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ABSTRACT  

Objective: In this paper we focus our study on wave equations. Westudying the solution of wave function by using separation of variables technique. 
The functions of several variablesand having worked through the concept of a partial derivative. 

Materials and Methods:We first formulate the wave function u(x,t) where x is length of string. Solving the equation𝑢 𝑥, 𝑡 = 𝐹 𝑥 𝐺(𝑡) in two 
variables byusing  the methods of Partial Differential Equation.   We get the following equation  

k
xF

xF

tGc

tG







)(

)(

)(

)(
2

where k is constant. 

Results: We are going to check the possible for the constant k in the above equation. First we consider k = 0 then we get 
u x, t = (px+r) (at+b) where a,b, p and r, were constants. 

Secondly we consider  k> 0 then  we get  
xx BeAexF  )( whereA and  B are constants and k .   

Lastly we consider  k< 0 then we get    
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was used isidentified by the subscript in ),( txun  and n , and arbitrary constants are C and D. 

Conclusion:The solutions given in the first two cases are dull solutions.The solution given in the last case really does satisfy the wave equation.  We 
can find  a particular solution function for varying values of time, t,  
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INTRODUCTION 

We consider a close look at the PDEs.  Try to classify using the given 
terminology.  Note that the f(x,y) function in the Poisson equation is 
just a function of the variables x and y, it has nothing to do with 
u(x,y). To solve Partial Differential Equations is considerably more 
difficult in general than to solve Ordinary Differential Equations, as 
the complications involved can be great.The wave equations can be 
solved by  several approaches.  The first one  will  using a technique 
called separation of variables.[1] The second technique, used is a 
transformation trick that also reduces the complexity of the original 
PDE, but in a very different manner. 
 
The advantage of an abstract approach is that it concentrates on the 
required facts, so that these facts become clearly visible and one’s 
attention is not disturbed by non important details. Moreover, by 
developing a box of tools in the abstract framework, one is equipped 
for  solving many different problems. In the abstract approach, we 
can usually starts from a set of elements satisfying certain axioms. 
The theory then consists of logical consequences which are derived 
from the axioms and are derived as theorems once and for all. These 
general theorems can then later be applied to various concrete 
special sets satisfying these axioms. 
 
We will develop such an abstract scheme for doing calculus in 
function spaces and other infinite-dimensional spaces, and this is 
what this course is about.[2]We will be equipped with a set of tools 
for solving these problems, and in particular, we will return to the 
optimal mining operation problem again and solve it. 

MATERIALS AND METHODS 

First, note that for a particular wave equation situation, in addition to 
the Partial Differential Equation, we will also consider  

 
 
boundary conditions arising from the fact that the endpoints of the 
string are attached solidly, x = 0 at the left end of the string.At the 
other end of the string, we suppose has overall length l.   Let’s start 
the process of solving the Partial Differential Equation by first 
figuring out what these boundary conditions imply for the solution 

function i.e. ),( txu .   

 (1) 0),0( tu and 0),( tlu    

for all values of t are the boundary conditions for this wave equation 
[5]. These will be key when we later on need to sort through 
probable solution functions for functions that will satisfy our 
particular vibrating string set-up. 
Note that we probably need to specify what the shape of the string is 
right when time t = 0, and you are right to come up with a particular 

solution function, we wantto know )0,(xu .  In fact we will also 

need to know the initial velocity of the stringi. e. )0,(xut .  

 These two requirements are called the initial conditions for this 
wave equation, and are also necessary to specify a specific vibrating 
string solution.  For instance, as the simplest example of initial 
conditions, if no one is plucking the string, and it’s perfectly flat to 

start with, then the initial conditions will be 0)0,( xu  (for 

perfectly flat string) with initial velocity, 0)0,( xut [5,6]  Here, 

the solution function is pretty unenlightening,  it’s just 0),( txu
when   no movement of the string through time.   

