ()

,then lim T

The following theorems are related to uniform convergence
and limit interchange in the process of integration.

Theorem 2.2:

Let {fn (.'X.'}} be a sequence of Riemann integrable functions

on [a, b] and let fn ->f

uniformly on [a, b]. Then fis Riemann integrable on [a, b], and

ff(x}dx= lim ffn(x}dx,

_]:' lim oo [y (x)dx =
lim oo [ £ () dx (2.2)

Theorem 2.3:

Let {fu(x)}be a sequence of Riemann integrable

functions on [a, b] and
let}ﬂ‘:-'x-':]I = E::lfn (x} (ﬂ =X = b} be a convergent
series  converging uniformly on [a, b], then

J. flx)dx =
fﬂbzrzlfn (x}dx = E:::lf:lf” (X}I'.ix

(2.3)
In other words, the series may be integrated term by term.

Theorem 2.4( Lebesgue’s Monotone Convergence
Theorem):

Let{fn} T =1, 2, 3, ... be a sequence of measurable

functions such that

0=filx) = folx) = - (x €E)
(2.4)

Where E is a given measurable set.
Let{fu) = flx) (x EE)asn— ==

Then
b, . B
o lim o fry () dx = lim o | f(x)dx
(2.5)

Theorem 2.5 (Lebesgue’s Dominated Convergence
Theorem):
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Let {fn } » M1=1,2,3,... be a sequence of Lebesgue integrable

functions on the interval I = [a, b], such that lim n—co fn (.‘X-'} =

f(x) almost everywhere on . Suppose there exists a Lebesgue
integrable function g on I such that |fn (.'X-'}| < g(x) almost

every where on L. Then f is also Lebesgue integrable function
onland

b b
lim j fo(x)dx = j lim f,(x)dx
n—o0 | g T

3. SECOND DERIVATIVE BY L’HOSPITAL’S RULE

Theorem 3.1:If the second derivatives of a function f(x)

defined on I = (a, b) exists at a pointX £ I then

Flathrl+flx—RI-2F(x)

n T
Fx) = limg — , X €l
1)
Proof:

Applying L'Hospital’s Rule two times we observe
that

’ Flx +h)+ flx —h) —2f(x)
1Im hz

h—=0

. Fllae+n)—f(x—n]
— llm;
=0 2k

. PR - a—R)
lim =
h—=0 2

)

The proof is complete. Let us illustrate this theorem in finding
the second derivative of x" and log x, where n is a positive
integer.

Let f(x} =x™ then using the above theorem and

L’Hospital’s Rule we get,

Khakre

(e+h) 4+ x—h)"—2="
hZ

f'x) = limpg g

2 [nl‘_'-_x“_"h+n cox IRt t ]
hZ

= lim
h=0

2 [Tlc._x-“"—+n cox' 2 2Rt ]
2h

= lim
R0

2 [Tlczx-“‘z K24m g™ E x Eht ot -]

= lim 3

2xnCx™2=n(n—1)x"?

-1
Similarly one can show that the second derivative of log x is -
x

by using the above theorem.

INTERCHANGE OF LIMITS IN A DOUBLE SEQUENCE

Under certain conditions it is known that if {.'X-' m-n} is a

double sequence of real numbers depending on the positive
integer’s m, n then

lim lim x = lim limx
F1—+00 g 00 m.n FIL—*00 p—+ 00 mn

Im
Let us illustrate thi It for th X =
et us 1ilustrate this result for the sequence -t ym.m mZ+5n
lim i lim li —3
1 m x = lm im 5
T m—sean—eem? 4+ 5n

fa—+00 00

lim 0=
e

. . 3
= lim lim — =
m—oop—o0 2m

0 using L'Hospital's Rule

(41

On the other hand we observe that

Im
lim lim —————

lim lim x =
MR meeen—mm? + 5n

0 o

. o
= llmmqmg =0 (using

L’Hospital’s Rule).
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This shows that the two sided limits are equal.Consider now
Im+2

——— and see what the two sided
Im+5on

the sequence Xy =

limits are for this.

lim i lim 1i Im+2
un am x = m um —
R e T p e m—es 2911 + 51

.3
= lim - =

n—oa 2

L’Hospital’s Rule) (4.2)

(Using

B3|

On the other hand we observe that

i lim 1i Im+ 2
ml—I}Ig'ﬂ' Tmn= nl—I}Iﬂl'ﬂ' mlElW 2m + bn

= 1 im-=10 (using L’'Hospital’s Rule) (4.3)
IDIC‘

This shows that the two limits are not always equal even if we
apply L’Hospital’s Rule..

