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ABSTRACT  

In the present investigation, we have determined here the mass attenuation coefficients (µm) of germanium oxide for energies of 122 -1330 keV. 
Photon energies are measured using the different radioactive sources Co57, Ba133, Cs137, Na22, Mn54 and Co60. In the current investigation to detect 
gamma rays NaI(Tl) scintillation detection system were used. The investigated attenuation coefficient values were then used to determine the 
important parameters i.e. total atomic cross sections (t) for germanium oxide.  
Graphically it is observed that the variations of µm and t with energy The values of µm, t, are higher at lower energies and they decrease sharply as 
energy increases. The XCOM data is used to calculate Theoretical values. We were observed that the Theoretical and experimental values are found to 
be in a good agreement (error < 3-4%).  
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INTRODUCTION 

The mass attenuation coefficient values of partial photon interaction 
processes such as photoelectric effect, Compton scattering, pair 
production and all these are available in the form of software 
package XCOM from Berger and Hubbell (1987) by substituting the 
chemical composition of compound or mixture the mass attenuation 
coefficient of the In recent years the study of photon atom interaction 
with different materials has becomes more importance because of 
extensive use of radioactive sources in different field like industrial, 
chemical and other field. The proper characterization is must require 
for scientific study of different interaction of radiation with matter 
and also the penetration ability and diffusion of gamma radiation in 
external medium is required. The nature of the material is also 
important factor because from many studies it is observed that the 
Mass attenuation coefficient (µm) usually depends upon the energy of 
radiations and nature of the target material.  

The Oxide covers a wide range of applications almost in every field. 
The study on the interaction of gamma rays with oxide materials are 
of great interest from theoretical and experimental point of view. It is 
found that the values of  mass attenuation coefficients, total atomic 
cross section of metal oxides in the energy range of 122-1330 keV are 
studied. These studied values are compared with theoretical values 
calculated using XCOM program (Berger M.J. and Hubbell J.H., 1987, 
1999).are found to be good match between each other. Mass 
attenuation coefficient (µm) is a most important and measure factor 
of the average number of interactions between incident photons and 
substance that occur in a given mass per unit area thickness of the 
material under investigation (Hubbell, 1999). Because of their 
diverse applications in industrial, chemical, biological, medical, 
shielding, agricultural applications also in food technology, biosensor, 
photovoltaic cell and solar cells ultra sound are more recent 
applications.  

The useful parameters, like total atomic are critical parameters in 
applied field as well as fundamental science is obtained by using 
mass attenuation coefficient. The Shielding materials will be 
generated in the different energy range.  Hubble (1982) are 
published tables of mass attenuation coefficients and the mass 
energy absorption coefficients for 40 elements and 45 mixtures and 
compounds for 1 keV to 20 MeV. 

Hubbell and Seltzer (1995) replaced these tables in form of 
tabulation for all elements having 1 ≤ Z ≤ 92 and for 48 additional 
substances for dissymmetric interest. XCOM program converted to 

windows version is now called as Win XCOM Gerward et 
al.(2001,2004). 

Oxides and biological material plays an important role. The 
knowledge of Interaction of photons with different substances (i.e. 
alloy, plastic, soil, role in radiation biology, nuclear technology, and 
space research as radioactive sources such as Co57 (122 keV), Ba133 
(356 keV), Na22 (511 and 1275 keV), Cs137 (662 keV), Mn54 (840 keV) 
and Co60 (1170 and 1330 keV) are more significant in biological 
studies, radiation sterilization, industry (Hall, 1978). Photons in the 
high energy range are vital for radiography and medical imaging, the 
giga-electron-volt energy range are important in astrophysics and 
cosmology (Manohara et al. 2008).There have been several 
experimental and theoretical investigations for the determination of 
mass attenuation coefficient (µm) of different materials can be used to 
determine other related parameters like, total atomic cross (t) (El-
Kateb and Abdual-Hamid, 1991; Gowda et al., 2005; Manjunathaguru 
and Umesh, 2006; Pawar P.P. and Bichile sections(t), molar 
extinction coefficients(), Electronic cross sections (e), effective 
atomic numbers G.K., 2013; Sandhu et al., 2002).  