To use the separation of variables technique we make the key 
assumption that whatever the solution function is, that it can be 
written as the multiplication of two independent functions, each one 
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of which depends on just one of these two variables, x or t.  Thus, 

imagine that the solution function, ),( txu  can be written as  

 (2) )()(),( tGxFtxu   

where F& G are single variable functions of x and t respectively.[2]  

Differentiating this equation for ),( txu two times with respect to 

each variable yields  
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Thus when we substitute these two equations back into the original 
wave equation, which is 
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then we get that 
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Here is where the separation of variables assumption pays off, 
because now if we separate these equation above so that the terms 
involving F and its second derivative are on one side, and likewise the 
terms involving G and its derivative are on the other, we get that 
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We have an equality where the left-hand side just depends on the 
variable t, and the right-hand side just depends on x[5,6].  Here 
comes the critical observation  how can two functions, one just 
depending on t, and one just on x, be equal for all possible values of t 
and x?  The answer is that they must each be constant, for otherwise 
the equality could not possibly hold for all possible combinations of t 
and x.  Thus we get 
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where k is a constant.  First we will check the possible cases for k.   

RESULTS 

Case One:  k = 0 

Suppose k equals 0.  Then the equations in (7) can be written as   

 (8) 0)(0)( 2  tGctG and

0)(0)(  xFxF  

which yields with very little effort two solution functions for F and G: 

 (9) battG )( and rpxxF )(  

where a,b, p and r, were constants (note how easy it is to solve such 
simple Ordinary Differential Equations versus trying to deal with two 
variables at once, hence the power of the separation of variables 
approaches) [2,10]. 

Putting these back together to form )()(),( tGxFtxu  , then 

the next thing we need to do is to note what the boundary conditions 
from equation (1) force upon us i. e.  

(10) 0)()0(),0(  tGFtu and

0)()(),(  tGlFtlu   for all values of t 

Unless 0)( tG  (which would then mean that 0),( txu , 

giving us the very dull solution equivalent to a flat, un plucked string 
then this will imply that  

(11) 0)()0(  lFF .   

But how can a linear function have two roots?  Only by being 

identically equal to 0, thus it must be the case that 0)( xF .  

then we still get that 0),( txu , and we end up with the dull 

solution again, the only possible solution if we starting  with k = 0. 

Case Two:  k > 0 

Consider, if k is positive, then from equation (7) we again start with 
the equation 

 (12) )()( 2 tGkctG   

and  

(13) )()( xkFxF   

We are looking for functions whose second derivatives give back the 
original function, multiplied by a positive constant[7,8].  Possible 
candidate solutions to consider include the exponential, sine and 
cosine functions.  These sine and cosine functions don’t work here, as 
their second derivatives are negative the original function, so we are 
left with the exponential functions.   

Let’s take a look at equation (13) more closely first, as we already 
know that the boundary conditions implies conditions specifically for 

)(xF , Then the conditions in (11).  Solutions for )(xF  include 

anything of the form 

(14) 
xAexF )(  

where k2  and A is a constant.  Since  could be positive or 

negative, and since solutions to  equation (13) can be added together 
to form more solutions (note (13) is an example of a second order 
linear homogeneous ordinary differential equation, so that the 
superposition principle holds, then the general solution for  equation 
(13) is as below, 

(14) 
xx BeAexF  )(  

where A and  B are constants and k .  Knowing that 

0)()0(  lFF , then unfortunately the only possible values of 

A  and  B  that work are 0 BA , i.e. that 0)( xF .  Thus, 

once again we end up with 

0)(0)()(),(  tGtGxFtxu , the dull solution which 

gets once more.   

Case Three:  k < 0 

Lastly we considering the negative values for k, So we go back to 
equations (12) and (13) again, but now working with k as a negative 
constant. So, again we have these equations 

 (12) )()( 2 tGkctG  and  

(13) )()( xkFxF   

Exponential functions won’t satisfy these two ordinary differential 
equations, but now the sine and cosine functions will be used [9].  
The general solution function for (13) is now 

(15) )sin()cos()( xBxAxF    
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where again A and B are constants and now we have k2 .  

Again, we consider the boundary conditions that specified that 

0)()0(  lFF .  Substituting in 0 for x in (15) leads to 

      (16) 0)0sin()0cos()0(  ABAF  

Therefore )sin()( xBxF  .  Next, we consider 

0)sin()(  lBlF  .   

 

We can assume that B isn’t equal to 0, otherwise 0)( xF  which 

would mean that 0)(0)()(),(  tGtGxFtxu , again, 

the trivial unplucked string solution [7].   
 