5. LIMIT INTERCHANGE IN IN TEGRATION

In this section we shall show that there are some sequences of
functions for which the integral of the limit is equal to the limit
of the integral, i.e. the relation (2.2) holds. We also illustrate
through examples that L’'Hospital’s Rule fails in the limit
interchange process if a sequence under consideration is not
uniformly convergent. We begin with one example in which
L’Hospital’s Rule is used.

Example 5.1:
Consider the sequence fn (x} defined by the relation

(}—2nx+3{] 1) 123
falx) = n+1 sx=lmn=

Applying L’Hospital’s Rule we observe that of examples

i (Odx = 1 2nx+ 3
i f00dx = lim ==
2x+0
= lim,, yoo—— o5 = 2x

G.1)

Further we also observe that

Lim,, ool i (x) — 2x| =

Znx+3 3—2x

im0 |2 — 2] | = T oo [ — 24
el I | [l
=0 (using L’'Hospital’s Rule) (5.2)

Hence the sequence {fn {x}} converges to the function 2x on

[0, 1]. Now again by using L’'Hospital’s Rule we show that the
relation (2.2) holds for this sequence.

2nx+3

llmj‘ fulx)dx = llmj‘ —T1 dx

. (Inx+3)2
= lim —_—
n—>m[4n I:n+1}]

4n®+12n

= lim R
RO ApTaan

n+3

= hm”"""nﬂ 1 (5.3)

On the other hand

Sy limy oo fu ()dx = [ limy o0 25 dx =

(54)

Thus the relation (2.2) holds for the sequence we have
considered.

Example 5.2:

Consider the sequence {fn (x}} defined by the
relationf, (x) = nx (1 —x %)™,

D=x =1 1tis easy to verify that this sequence is point

wise convergent on the given interval. For this sequence we
observe that

0=/ 0dx =[] 0lim, .nx(1—x2)"dx

(5.5)
im0 1 lim —— = L
=lim | O limncs lim o=
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Thus we have an absurd result 0 = %.

Here we have assumed that integral of a limit is equal to the
integral for the given sequence of functions. In fact this result is
true only when the sequence of functions under consideration
is uniformly convergent. Hence L’'Hospital’s Rule can be used
for every uniformly convergent sequence of functions as far as
the limit interchange process is concerned.

6. LIMIT INTERCHANGE AND SUMMATION

In this section we illustrate the result (2.3) given in section 2,
by considering two examples. The first example is taken from

[1].
Example 6.1:

Let n be a positive integer and a be any real number. They by
an applicationof

L’Hospital’s Rule we observe that

an=nxa = a+a+--+a (n terms)

lim,_[ar + ar?+ ar® + -+ ar™ 1]

a[r™—1]

= lim
r—+1 r—1

= lim,_, [a x nr*"1]/1

=a.n (using L'Hospital’s Rule).

This simple and trivial example shows that the limit of a sum is
equal to the sum of the limits.

Example 6.2:

Consider the series defined by the relation
Z(—i}”t” =1—-t+t*2—t3+...
n=0

For this series let us show that the relation (2.3) mentioned
in Section 2 holds

On the interval [0,x]. In others words we shall show that

Khakre

s To(—Dmtndt =
T fy (—1) 77 dt
(6.1)

For this purpose we shall use the following known result.

--=log(1l+x)

JyEr(—Drtrdt = [ (1—t +t2—t3 +
)dt

= [ lim, (1 —t + 2% — t3 4+t
(—t)™ 14t

o 1-(-t)"
[t
g B 1+t

1
=j — (since|t] =1
o 1+t

= log (1+x).

(6.3)

On the other hand, we see that the right hand side of (6.1)
is

Y ~ grtl(_q)m
Crenae= Y EED,
> [[oreaes FERC
n=0 n=0
T 3 4
=[x_x_+x__x_+... -
2 3 4
log(1+x). (6.4)

From (6.3) and (6.4) we conclude that the relation (6.1)
holds true. This is so because the series of functions that we
have considered is uniformly convergent. Such a result does
not hold for the series which is not uniformly convergent.
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For example it can be shown that the series
o nxz+n
Ya=a(—1) = forX € [a, b] REFERENCES
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is not uniformly convergent if the interval [a ,b] is unbounded.
CONCLUSION

We have seen that some results in Advanced Calculus can be
explained with the help of L’Hospital’s Rule and examples to
the undergraduate students even if they don’t know the

concept of uniform convergence and advanced theorems in 3. 3. W. R Rudin, Principles of Mathematical Analysis

Real Analysis. (Third edition), McGraw-Hill, New York, 1976.
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