Many researcher are interested and attracted towards the study of 
mass attenuation and different values of complex molecules in the 
energy range 5-1500 keV as the photons in this energy range are 
widely used in medical and biological applications (Hubbell, 1999) 
via different methods (Murut Kurudirek, 2013, 2014a, 2014b, 2014c, 
2015; Midgley, 2004, 2005; Manohara and Hanagodimath, 2007; 
Demir et al., 2012; Murat Kurudirek and Tayfur Onaran, 2015; Danial 
Salehi et al., 2015).  

CALCULATION METHODS 

Mass attenuation coefficient 
The inverse exponential power law that in the present work we study 
some theoretical parameters of some oxide that have been used to 
determine the mass attenuation coefficient µm .  And other related 
parameters which are based on it. A parallel beam of the measured 
intensity I of the transmitted mono-energetic X-ray or -photons 
passing through matter is related to the incident intensity I0 is is 
usually referred to as Beer-Lambert law is given by the relation.  

XmeII


 0   (1) 

                                                                                      
Where, I0 and I are incident and transmitted photon intensities 
respectively,  
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X is mass per unit area (g/cm2), µm is mass attenuation coefficient 
(cm2/g) given by the following equation for a compound or mixture 
of elements (Jackson D. F. and Hawkes D.J., 1981; Hubbell and Seltzer, 
1995). By using the Eq. (1) we obtain the following equations for 
linear attenuation coefficient;  
  µ =1/t ln ( Io/I ) (2)  
     
The mass attenuation coefficient of the sample is measured by using 
the following equation:    

  
i

i

ii W )/()/(    (3)

                                                    Where Wi is 
the weight fraction and (µ/)i  is the mass attenuation coefficient of 
the ith constituent element. Weight fraction is given by 

j

j

iiii AnAnW  /    (4) 

Where Aj is the atomic weight of ith element and ni is the 
number of formula units. 

Total atomic cross section 

Total attenuation cross section (t) is a fundamental parameter to 
describe the  
 
Photon interacts with matter. The value of mass attenuation 
coefficient (µm) is used to determine Total atomic cross section (t) by 
using the following relation (Hubbell, 2006; Erzeneoğlu et al.,2006). 
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Where, A is molecular weight and NA is Avogadro’s number  

EXPERIMENTAL DETAILS 

In the presented studies we measured incident and transmitted 
photon energies by using a narrow-beam good geometry set up. Fig. 1 
shows the experimental set up used in the current investigation.  The 
six radioactive sources, Co57 (122 Kev), Ba133 (356 Kev), Na22 (511 and 
1275 Kev), Cs137 (662 Kev), Mn54 (840 Kev) and Co60 (1170 and 1330 
Kev) are used. i Gamma rays emitted by these radioactive sources 
were collimated and detected by a NaI(Tl) scintillation detector. The 
Signals emitted from the detector (2''2'') NaI (Tl) crystal having 
energy resolution of 8.2% at 0.662 MeV. Stability and reproducibility 
of the arrangement were checked before and after each set of runs. In 
order to minimize the effects of small-angle scattering and multiple 
scattering events on the measured intensity, the transmitted 
intensity was measured by setting the channels at the full-width half-
maximum position of the photo-peak. 
 

 
Fig.1: Narrow beam good geometry set up. 

Pellet shaped uniform thickness of chosen oxides such as Germanium 
oxide (GeO2) under investigation were confined in a cylindrical 
plastic container with diameter similar to that of the sample pellet. 
The diameters of the sample pellets were determined using a 
traveling microscope. The attenuation of photons in the empty 
containers was negligible. Each sample pellet was weighted in a 
sensitive digital balance with an accuracy of 0.001 mg several times 
to obtain the average value of the mass.             
The mass per unit area were determined by using the diameter of the 
pellet and mean value of the mass of the pellet. The sample thickness 
was selected in order to satisfy the following ideal condition as far as 
possible (Creagh D.C., 1987): 