With 0B , then it must be the case that 0)sin( l  in order 

to have 0)sin( lB  .  The only way that this can happen is for 

l to be a multiple of  .  Then we get that  

 (17)  nl  or
l

n
    (where n is an 

integer) This means that there is an infinite set of solutions to 
consider (letting the constant B be equal to 1 for now), one for each 
possible integer n.  
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Well, we would be done at this point, except that the solution 

function )()(),( tGxFtxu  and we’ve neglected to figure out 

what the other function, )(tG , equals.  now, we return to the 

ordinary differential equation in equation (12): 

 (12) )()( 2 tGkctG   

where, again, we are working with k, a negative number.  From the 

solution for )(xF  we have determined that the only possible 

values that end up leading to non-trivial solutions are with the 
constant 
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get an infinite set of solutions for (12) that can be written in the form  

(19) )sin()cos()( tDtCtG nn    

where C and D are constants and 
l

cn
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where n is the same integer that showed up in the solution for 

)(xF  in  18   we’re labeling   with a subscript “n” to identify 

which value of n is used [8,9]. 

Now we find for all we have to do is to drop our solutions for )(xF

and )(tG into )()(),( tGxFtxu  , and the result is 
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where the integer n that was used is identified by the subscript in 

),( txun  and n , and arbitrary constants are C and D. 

At this point you should be in the habit of immediately checking 
solutions to these differential equations.  Is (20) really a solution for 
the original wave equation 
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and does it actually satisfy the boundary conditions 0),0( tu  

and 0),( tlu for all values of t. 

CONCLUSION 

The solution given in the last section really does satisfy the one-
dimensional wave equation.  To think about what the solutions look 
like, you could graph a particular solution function for varying values 
of time, t, and then examine how the string vibrates over time for 
solution functions with different values of n and constants C and D.  
However, as the functions involved are fairly simple, it’s possible to 

make sense of the solution ),( txun functions with just a little 

more effort.   
 
For instance, over time, we can see that the 

 )sin()cos()( tDtCtG nn    part of the function is 

periodic with period equal to 

n

2
.  This means that it has a 

frequency equal to 




2

n
 cycles per unit time.  

REFERENCES 

1. L. C. Evans, Partial Differential Equations, Graduate Studies in 
Mathematics, 19, AMS (1998).  

2. R. K. Gupta, Partial Differential Equations 
3. J.F. Annet, Superconductivity, Superfluids and Condensates, 

Oxford Mas- ter Series in Condensed Matter Physics, Oxford 
University Press, Reprint (2018) 

4.  J.M. Ball and R.D. James, Fine mixtures as minimizers of energy , 
Archive for Rational Mechanics and Analysis, 100, 15-52 (2016). 

5. M. Reed and B. Simon, Methods of Modern Mathematical Physics, 
Volume I, Reprint Elsevier (Singapore, 2013). 

6. Mathew J Hancock, The 1-D Wave Equation 18.303 Linear Partial 
Differential Equation (2006) 

7. D. Naik, C. Peterson, A. White, A. Berglund, and P. Kwiat, Phys. 
Rev. Lett. 84, 4733 (2000). 

8. N. Gisin et al, “Quantum cryptography,” Rev. Mod. Phys., Vol. 74, 
No. 1, January 2002. 

9. T. Jennewin, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, 
Phys. Rev. Lett. 84, 4729 (2000). 

10. D.R. S.Talbot and J.R.Willis, Bounds for the effective constitutive 
relationof a nonlinear composite, Proc. R. Soc. Lond. (2004), 460, 
2705-2723. 

11. N.B. Firoozye and R.V. Khon, Geometric Parameters and the 
Relaxation for Multiwell Energies, Microstructure and Phase 
Transition, the IMA volumes in mathematics and applications, 54, 
85-110 (1993). 

12. D.Y.Gao and G.Strang, Geometric Nonlinearity: Potential Energy, 
Com- plementary Energy and the Gap Function, Quarterly Journal 
of Applied Mathematics, 47, 487-504 (1989a). 

 
 
 
 
 

Sangale et al. 
Innovare Journal of science, Vol 8, Special Issue 1, 2020,  

103 
National conference on recent Advances in Physical Sciences (RAPS-2020) 