.4)ln(2 
I

Io
 

The values of attenuation coefficients (/ρ) of Germanium oxides 
(GeO2) were calculated from the measured values of incident photon 
intensity I0 (without sample) and transmitted photon intensity I 
(with sample) Eq. (2). The full experiments were performed in an air-
conditioned room to avoid possible shifts of the photo-peaks. Other 
sources of error were evaluated and reduced. The maximum angle of 
scattering was maintained <30 min by properly adjusting the 
distance between the detector and source (30cm < d < 50 cm), as the 
contribution of coherent and incoherent scattering at such angles in 
the measured cross sections at intermediate energies is negligible 
(Hubbell, 1999). Hence, no small-angle scattering corrections were 
applied to the measured data. All the oxides samples used in this 
study were of high quality sigma Aldrich and of high purity (99.9 %) 
without high-Z impurities. Hence, sample impurity corrections were 
not applied to the measured data. In the presented investigation, 
uncertainty in the mass per unit area and the 
 
Error due to no uniformity of the sample are <0.05% for all energies 
of interest. Optimum values of count rate and counting time were 
chosen to reduce the effects of photon built-up and pulse piles. 

The photon built-up effect, which is a consequence of the multiple 
scattering inside the sample, depends on the atomic number and 
sample thickness, as well as the incident photon energy. A built-in 
provision for dead time correction was present in the MCA used 
during this investigation. 

RESULTS AND DISCUSSION 

In the current investigation, the variation between experimental and 
theoretical values of μm (cm2/g) for germanium oxide (GeO2) studied 
for the energies of 122, 360, 511, 662, 840, 1170, 1275- and 1330-
keV. Photon energies are shown in Table 1, and those for germanium 
oxide samples are plotted in Figure 2. It can be observed from the 
figure and table that m decreases with increasing photon energy. It is 
observed that he experimental values of m agree with the theoretical 
values calculated using the XCOM program. 
 
Table1.  Attenuation coefficient (μm) and total atomic cross 
section (t) of GeO2 

 (μm) 

 
(st) 

 
 Ept. Theo. Ept. Theo. Energy 

 0.292 0.296 50.72 51.42 122 
356 0.103 0.1 17.89 17.37 
511 0.086 0.083 14.93 14.41 
662 0.071 0.073 12.33 12.68 
840 0.066 0.064 11.46 11.11 

1170 0.06 0.062 10.42 10.77 
1275 0.057 0.054 9.96 9.38 
1330 0.048 0.045 8.33 7.81 

 

The total uncertainties in experimental values of the m depend on 
the uncertainties of I0 (without attenuation), I (after attenuation) 
measurements of mass thickness values, and counting statistics.  
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Fig. 2: Typical plot of μm versus energy for oxides 
 
The estimated total uncertainty in the measured experimental values 
of m was found to be in the range of 2-3%. The another important 
parameter, the measured total atomic cross section (t) of  
GeO2.oxides are studied and displayed in Tables 2 the typical plots 
show the variation of t versus E shown in Figure 3. It is observed 
that the behavior of t with photon energies is almost similar to that 
of m.  

 
fig. 3  Typical plot of t versus energy for GeO2. 

CONCLUSION 

The present experimental study was carried out to obtain 
information on mass attenuation coefficient, μm and related 
parameters t for Germanium oxide samples. It has been found that 
μm is an extremely useful and sensitive physical quantity for the 
determination of these parameters for the  chosen oxide samples. 
The total atomic cross sections of GeO2 with low and medium-Z 
elements are determined in the chosen energy range (122-1330 keV) 
which is emitted by the radioisotopes 60Co, 57Co, 133Ba, 54Mn, 22Na, and 
137Cs.  For the interaction of photons with matter the values of that m 

depend on the physical and chemical environments of the samples. 
These values were found to decrease with increasing photon 
energies. From the study it is observed that the parameters t 

changed similar to that of  μm and it is clear that ε depends totally on 
the number and nature of atoms. In the present work, it has been 
observed that the data on mass attenuation coefficient (μm) and other 
parameters are very useful in industrial, biological, medical, shielding 
and other technological applications, solar cell and recently in 
sensors field. The measured data were compared against Win-XCOM- 
based data the agreement within 4%.  
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